
1 Evolved representations
As described in the Abstract, the choice of a representation

will have an influence on the result of a design process using
this representation. Any particular representation might
make some designs impossible to generate, and some designs
less likely to be produced than others. The first of these effects
is often used to restrict the size of the search space; the second
however is generally avoided, because it is implicit and diffi-
cult to predict and control.

In this research, it will be shown that it is possible to create
representations that bias a search process in a predictable and
controllable way. This means that the representation intro-
duces a user-controllable ‘focus’ into the design process.
Designs inside this focus, those showing user-defined fea-
tures, have a higher probability to be the result of the design
process than designs from other areas of the search space.

1.1 Using the representation to focus design
processes

To make use of the influence that representations can have
on a design process, any implicit bias introduced by the
representation has to be replaced by a bias that is both pre-
dictable and controllable by the user. The goal is therefore to
find a way to create a representation for an evolutionary
system that transforms the search space in a way such that
designs are more likely to be generated that shows certain
preferred attributes.

This goal can be divided into two parts.
• Identify a method to influence a design process in a pre-

dictable way by modifying the representation used in this
process. Many different representations are used for de-
sign, and variations on these representations influence
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Advances in science and technology have influenced designing activity in architecture throughout its history. Observing the fundamental
changes to architectural designing due to the substantial influences of the advent of the computing era, we now witness our design
environment gradually changing from conventional pencil and paper to digital multi-media. Although designing is considered to be
a unique human activity, there has always been a great dependency on design aid tools. One of the greatest aids to architectural design,
amongst the many conventional and widely accepted computational tools, is the computer-aided object modeling and rendering tool,
commonly known as a CAD package. But even though conventional modeling tools have provided designers with fast and precise object
handling capabilities that were not available in the pencil-and-paper age, they normally show weaknesses and limitations in covering the
whole design process.
In any kind of design activity, the design worked on has to be represented in some way. For a human designer, designs are for example
represented using models, drawings, or verbal descriptions. If a computer is used for design work, designs are usually represented by groups
of pixels (paintbrush programs), lines and shapes (general-purpose CAD programs) or higher-level objects like ‘walls’ and ‘rooms’
(purpose-specific CAD programs).
A human designer usually has a large number of representations available, and can use the representation most suitable for what he or she is
working on. Humans can also introduce new representations and thereby represent objects that are not part of the world they experience with
their sensory organs, for example vector representations of four and five dimensional objects. In design computing on the other hand, the
representation or representations used have to be explicitly defined. Many different representations have been suggested, often optimized for
specific design domains or design methods, but each individual computational design system has only one or very few different
representations available.
Whatever the choice of the representation, it is likely to influence the outcome of the design process. In any representation, some designs may
be more difficult to represent than others, and some designs may not be representable at all.
The same applies if the design process is implemented in a computer program. If a design cannot be represented with a given representation,
it cannot be the outcome of a design process using this representation. As is the case for human designers, it is also possible that the
representation influences a computational design process such that it is easier for the program to find some designs than others. Depending
on the design process used, this might make those designs a more likely outcome of the design process. This is for example the case with
stochastic optimization processes, like evolutionary systems and simulated annealing. In these cases, the representation is likely to introduce
a bias into the design process.
The selection of the representation is therefore of high importance in the development of a computational design system. Obviously, while
choosing the representation the programmer has to ensure that all or as many as possible potentially ‘interesting’ designs can be represented.
But it is also generally desirable to minimize the bias introduced by the representation. In contrast to the user-provided design criteria, the
bias caused by the representation influences the outcome of the design process in an implicit way which is not obvious to the user, and is
difficult to predict and control.
The idea developed in this research is that it is possible to turn the bias caused by the representation into a virtue, by deliberately choosing or
modifying the representation to influence the design process in a certain desired way. The resulting ‘focusing’ of the search process is
connected to the idea of ‘expansion of search spaces’, a notion used in some definitions of computational creativity. Both ‘focusing’ and
‘expansion of search space’ will be explored in this research.
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the design process in different ways. The method should be
applicable to different representations in different applica-
tions.

• Design a mechanism that allows the creation of such a re-
presentation for particular design problems. Ideally, this
mechanism would require little user-interaction.

The following section presents an intuitive view of the al-
gorithm that has been developed, and the sections following
describe how this algorithm achieves the two parts of the goal
described here.

