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Abstract. This paper presents the first steps towards the evolutionary design of complex autonomous
systems. The approach is inspired by modularity of the human brain and the principles of evolution.
Rather than evolving neural networks or neural-based systems, the approach focuses on evolving hybrid
networks composed of heterogeneous sub-systems implementing various algorithms/behaviors. Currently,
evolutionary techniques are used to optimize the weights between predefined blocks (so-called Neural
Modules) in order to find an agent architecture appropriate for a given task. The framework, together
with the simulator of such systems is presented here. Then, examples of agent architectures represented
as hybrid networks are presented. One architecture is hand-designed and one is automatically optimized
by means of an Evolutionary Algorithm. Even such a simple experiment shows how evolution is able to
pick-up unexpected attributes of the task and exploit them when designing a new architecture.
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1. Introduction — problem
decomposition

Many researchers have had a long-term goal: to build
an autonomous robotic system that is able to operate
in real-world conditions in a robust way. However, af-
ter many years of research and development, there are
still no satisfactory results. The uneasy task of build-
ing reliable robots is composed of too many smaller
sub-problems, such as vision, reasoning in unknown
domains, etc. On this long way, there are simply
too many problems. Moreover, most of these smaller
problems do not yet have a feasible solution.

1.1. Modular design in practice
Nevertheless, many of these small problems have al-
ready been solved relatively well, such as for example
pattern recognition, planning, reinforcement learning,
etc. In order to build a well-performing system it is of-
ten possible just to use these known systems. Or even
better, it is suitable to use implementation of known
algorithms, which are tested and have performed on
a given task. Building a more complex system then
becomes faster and simpler. This approach of re-using
modules was started by the Robotic Operating System
(ROS). The main goal of ROS is to provide nodes —
implementations of algorithms — that can be re-used
in robotic applications (such as path-planning, vision
etc.) [1]. The user picks selected nodes and composes
the resulting system from them. Generally, such an
approach is called Top-Down.

The opposite direction is called a Bottom-up design
approach. Connectionist Artificial Neural Networks
(ANNs) provide an example. In ANNs, no piece of the
system (neuron) implements useful processing alone.

However when composed together, complex behavior
can be obtained often with the use of emergence.
The most traditional design of ANNs is as follows:

(1) predefine some structure of ANN; (2) optimize
the weights between neurons, in order to obtain the
desired behavior. Optimization can be done by some
local algorithm [2], or by global approaches, such as
neuro-evolution [3]. More recently, ANNs have often
been designed by a principle called “Neural Engineer-
ing”. This is a Top-down approach, which works with
Modular Neural Networks (MNNs) [4]. The purpose
of each module (sub-network) is defined. The required
behavior of the resulting system is then obtained by
composing multiple sub-networks together [5]. In this
way, complex systems can be composed [6].

1.2. How can systems be designed
in a general way?

Both of the approaches mentioned here have their own
benefits and their own weaknesses. The use of already-
implemented pieces of robotic software provides high
reliability of the system, and the user has big insight
into the inner functionality. However, the resulting
design can be very constrained, and the design pos-
sibilities are limited. ANNs provide unconstrained
design options, and are very good at dealing with
uncertainty in data, but their structure is often too
complex to be understood directly and altered well.

Here, authors focus on designing agent architectures
(learning and decision-making systems for (virtual)
robots) in a hybrid way. The process of designing
agents is not be fixed to any of the design approaches
mentioned above, but takes advantages of both. The
novel presented framework is called Hybrid Artificial
Neural Network Systems (HANNS). It is an attempt to
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Figure 1. A Neural Module with two data inputs, four data outputs and four configuration inputs. The module
also contains ”Prosperity” output, which provides subjective heuristics defining how well the module performs in the
current architecture during the current simulation. Here, a modem serves as a communication interface between the
NengoROS simulator and an external ROS node, which implements a given algorithm/functionality.

unify Modular Neural Networks with purely top-down
and practical sub-systems, such as those implemented
in ROS. One of main goals of this framework is to be
able to automate the design of new architectures for a
given task. This approach will be shown on a simple
example here.

1.3. Structure of the text
The following chapter will describe the main concepts
of our HANNS framework, together with the Nen-
goROS simulator. The third chapter will show these
principles applied to a simple agent architecture imple-
menting Motivation-Driven Reinforcement Learning
(RL). Then the evolutionary approach is used to de-
sign a similar architecture automatically. Finally, the
two results are compared and discussed.