1.2 Basic implementation schema

The general schema of the algorithm is shown in Figure 1.
The first step is the same as in any design computing applica-
tion: the definition of a representation. In this case however,
this is only an initial representation, referred to as the ‘basic
representation’. It is designed to allow a very large search
space, including as many potentially interesting designs as
possible, and is therefore usually very basic and low-level. In
the example, the basic representation is based on squares that
can be connected to form larger shapes (Figure 1(a)).

In the second step, the system is put into a training situa-
tion, where a search algorithm using the initial representation
is set to solve a simple design task: to produce phenotypes
that are (partial) copies of a set of examples given to the sys-
tem. During this phase, a meta-level process observes how the
basic representation is used. It identifies patterns in the geno-
types of the individuals that are particularly successful, and
modifies the representation used by the system by adding
symbols for these patterns. The result is a new, ‘complex’ or
‘evolved’ representation, biased in favor of common features
in the designs produced in the training session. In Figure 1,
L-shaped shapes appear in the design examples (Figure 1(b));
therefore the representation is expanded by adding a symbol
for this shape (Figure 1(c)).

The designs produced in this step that are copies of the
examples are discarded. However, the evolved representation

provides the required focus, centered on the examples. A reg-
ular search algorithm, using this evolved representation, can
then be used to produce new designs that are likely to be simi-
lar to the examples. The effect of the evolved representation
depends on whether the basic representation is replaced by
the evolved representation or whether the evolved represen-
tation is added to the basic representation. In this example,
the L-shape is only added, and the new designs can use both
the original square and the L-shape (Figure 1(d)).

This basic algorithm solves the following two parts of the
goal.
• The representation is manipulated by adding new symbols

to the alphabet used in the representation. These addi-
tional symbols represent certain features, and by introduc-
ing them into the representation designs containing these
features are favored; in other words the additional symbols
create a focus in the search space.

• The additional symbols can be identified automatically,
using machine learning. No user interaction is required,
only the provision of a set of example designs.

Both points will be elaborated in the following sections.
A system as described here also allows for the transformation
of the focus thus created, simply by modification of the repre-
sentation. This feature is important in connection with cre-
ative design.

1.2.1 Use of evolutionary algorithms

The creation of an evolved representation from a training
situation requires two main features: the ability to produce
copies or partial copies of the examples without addi-
tional knowledge or supervision, and a flexible and easily
modifiable representation. At the same time, the evolved
representation is intended to be used to produce new designs.
Therefore, it has to be compatible with the search method
that will be used to produce these new designs.

Evolutionary algorithms seem to fit these requirements
very well. They require only a fitness value that can easily be
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calculated from a comparison between phenotypes and the
design. As will be shown in the following sections, they also
allow for the manipulation of the representation during the
search. Finally, as the large body of existing design systems
using evolutionary algorithms shows, they are also very well
suited to the generation of new designs. This means that the
same type of algorithm can be used for the creation and for
the use of the evolved representation, and the compatibility of
the representation is therefore ensured.

1.3 Influencing search space using evolved
representations

In evolutionary algorithms, a bias towards particular de-
signs can be introduced either in the genotype representa-
tion, or in the genotype-phenotype transformation. For
example, using evolutionary algorithms with variable-length
genotypes, individuals with short genotypes are generally
easier to find than individuals with long genotypes. Similarly,
if the genotype-phenotype transformation were such that
particular phenotypes can be represented by many geno-

types, these phenotypes would be expected to be easier to
find than phenotypes that are represented by only one
genotype.

In the method presented here, the biggest influence on
the search process comes from the first effect: designs with
certain desired features are represented with shorter geno-
types, and are therefore easier to find. However, the method
also introduces new ways to represent these designs, which
again improves the chances of these designs in the design
process.

To illustrate the creation of a focus, an evolutionary system
with a string representation is used. In such a system, the
genotypes are strings of fixed or variable length, constructed
from symbols of a predefined alphabet. To create a focus
in the search space of such an evolutionary algorithm, the
representation used in this algorithm is modified by the intro-
duction of additional symbols to the original alphabet. To
distinguish the introduced symbols, they will be referred to as
‘evolved genes’, while the original symbols will be called ‘basic
genes’.

Evolved genes can be used together with the basic genes
to produce new genotypes. As a result, two different kinds of

genotypes can be distinguished: genotypes that use only basic
genes (referred to as ‘basic-level genotypes’), and genotypes
that also use evolved genes (referred to as ‘evolved-level geno-
types’). This introduces another representation level, as the
genotype representation is now split into a ‘basic genotype
representation’ (or ‘basic representation’) and an ‘evolved ge-
notype representation’ (or ‘evolved representation’), as shown
in Figure 2.