2. Hybrid Artificial Neural
Network Systems

Hybrid Artificial Neural Networks can be described as
Modular ANNs [4] composed of heterogeneous subsys-
tems. Each subsystem can implement various methods
of decision-making and employ various representations
of information processing, from neural-like to symbolic
representations [7]. This means that (for a connect-
ing symbolic-based module to a neural network) the
symbolic representation has to be derived from the
activity of particular neurons. This has to be done
for example by means of a predefined lexicon, rule
extraction or similar methods.

This chapter describes the main principles employed
by the presented Hybrid Artificial Neural Network
Systems (HANNS) framework. The framework uses
seamless communication between all modules in the
network and encapsulated information transformation

where needed. The particular strategy of information
transformation belongs to own module and is hidden
from the rest of the hybrid network.

2.1. Communication and sub-system
Representation

In order to deal with connecting different modules
which use different types of communication, a com-
mon type of communication had to be defined. Since
there is a possibility that every system could be im-
plemented by neural computation one day, the aim is
to add higher-level subsystems into ANNs. Therefore
the entire network uses neural-like communication in
this framework. Each ”Neural Module” subsystem
can implement arbitrary behavior and has a defined
number of input and output connections. Each con-
nection can represent a real-valued number, typically
from the interval 〈0, 1〉. The scheme of an example of
a Neural Module is shown in Fig. 1.
The figure shows that the framework uses simple

communication in the network, while a transformation
from/to a symbolic (or other) domain is implemented
inside a particular Neural Module (depicted as Modem
in the schematics), if needed. According to [7], this
framework uses “hybrid system coupling interleaved
by function calls”, where all activity on inputs of Neu-
ral Module is translated into the inner representation
of Modules and is processed accordingly. After pro-
cessing the data, the Module encodes the result back
into the “neural communication” and sets data on its
outputs.

2.2. Configuration of a Neural Module
This type of Neural Module can implement various
types of information processing. However, even do-
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main independent algorithms often need fine-tuning
of their parameters in order to work efficiently. There-
fore the Neural Module has configuration inputs in
addition to data inputs and outputs. These inputs are
represented in the same way as data inputs, but their
purpose is to define the parameters of the algorithm(s)
encapsulated in the Neural Module. These parameters
can be used as normal data inputs, which means that
their value can be changed during the simulation. The
only difference is that these inputs can be ignored. If
the configuration inputs are left unconnected, these
hold a predefined (default) value of the algorithm pa-
rameters. This can be used for simplifying the overall
complexity of the network topology.

2.3. Prosperity of the Neural Module
One of the main aims of this framework is to
study new, alternative use-cases of known algo-
rithms/subsystems. During the automatic design of
these Hybrid Artificial Neural Network Systems, the
following use cases of the Neural Module can occur:
• The Neural Module is connected in a completely
wrong way: the corresponding algorithm is used
inefficiently or it does not work at all.

• The Neural Module is connected in an unexpected,
new way: the corresponding algorithm is employed,
but in a way not anticipated by the designer, a
potentially new use of the algorithm.

• The Neural Module is connected in an expected way:
the algorithm is employed as expected during the
Neural Module design.
The second of these three cases does not necessarily

mean that the algorithm is not advantageous in the
architecture. However, the behavior of an algorithm
(and potentially its purpose in the architecture) can
be often hard to analyze by hand.
In order to identify incorrectly used parts of the

resulting architecture, it would be convenient to dis-
tinguish between these three use-cases automatically.
Furthermore it would be useful to be able to evaluate
the performance of the algorithms in a given situation.
However, this is possible only by means of heuris-
tics. The value of Prosperity output defines subjective
heuristics defining “how well the algorithm performs”
in a given architecture during the simulation. This
enables the user (and potentially EA) to distinguish
between good and bad parts of a particular architec-
ture. It is up to the designer of a particular Neural
Module how to define its Prosperity function. The
function should produce values in the interval 〈0, 1〉.

2.4. The NengoROS simulator
The next goal of our HANNS framework is to provide
a platform for simulating agent architectures. In order
to rapid prototype and simulate these architectures,
the simulator of Hybrid Artificial Neural Network
Systems was created. The main objectives were the
following: maximum reuse of current implementations

of algorithms, decentralized and event-driven simula-
tion and integration with an advanced simulator of
large-scale ANNs.
The resulting open-source system is called Nen-

goROS [8]. It connects a simulator of large-scale
ANNs of the 3rd generation called Nengo [9] with the
Robotic Operating System (ROS) [1]. The Nengo
simulator was created with the goal of implement-
ing the Neural Engineering Framework (NEF) and it
therefore supports modular ANNs. The addition of
ROS enables the simulator to use any ROS-enabled
subsystem in the simulation. The integration of ROS
into the simulator is depicted in the Fig. 1, where the
component called “Q-Lambda Module” is an external
ROS node and the “Modem” serves as the interface
between Nengo and ROS. The ROS-based components
can be run remotely and can represent a particular
piece of SW, a simulated world or even robotic HW.

3. Description of selected
Neural Modules

An example of the use of the presented framework
will be shown on two selected Neural Modules.The
first module implements the Reinforcement Learning
algorithm, and the other module presents the physi-
ological state of the agent. Together, these modules
implement a principle called Motivation-driven Re-
inforcement Learning. For each of these algorithms
the theory will be briefly described. Then, integration
into the Neural Module will be introduced.

3.1. Reinforcement Learning Module
Agent architectures from the domain of Artificial Life
(ALife) often require online and model-free Reinforce-
ment Learning (RL). An algorithm called Q-Learning
meets these requirements. This discrete algorithm
learns a desired strategy only by means of interaction
with the environment based on actions produced re-
wards/punishments received. The algorithm learns
behavior which leads towards the nearest reward while
avoiding punishments. The algorithm is encapsulated
as a standalone sub-system — Neural Module here.
This particular example (the use of RL in HANNS)
can be likened to Ensemble Algorithms in Reinforce-
ment Learning [10], or to the Aggregated Multiple
Reinforcement Learning System (AMRLS) [11]. Com-
pared to these, a single ensemble is represented as a
Multiple-Input Multiple-Output sub-system, which
communicates compatibly with 2nd generation of ar-
tificial neurons. The Action Selection Mechanism
(ASM) is also currently integrated in the Neural Mod-
ule currently.

Figure 2 presents a graphical representation of our
modification of the Q-Learning algorithm. This algo-
rithm runs inside a standalone ROS node and com-
municates externally only by means of ROS messages.
Figure 1 shows the integration of this ROS node into
a Neural Module. The Module is compatible with the
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Figure 2. Scheme of the Stochastic Return Predictor (SRP) implementation. It is composed of the Q-Lambda
algorithm and ASM. The (sub-)system is implemented as a stand-alone ROS node, which can be used as a Neural
Module. Outputs encode a selected action by means of the 1ofN code (where N is number of available actions). M
state variables are encoded by M data inputs, and each data input is sampled in a predefined number of discrete
values. A node selects one action at each time-step and expects information about the new state and the reward. The
node has the following configuration inputs: α, γ, λ, Importance, which affect learning, and Action Selection Methods
(in the case that these inputs are not connected, default values are used). The Prosperity heuristics represents the
average between MCR and overall coverage of the state space (number of visited states).

HANNS framework, and can be seamlessly connected
into a network of heterogeneous nodes.

3.1.1. Learning
For learning, the Neural Module uses standard algo-
rithm called Q-Learning (more exactly: Q-Lambda,
see below). It is named according to its Q matrix,
which maps state-action pairs to utility value. At each
environment state, the Q(s, a) matrix stores utility
values for all possible actions:

Q : A× S → R, (1)

where A is a set of all available actions and S is the set
of all possible states of the environment. The utility
value represents the discounted future reinforcement
that will be received by the agent if it will follow a
given action a in a given state s. Online learning is
governed by obtaining new Q(s, a) values into the ma-
trix. A change of the value in the matrix is represented
by the following equation:

δ = rt+1 + γmaxaQ(st+1, at+1)−Q(st, at). (2)

The algorithm stores the current state and the
action that was just executed (st, at). Action at

may cause receiving the reward rt+1 and a transi-
tion1 into the new state st+1. Based on this in-
formation and the optimal action in the new state:

1Note that this theoretically requires environment with
Markov Property.

a∗t+1 = maxaQ(st+1, at+1), the value Q(st, at) is up-
dated as follows:

Q(st, at)← Q(st, at) + αδ, (3)

the following parameters used: γ ∈ 〈0; 1) is a forget-
ting factor and α ∈ (0; 1〉 is a learning rate.