The evolved genes are defined such that each evolved
gene represents a certain combination of basic genes. As Fig-
ure 2 shows, evolved-level genotypes can therefore be trans-
formed into basic-level genotypes by replacing each evolved
gene with the set of basic genes it represents. For example, if
gene A in the figure appears in an evolved level genotype, this
indicates that in the corresponding basic level genotype, this
and the next position is filled by basic gene 0; evolved gene C
indicates a sequence of four basic genes 2. The original geno-
type-phenotype transformation can then be used to generate
a phenotype. In the general case, the evolved-level genotype
to basic-level genotype transformation is an n-to-one trans-

formation; there will be many different ways to represent the
same basic level genotype using evolved genes.

1.3.1 Transformation of the search space
Since evolved genes are represented by single symbols in

the genotype, they are ‘atoms’ for evolutionary operations. At
the same time, they represent a combination of basic genes,
effectively encapsulating this gene combination. As a result,
this gene combination cannot be ‘broken up’ by any genetic
operation. It can still be removed as a whole, but its chances of
surviving a genetic operation are much higher than for all
other gene combinations that occupy the same positions on
the basic-level genotype, but are not encapsulated into an
evolved gene. The more basic genes an evolved gene encap-
sulates, the stronger is this effect. Similarly, if evolved genes
are used in the creation of an initial population, then the gene
combinations represented in the evolved genes will have
a higher chance of being represented in an individual than
any other, random combinations of basic genes.

The effect of the introduction of evolved genes is, there-
fore, that certain combinations of basic genes will be advan-
taged in the genetic search. It follows that evolved genes can
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be used to bias the search of the evolutionary system in favor
of this feature if combinations of basic genes can be identified
such that the probability that a certain feature is present in the
phenotype is higher if the gene combination is present in the
genotype than if it is not present.

The introduction of evolved genes can be seen as a
transformation of the search space, as illustrated in Figure 3.
The example assumes a variable-length representation where
each basic gene in the genotype is directly translated into
a movement of a pen in a certain direction. The original
alphabet therefore has four members, shown in the figure as
a, b, c and d. The genotype-phenotype transformation
transforms each letter into the movement of a pen, for
example each occurrence of the symbol a in a genotype
results in an upward movement of the pen of one unit length.
The genotype dacb describes a simple square, constructed by
the movement of the pen one unit to the left, one unit
upward, one unit to the right, and one unit down. The
genotype dbca represents the same square, however the pen
ends up at a different corner or the square. In the figure, the
endpoint of the movement is indicated with an arrow.

The search space can be illustrated by a number of con-
centric circles, each defining the space of designs that can be
defined by a genotype of a certain length. The inner circle
contains the designs represented by genotypes of length one,
in other words the basic genes translated into phenotypes.
The further away a design (or part of a design) is from the
center, the larger is the genotype required to represent it, and

also the larger the space that has to be searched to arrive at
this design.
The original search space is illustrated in Figure 3(a), with the
four basic genes in the center. The second circle shows all
designs that can be derived from genotypes of length two (i.e.,
using two vectors). The other circles give some examples of
designs using genotypes of length three, four and five.

Every time an evolved gene is created, the structure of the
search space is changed. The state of the new gene in the
search space is moved into the center, all design states in the
next circle that can be derived from that state are moved into
the second circle, and so on. For example, if an evolved gene
is introduced for each of the combination of four consecutive
basic genes that represent the two closed shapes in the fourth
circle, the search space changes as shown in Figure 3(b). The
squares are now represented directly by an evolved gene, and
the shapes on the fifth circle that are derived from the squares
can now be found in the second circle. The greater the
number of evolved genes a design state involves, the more it is
moved towards the center. For example, a shape with the
four squares that is now on the fifth circle (that is, can be
constructed from genotypes of length five) would have been
on the fourteenth circle before (fourteen vectors, because
the shape cannot be drawn without drawing two lines twice).

Since the introduction of a new gene increases the size of
the alphabet of the representation, more genotypes of a given
evolved-level genotype length exist, and the size of the search
space for a given length increases. This is illustrated by using
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always unique, e.g., the genotypes ‘ABc’ and ‘BAc’ produce the same phenotype. Arc segments indicate that only part of the space
is shown.



larger circles in Figure 3(b). However, the reduction in geno-
type length has a much stronger, search space reducing, ef-
fect, as can be shown for the foursquare shape. To produce
this shape using basic genes only, the search space consists
of basic-level genotypes of length fourteen, with four basic
genes, containing 414= 268 434 456 elements. To produce
the same designs using basic and evolved genes, the search
space would consist of all genotypes of length five with 6 sym-
bols in the alphabet, containing 65=7 776 elements.