According to the equation (3), the Q-Learning algo-
rithm updates only one value at a time. The learning
speed can be enhanced by modification called Eligibil-
ity Trace, which enables the algorithm updates values
of multiple past state-action pairs at one step. Such
modification of Q-Learning is called Q-Lambda, or
Q(λ) algorithm. By introducing the error function,
which is the fundamental for the eligibility traces-
based approaches, the equation can be rewritten as
follows:

Q(st, at)← Q(st, at) + αδe(s, a), (4)

where the parameter error is defined for each state-
action pair as follows:

et(s, a) =
{
γλet−1(s, a) if (s, a) 6= (st, at)
γλet−1(s, a) + 1 if (s, a) = (st, at)

(5)

The equation states that for all state-action pairs,
there is an error function value that decays in time.
If the state-action pair is used, the error function is
increased by 1. Such a modified equation (4) means
that all state-action pairs are updated in each step.
The decay parameter λ ∈ 〈0, 1〉 defines the mag-

nitude of the update of the previous states. In the
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Figure 3. The Neural Module implementing the physiological state space. This node produces/represents motivation
for the behavior which leads to the correct reinforcement. The value of its physiological variable decreases in each
time step with given dynamics, and thus increases the motivation. Once the correct reinforcement is received, the
value of the variable goes back towards the limbo area, where no motivation is produced. The value of the Prosperity
output is defined as Pt = 1 − SF t (Mean State Distance to the limbo area).

case that λ = 0, pure one-step Temporal Difference
(TD) learning is used. In the case of λ = 1, Monte-
Carlo learning is obtained. Correct estimation of λ
can improve the speed of learning, but also can cause
oscillations in learning.
In the implementation of this Neural Module, the

modification of the Q(λ) algorithm is used. Here, the
Eligibility trace is constrained to finite length of N pre-
vious steps, which saves computational resources and
prevents bigger destabilization of learning convergence
by an incorrect value of the λ parameter.

3.1.2. Action Selection Method
in non-episodic experiments

A typical use of the Q(λ) algorithm is in episodic
experiments. In episodic experiments, the initial state
of the environment is selected randomly. This helps
toward uniform exploration of (and learning in) the en-
tire state-space. In order to add domain-independence,
the designed module has to be able to operate in non-
episodic experiments. In non-episodic experiments
(particularly those simpler with one attractor), it is
necessary to achieve balance between knowledge ex-
ploitation and exploration/learning.
A typical Action Selection Method (ASM) for effi-

cient knowledge exploitation is called aGreedy strategy,
where the action with the highest utility is selected:

at+1 = a∗t+1 = maxaQ(st+1, at+1). (6)

This strategy may stick at a local optimum, so the ε-
Greedy AMS is often used. In this ASM, parameter ε
affects the amount of randomization. Random action
is selected with probability of ε, while the Greedy
strategy is followed with probability of:

P (a∗t+1) = 1− ε. (7)

Parameter ε therefore directly balances between ex-
ploitation of knowledge and exploration of the state
space around the nearest attractor.

In order to provide efficient learning ability in non-
episodic experiments, authors introduce an input to
the Neural Module called “importance” which gener-
ally defines the current need for “services” provided
by the module. For the Q(λ) module, the importance
input represents the motivation for the behavior rep-
resented by this node, see Fig. 2. The amount of
randomization in the ASM should be indirectly pro-
portional to the importance input. Here, the ε-Greedy
ASM is used, but the randomization is defined as:

ε = 1− Importance. (8)

By increasing the importance of the Q(λ) module
(increasing the motivation for executing a behavior
represented by this node), the probability of taking
the greedy action a∗ increases. This means that the
importance enables the agent to learn by exploration
in free time and to exploit the information if needed.

3.1.3. Prosperity of the Reinforcement
Learning Module

This subjective online heuristics estimates how effi-
ciently the module is used in the current topology
during the current simulation (task). Since the Q(λ)
module has to follow two antagonistic objectives (ex-
ploitation vs. exploration), it can be difficult to repre-
sent the efficiency of its use by a single value.

The heuristics that is currently being used is repre-
sented by the following equation:

Pt = Cover t + MCRt

2 , (9)
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Figure 4. Scheme of mapping the genotype (vector of binary/real values) to the phenotype (working agent
architecture). The Physiological Module is wired to the reward source in the map, and this determines the main
goal of the agent (by the module’s Prosperity value). All configuration inputs are unconnected, so the default
parameters are used. Outputs of the Q-Lambda Module are directly wired to agent’s actuators. The genotype of the
hand-designed architecture is depicted at the bottom and its connections are highlighted in the scheme. Variables
representing the state of the environment (X,Y coordinates) are connected to the data inputs of the Q-Lambda
node. The reinforcement is connected to the Physiological Module, which produces motivation for the ASM and a
reward for learning in the Q-Lambda Module.

where the Mean Cumulative Reward (MCR) is defined
as the mean reward (R) received during the simulation
until time step t. This represents the efficiency of
knowledge exploitation:

MCRt =
∑

i ri

i
∀i = 0, 1, . . . , t. (10)

The value of Cover t represents how many states of
the entire state-space have been visited so far:

Cover t =
∑

i∈Visited si∑
s∈S

, (11)

This value represents exploration efficiency.