1.4 Creating evolved representations
The previous section showed how evolved genes can be

used to influence an evolutionary search in such a way that
certain features are favored. The second task is to find a way to
identify the appropriate combinations of basic genes, so that
the evolved representation can be created.

Creating an appropriate evolved representation is
straightforward in the case where the features that are in-
tended to be included are explicitly known, and the geno-
type-phenotype representation is such that it is possible to
directly map those features onto gene combinations. How-
ever, neither of those conditions is usually fulfilled. Explicitly
enumerating all desired features requires a high amount of
user input, and the genotype-phenotype translation can be
such that a reverse translation is difficult or impossible. It is
therefore necessary to find a different method to create the
evolved representation.

Machine learning can provide such a method. Figure 4
shows a schematic outline of a system-employing machine

learning to create the evolved genes. The central element is
a user provided example. The features present in this exam-
ple will provide the center of the focus created by the evolved
representation. The only user input required is the provision
of this example.

The loop on the left of Figure 4 is based on a conventional
evolutionary system. Individuals are taken from the popula-
tion (which is initially generated randomly), offspring are
produced, fatnesses calculated and the new individuals are
either discarded or introduced into the population. The fit-
ness function in this system is a comparison between the
phenotypes produced and the example. This comparison
returns a high value for phenotypes that are similar to the
example, and lower values for phenotypes that are less simi-
lar; the exact implementation depends on the application
domain. This fitness will be referred to as ‘similarity fitness’ �.
At the start, the individuals produced will have hardly any
similarities to the example; at the end the system might
have found an identical copy of the example. In between,
the system produces a high number of individuals that are in
some features similar to the example. The goal of this system
is not to produce the final individual, but to generate a range
of individuals that contain a large variety of features from the
example in a variety of combinations. Some additional con-
trol may therefore be necessary to prevent convergence of the
population; this control usually influences the fitness and the
way new individuals are inserted into the population.

The population generated by the evolutionary system is
then used as a pool of samples to create the evolved re-
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presentation. This is done in the right loop in Figure 4. Gene
combinations that appear predominantly in sample individu-
als that are very similar to the example can be used to create
the set of evolved genes. The assumption behind this is that
the genotype-phenotype transformation is defined in such
a way that features in the phenotype are correlated to subsets
of genes on the genotype. This does not have to be a direct
mapping, it is sufficient when:
• The probability that the feature exists in the phenotype is

higher if the gene combination can be found in the geno-
type than if not.

• The probability that the gene combination can be found in
the genotype is higher if the feature exists in the phenotype
than if not.
A result of the probabilistic nature of the evolutionary pro-

cess is that the evolved representation created for an example
is not unique. Instead, different runs will produce different
evolved representations, each creating a focus around the
example, but each slightly different from the others.

To reduce the computational cost in identifying the best
new gene combination, it is possible to take only combina-
tions of two existing genes into account. These existing genes
can be either basic genes or evolved genes; any new evolved
gene can therefore be composed of two basic genes, two
evolved genes, or a basic gene and1 an evolved gene.

In cases where the genotype-phenotype transformation
allows gene combinations to be converted directly into
features, this construction of high order genotypes can be
inter-prated as a creation of large ‘building blocks’ by combin-
ing smaller ones. Figure 5 shows how a building block with
seven elements can be assembled in four steps, from both
basic blocks and lower-order building blocks. The building
block that is added in the third step would in turn have been
created from basic blocks in a similar process.

Creating complex evolved genes by combining simpler
evolved genes can be described as a ‘bottom-up’ process, in
the sense of artificial life research, where complex behaviors
and structures are the result of interaction of a number of sim-
pler behaviors or structures.

1.4.1 Feedback into the evolutionary system

It is possible to run the evolutionary system until a suffi-
cient number of samples are generated, and then run the
gene extraction to create all evolved genes. However, given
the bottom-up construction of complex evolved genes, a dif-
ferent approach offers itself: phases of sample creation and
gene extractions can be interwoven. The evolved genes
created in the gene extraction can be added to the representa-
tion and introduced into the population. In the early stages,
where the individuals produced contain only little knowledge
about the examples, simple evolved genes are produced and
introduced; in later stages, more complex evolved genes
will be introduced. The evolved genes thereby continually
improve the representation used in the evolutionary process,
helping it to produce larger and better fitting individuals.

If this strategy is adopted, it is especially important to cal-
culate the similarity fitness � in a way that ensures that a gene
combination is in fact related to a feature, because the first
gene extractions will occur in early phases of the run of the
evolutionary system, where the individuals still differ strongly
from the examples. Any gene combination, even if it occurs
in high-fitness individuals, could otherwise simply reflect
random influence from the initial population, instead of fea-
tures in the example.

1.5 Creating new designs using evolved
representations

When a set of evolved genes has been created, it can be
used to provide a focus for the generation of new designs.
Evolved genes are used to create a new representation, and
a new random initial population is created using this repre-
sentation. A conventional evolutionary system can then be
run to produce new designs, using a fitness function that
represents user-defined design criteria. Depending on how
the evolved genes are used, their effect on the search space
can be different. If the evolved genes are added to the basic
representation, the system can still use basic genes at any
place in the genotype if the fitness requires it. Therefore, the
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set of genotypes in the basic-level genotype search space and
the resulting set of designs in the phenotype space are not
changed, only the probability that some designs are found. If,
on the other hand, the evolved genes replace the basic genes,
only some basic-level genotypes can be produced, and there-
fore the set of designs in the phenotype space is restricted to
a subset of all phenotypes possible with the basic representa-
tion. This will be referred to as ‘hard focus’.

In most applications, the ‘soft focus’ approach is more ap-
propriate, since it still allows the adaptation of the design to
any specific design criteria. In these cases, two ‘forces’ influ-
ence the outcome of the design: the influence of evolved
genes on the initial population and on the genetic operations,
and the selection for or against phenotypes containing cer-
tain features. Kauffman [10] shows that on general rugged,
multi-peaked fitness landscapes, often-large bands of near
constant fitness exist, where selection therefore has no influ-
ence on the population. Released from random points in
the fitness landscape, the population usually ends up in
those bands. Inside a band, other forces, usually weaker than
selection, can influence the population. Local optima inside
regions favored by such a force are then more likely to be
reached than other local optima in other regions. Rugged
fitness landscapes usually result when the influence of a gene
in the genotype onto the fitness of the phenotype depends on
a number of other genes in the genotype, a condition that
certainly holds for most situations where evolutionary algo-
rithms are used in design. The evolved representations can
then be seen as a force that controls the ‘neutral drift’ of the
population towards the focus in the search space. The evolved
genes will only introduce those features that are positive or
neutral with respect to the user provided fitness.

If no basic genes are used in the evolved representation,
the evolutionary design system has no choice but to use the
evolved genes. The choice of evolved genes however is again
dependent on how the use of the specific evolved genes inter-
acts with the fitness function.

2 Computational creativity
When can a computational process be called ’creative’? It

seems there are two ways to give a claim of creativity some
foundation. One is to derive the process directly from obser-
vations of particular processes of human creative design,
for example the use of analogies and emergence. Both of
these processes are assumed to play a role in human creative
behavior, and a number of computational processes have sub-
sequently been developed that use analogies to them ([20],
[2], [22], [21]) and emergence ([7], [16], [18], [8]) create or fa-
cilitate creative design.

The second way is to try to define a general characteriza-
tion in computational terms of human creative design activity,
and to use this to guide the development of a computational
process. This ‘top-down approach’ allows the use of computa-
tional techniques and methods that are not related to any
specific human cognitive behavior, as long as they correspond
to the general characterization. It might, for example, allow
the use of evolutionary algorithms and neural networks,
which most likely do not play any role in human creativity.
The definitions involve concepts related to transformation or
expansion of search spaces (for computers) and conceptual

spaces (for humans). Neither of the definitions, however, says
anything about how such a behavior can be achieved. Where
do new rules come from? How can the conceptual space be
transformed? Or, in computational terms, where do the new
variables come from?

This research will look at search spaces in the context of
a finite system, and how a computational process can expand
a search space.

2.1 Finite systems and closed worlds
The fact that a process is running as a program inside

a computer introduces a set of theoretical limitations. The two
most important in the context of design computing are:
1. The size of memory available to the program is limited,

which means that the total number of different states that
the program can assume is limited (finite system).

2. The computing power available to run the program is
limited, which means that the number of different states
a program can assume in any specific time span is limited.