3.2. Motivation Source Module
In order to represent agents’ needs, their physiology
can be modeled [12]. It has been shown that decom-
posing the task into subtasks can help the RL to learn
more efficiently, which is beneficial especially in more
complex tasks or in tasks that are difficult for RL
to learn [13]. The agents’ needs can represent the
motivation to execute/learn these subtasks of such
a more complicated policy. The second Neural Mod-
ule, which serves as a motivation source and holds
one physiological variable is used here. The value
of this variable decays with predefined dynamics in
time. The value of 0 represents purgatory area and
the value of 1 represents the limbo area. The amount
of motivation is indirectly dependent on the physi-
ological variable. In the limbo area, no motivation

is produced, while the purgatory area represents the
maximum motivation/need.
The simple dynamics of the physiological variable

is defined as follows:

Vt+1 = Vt − decay. (12)

The amount of motivation that is produced is deter-
mined by applying the sigmoid to the inverse value
of physiological variable V . The resulting amount of
Motivation M at time t is:

Mt = 1
1 + emin+(max−min)×(1−Vt) , (13)

where themin andmax parameters are chosen so that
the value of the variable Vt = 0 roughly corresponds
to the motivation of Mt = 1. If the reward is received,
the value of Vt+1 is set to one, and therefore the
motivation decreases towards 0, which switches the
agent back towards exploration.

3.2.1. Prosperity of the Motivation
Source Module

If the agent behaves efficiently enough, the mean
motivation produced by this module is low. The
mean motivation value can be expressed by the Mean
State Distance to optimal conditions (SF), which is
defined as follows:

SF t =
∑

i di

i
∀i = 0, 1, . . . , t, (14)

where di is the distance of state variable Vi from
the optimal conditions of V = 1. SF t is computed
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Figure 5. Observing the motivation-driven RL behavior of the architecture: the exploration vs. knowledge
exploitation is dynamically balanced, according to the agent’s current needs. The X-axis represents the simulation
steps; the Y axis is value of the motivation/reward. Peaks in the lower graph represent the binary event of receiving
the reward. These events correlate with the amount of motivation that is currently produced (upper graph). The
speed of receiving the motivation depends on quality of the agent’s knowledge (Fig. 6b and Fig. 6c) and the agent’s
current distance to the reward source.

online for each simulation step. Since the Prosperity
is indirectly proportional, its value is computed as:

Pt = 1− SF t. (15)

4. Experiments
First, experiments which validate the expected func-
tionality of particular Neural Modules are performed.
Then their correct interaction is evaluated on the ar-
chitecture,which is hand-wired for a given experiment.
Two types of Evolutionary Algorithms (EAs) were
used. The standard generational model of the Genetic
Algorithm (GA) and its modification for vector of
real-valued numbers called Real-valued GA (RGA)
were used. Both, the GA and RGA were tested and
compared on designing new architectures for a given
task.

In the experiments, the agents are allowed to move
in a 2D discrete world 15× 15 positions in size. The
map contains two obstacles and one source of motiva-
tion (see Fig. 6b). The agent has 4 actions — moving
in four directions — and if the agent steps on a tale
with the reward, a positive reinforcement is received.
Therefore, the Q-Lambda Module is configured to
have four outputs (four actions) and two inputs (X,Y
coordinates on the map) sampled into 15 expected
values (see Fig. 4). The value of physiological variable
is configured to decrease with value of decay = 0.01
each step.
The simulated environment is also implemented

as an ROS node and is also used in the NengoROS
simulator as a Neural Module. The simulation is non-
episodic; the agent is placed in the environment and
is allowed to interact with the world for a predefined
number of simulation steps.