The limitations have a strong influence on what a compu-
tational design process can do, and what is impossible. The
main implications are:
1. Since each different design produced is connected to a dif-

ferent state of the machine, and the number of states is
limited (limitation one), the total set of different designs
that a program can generate is limited and defined a priori.
Another way of putting this restriction is that every design
has to be represented by design variables, and each vari-
able has to be stored in memory, limiting the number of
variables and therefore designs.

2. Due to limitation two, the set of different designs that
a program can produce and evaluate in an acceptable time
frame is limited. In practice, this number is usually much
smaller than the set of possible designs. This means that
the space searched usually has to be much smaller than the
space of possible designs.

3. The set of designs a program could produce in a limited
time frame is not generally known a priori. As Langton [12]
observes, Turing’s halting theorem can be expanded to
show that

“It is impossible in the general case to
determine any nontrivial property of the
future behavior of a sufficiently powerful
computer from a mere inspection of its
program and initial state alone.”

Even with a knowledge of the representation and the pro-
gram, it might therefore not be possible to predict which
points in the search space the system can assume, and
therefore which designs can possibly be the outcome of the
design process.

4. Due to limitations one and two, the evaluation of the design
can take into account only a certain limited set of
interactions between a design and its environment. For
example, individuals in an artificial life application can de-
velop ‘vision’ only if (a) the individuals have access to some
kind of optical sensory organs, and (b) in every time-step of
the evolution, a simulation is run to calculate what each
individual would ‘see’ (as is done for example in [23]).
However even this would not allow for individuals develop-
ing, for example, flight.
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The main consequences of the limitations are therefore
that the total set of designs that can be produced is fixed, and
that usually only a small part of it can be tested by the design
process in an acceptable time. If the design process is seen as
a search process, it means that the search will always proceed
inside a predetermined search space, which can be referred to
as the Meta search space; and that of the designs in this Meta
search space, the search process can test only a small fraction.
However, there are still a number of methods by which this
search space can be searched by the design process. The fol-
lowing discussion and the illustration in Figure 6 assume that
one design exists in the meta search space that can be consid-
ered the optimum in terms of design performance; but the
same methods are also applicable if more than one equally
acceptable performance exists.

1. A process can search only a small search space, accepting
the outcome of this search, even if it represents only a local
optimum, and better designs lie outside the search space.
For example, the search space can be restricted to designs
where methods to optimize them analytically are known.
This method is illustrated in Figure 6(a).

2. Using domain knowledge, a search space can be created
that is known to contain the desired design. This could be
the case in a situation where, say, theoretical analysis shows
that all designs outside a certain space give results that vio-
late one or more of the design restrictions. This method is
illustrated in Figure 6(b).

3. Searching the global optimum in a large space without
heuristics. This could either use a random search or at-
tempt to enumerate all possible designs, Figure 6(c).

4. Using forms of domain knowledge, including ‘soft’ knowl-
edge and heuristics, to guide the search for the best design
in a very large search space. Search strategies such as
following the local gradient (hill-climbing), simulated an-
nealing ([11]) and evolutionary algorithms fall under this
criterion, as well as guaranteed methods such as logic pro-
gramming. The arrows in Figure 6(d) illustrate this use of
local knowledge.

5. Focusing the search onto a sub-space. The sub-space is
searched with any of the other methods. Domain knowl-
edge is used to change the focus inside the total search-
-space, as shown in Figure 6(e).
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(a) (b) (c)

(d) (e)

Fig. 6: Methods to search a large search space (black dot: global design optimum; broken line: meta search space, bounded by restriction
one; continuous line: search space searched: (a) focus on a subspace, possibly excluding optimum; (b) use domain knowledge to
set focus to include optimum; (c) search whole search space; (d) search whole search space using domain knowledge; (e) focus on
subspace, but move focus)

Fig. 7: Hierarchy of search spaces



In practice, the methods will be combined, so that what
appears as the meta search space in any of the last three
methods is in fact a subset of the set of theoretically possible
designs, resulting from the limitation of the search space
by either method one or two. With focusing, the search be-
comes a three-layered process, as shown in Figure 7: the
search space is restricted from the Meta search space to
a smaller search space, usually using domain knowledge. In
this search space, focusing creates smaller sub-spaces, which
in turn are searched using local knowledge.

While the limitations of a finite state process are related to
the concept of a ‘closed world’, as used in artificial life (see for
example [1]), where it implies total reproducibility, and logic
programming (see for example [9]), where the term implies
complete knowledge, it is important to note that a closed
world is not necessary for the above restrictions to apply.
For example, it would be possible to exchange the pseudo
random generator used in many programs by a physical
device, based on thermal noise or on radioactive decay. This
results in a process that is neither reproducible, nor allows
complete knowledge; however the rest of the computer is still
a finite state machine, and the openness of the world will have
no effect on the qualitative outcome of the process.

2.2 Focusing: creativity in a finite system
The focusing in method 5 is very similar to the ‘introduc-

tion of new variables’ and ‘modification of search space’. In
fact, the difference in definition may be seen as a difference in
perspective. Looking at a process as a local observer, who only
sees the currently accessible part of the search space, the move
of focus in this method appears as a move of the search space.
However, a global observer will be able to tell that all succes-
sively searched search spaces are in fact part of the larger
Meta search space.

An example from the literature can be used to illustrate
this point. In [6], an evolutionary system is used to generate
beam sections, with perimeter and moment of inertia as two
competing design criteria. The sections are represented using
a shape grammar; the initial search space S0 is the set of all
designs that can be generated using this grammar. The au-
thors then allow the shape grammar itself to change, and at

the end of the evolutionary process a new shape grammar is
learned. With this new grammar, a different set of sections can
be produced; the system is therefore using a new search space,
Sn. The authors observer that S0 � Sn and S0 � Sn � �� and
therefore argue that the change in the shape grammar led to
a substitutive change in search space. However, a global ob-
server would be able see that both S0 and Sn are in fact part of
a larger search space S*, S0 � S*, Sn � S*, which may also hold
many other designs that are neither part of S0 or Sn. In terms
of focusing, S0 and Sn both represent a focus inside the space
of all designs that can be represented by all possible sets of
shape grammars, S*.

Another example can be seen in the variable addition
shown in Figure 2.7(a). If the space of all possible pentagons is
considered the original search space S0, then adding a vari-
able and thereby introducing hexagons creates a new, ex-
panded search space Sn. But it is also possible to argue that
both are a subset of the space of all possible polygons, S*.

2.2.1 Is focusing creative?

In terms of [5], most of the methods illustrated in Figure 6
would have to be classified as ‘routine design’, since the search
space that is searched remains constant. Focusing on a
sub-space, however, requires that some of the total set of vari-
ables are restricted in their range or set to constant values.
Moving the focus, then, introduces new variables, and/or uses
variables with values outside their current scope. This fulfils
the condition for ‘creative’ or ‘innovative’ design, not for the
entire process, but for the local view onto the focused search.

The position of a search using focusing in Poon and
Maher’s [18] transformation-exploration matrix (Figure 8)
depends on the way the sub-space is searched. As argued
above, the process certainly can be classified as ‘novel’ or
‘original’ in terms of transformation. If then for example an
evolutionary search is used inside the focus area, strong di-
verging elements are introduced, giving a value of ‘novel’ or
‘original’ for ‘exploration’. The resulting process is then in-
side the area of processes with the potential for creativity.
A simple hill climbing inside the focus-area, on the other
hand, would be entirely convergent, the value for ‘explora-
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Fig. 8: Framework to classify design processes in terms of exploration and transformation (from [14])



tion’ would therefore be ‘mundane’. Such a process would
then be classified as having only a low potential for creativity.

2.2.2 Soft focus versus hard focus

The focus does not have to be as clear-cut as in Figure 6. It
is also possible to have a ‘soft’ focus, where all variables can be
modified, but some are much more likely to be modified than
others, and/or variables are much more likely to assume
values in one range than in a different range. In other words,
certain points in the search space, those inside the focus, are
much more likely to be found than other points. Moving the
focus would then correspond to changing the probabilities of
the search process. In Figure 9, the soft focus is shown as re-
gions of higher and lower probability inside a search space. As
the figure shows, the regions of higher and lower probability
do not have to be connected; indeed it is also possible that
neighboring designs have very different probabilities, and no
distinct regions exist at all.

In the literal sense, moving or expanding a soft focus
constitutes neither an addition of variables nor an expansion
of the search space, not even from a local perspective, since
every design inside the meta search space can always be pro-
duced, independent of the positions and shape of the focus.
However, this is only a difference in degree, a system where
some designs that had previously have been impossible to
find are now available (moving a hard focus) will behave very
similarly to one where some designs were very unlikely to be
found and are now much more likely (moving soft focus). For
this reason, it can be argued that moving a soft focus equally
well fulfils this requirement for creativity.

2.2.3 Moving the focus

Gero [4], Maher, Boulanger, Poon and Gomez [14] define
any necessary attributes of the mechanism that drives the
transformation or exploration. An entirely random mecha-
nism seems not very useful: if there are only a few acceptable
designs in the meta search space, then a randomly positioned
focus will have a low probability of containing one of them.
This point is also made by Boden when she says that without
hunches, a creative robot “would waste a lot of time in follow-
ing up new ideas that ’anyone could have seen’ would lead to
a dead end” [3]. Two sources for such ‘hunches’ have already
been discussed: the use of analogy and of emergence. Other
sources seem possible, the important aspect is that some con-

nection exists between the current and the transformed focus
that improves the probability of finding good designs in the
new focus above that of random moves.

2.2.4 Humans and finite systems

The previous section has argued that the possibilities for
expanding and moving the search space in a computational
process are limited by the fact that they have to work inside
a finite system. It is an ongoing philosophical debate whether
the human mind is essentially nothing more than a complex
computational process, or if other, fundamentally different,
processes are involved (see for example [17]). However, it is
possible to argue that human designers also only focus onto
subspaces of a larger Meta search space without requiring any
assumptions on the fundamental nature of the human mind.
For example, as argued in [13], a very good knowledge both
in breadth and in depth about a field is a necessary condi-
tion for creativity in humans. Apart from limited knowledge,
the number of design alternatives they can consider in a lim-
ited time also restricts humans. For complex design tasks
this might easily be more restricting for a human than for
a computer.

Focusing in human design processes can be directly shown
using protocol analysis. In [15], the authors analyze the de-
sign behavior of designers during conceptual design. Among
other things, they classify the design activities into ‘analysis’ of
the problem, ‘synthesis’ of solutions, and ‘evaluation’ of the
solutions with regard to the problem. Only during the analysis
phase, where the problem is taken into account, does the
designer define the search space. The authors report that, as
could be expected, the designers observed usually proceeded
from analysis to synthesis, and from synthesis to evaluation.
However, even in the early stages of the design process, the
designers often went from evaluation back to synthesis with-
out a new problem analysis, and therefore without a change in
search space. After the initial phase, the designers were about
five to six times more likely to proceed from evaluation to
synthesis than to analysis. This can be interpreted as a focused
search of the search space, interrupted by analysis phases,
which allow the focus to be changed.

Evidence of focusing occurring in human design can also
be found in the observation that designers tend to reproduce
both adequate and inadequate design features of examples if
they are given such examples in a design brief, a phenome-
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Fig. 9: Transforming a soft focus inside a search space, darker shades represent higher probability for a design to appear as result of the
search



non referred to as ‘design fixation’ [19]. Seeing an example is
sufficient to create a focusing effect in the following design
activity.

The notion of focusing as an essential component in a cre-
ative computational process, as presented in this research, has
been derived entirely from general ideas about creativity and
computational processes, quite specifically without looking
at particular instances of human creative behavior. It is
therefore especially encouraging to find this evidence of
focusing in human creative design. As in the computational
processes, the focus can be ‘clear-cut’, for example as a result
of a decision not to modify some design variables, or ‘soft’, as
a tendency to or as a preference for certain types of design.

2.3 Requirements for a creative design process
From the previous sections, a number of criteria can be

identified that a potentially creative computational process
should fulfill. The process should:
• Be able to define a non-trivial sub-space, or focus, inside

a very large search-space (the meta search space).
• Use divergent and convergent elements in a search pro-

cess, such that the search is either entirely bounded by the
focus, or that designs inside the focus are far more likely to
be sampled by the search than designs outside the focus.

• Allow for transformations of the focus inside the meta
search space.

• Allow for goal-oriented control of the modifications of the
focus.

This characterization differs from those used by [5] [14] in
three points:
• It specifically acknowledges that every search space

searched will be a sub-space of a larger, predefined search
space, the meta search space.

• It specifically allows for ‘soft’ focus.
• It requires that the control for the modification of the focus

is not random.

The requirements form a set of necessary conditions for
a creative computational process. Whether they are also suffi-
cient conditions depends on what measure is used to judge
the creativity. They are sufficient according to the two defini-
tions used, but as mentioned, Maher, Boulanger, Poon and
Gomez [14] carefully limit the definition to the potential for
creativity. It is very likely that processes exist that fulfill the
criteria, but where the designs produced appear not to be
creative. Additional requirements, which narrow down the
definition, might emerge in future research.
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