4.1. Description of Hardwired
Agent Architecture

The modules are connected so that the Physiologi-
cal Module receives a reward from the environment
and produces motivation for the Q-Lambda Module.
States of the environment are connected to the data
inputs of the Q-Lambda Module. Actions produced
by the Q-Lambda Module are then directly applied
as actions of an agent in the environment.
The scheme of the hand-wired architecture repre-

sented as a hybrid artificial neural network is depicted
in Fig. 4. Together, this network implements the
motivation-driven reinforcement learning used in a
non-episodic simulation.

4.1.1. Simulation of Hardwired Architecture
During the simulation, the Prosperity values of both
the Q-Lambda and Physiological Module are observed.
These should correlate with the successfulness of the
behavior of the agent. Note that Q-Lambda Pros-
perity is composed of MCRt and Cover t values (how
successful the learning is and how efficient the ex-
ploitation is) and the Prosperity of the Physiological
Module is defined as 1− SF t (defining how satisfied
the agent is).

Figure 6a shows the course of these values in time.
It can be seen that at about step 20000, the prosperity
of the Physiological Module and the agent’s average
reward/step converge. Since the behavior is learned re-
liably at about step 20000, the agent is able to exploit
the knowledge efficiently (fulfills the requirements for
a reward faster) and therefore it has more time to
explore. This causes further discovering of new states
between steps 20000 and 40000. Figure 5 shows rel-
atively stable behavior of the motivation-driven RL
system during this part of the simulation. Here, the
agent balances between exploration and exploitation

373



Jaroslav Vítků, Pavel Nahodil Acta Polytechnica

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Steps

P
ro

sp
e

ri
ty

 v
a

lu
e

Prosperity of Neural Modules During the Agent's Life

 

 

Prosperity of Physiology module (1−MSD)

Prosperity of RL module

No. of visited states

Reward per step

(a) Convergence of Prosperity val-
ues of both Neural Modules in time.
Since the behavior is learned reliably
around the step 20000, the agent is
satisfied and systematically explores
further new states.

(b) Visualization of knowledge
learned by the agent during the first
10000 simulation steps. Each posi-
tion in the table is filled with repre-
sentation of action with the highest
utility value.

5
10

15

5

10

15

0

10

20

30

40

S2 = Ypos

Utility Values of Best Actions in a Given State − Q(s,a)

S1 = Xpos

U
til

ity
 o

f 
th

e
 B

e
st

 A
ct

io
n

(c) Utility value of the best action
(see b) based on agent’s current po-
sition in the map. The nearer to
the reward source, the higher the ex-
pected outcome of the best action is.

Figure 6. Simulation of the hand-designed agent architecture. Each position in b) and c) represents one position in
the map. There are two obstacles and one source reward in the environment. b) and c) show the agent’s learned
knowledge. Greedy ASM selects the action with the highest utility in each state. These actions are shown in b) and
their utility is shown in c). Note that the utility values on the Z-axis are rescaled for better visibility.

of knowledge based on the current motivation value.
The longer delay between satisfying the motivation,
the further the agent was from the source of a reward
(potentially unexplored area).

The knowledge that has been learned by the agent
can be visualized in two ways. Figure 6b shows
a graphical representation of the best action (a∗) based
on the agent’s current position in the map (state s of
the environment). Convergence to the optimal strat-
egy can be observed especially near the source of the
reward. Figure 6c depicts the actual utility values
in the Q(s, a) matrix for the best action a∗ in the
state. The higher the surface is, the higher is the
expected reward. Zero values represent unexplored
states, such as obstacles. Note that the behavior of
this architecture can be seen in the attached movie.

4.2. Principle of the evolutionary
design of new architectures

Two types of simple Genetic Algorithm (GA) were
used for the neuro-evolutionary design (optimizing
the connection weights between modules) of new ar-
chitectures here. As was mentioned above, the agent
architecture is represented as an oriented graph, where
the nodes are Neural Modules and the edges are the
connection weights between their inputs/outputs. Sim-
ilarly to the neuro-evolutionary design of ANNs [14],
the topology of agent architecture is optimized by
modifying the connection weights between nodes.
Each individual consists of a genome and fitness

value. A genome is a vector of binary/real values
representing the connection weights between modules.
The fitness value represents the quality of a given
architecture (its performance on a given task) and is
determined by means of Prosperity values (see below).
The generational model of the GA/RGA (Real-valued
GA) is used here.

In this particular case, the mapping of genotype
(genome) to phenotype (architecture) is depicted in
the Fig. 4. The representation of the architecture
is inspired in feed-forward ANN topologies, where
the inputs/outputs between particular layers are fully
connected. The weights of these connections are opti-
mized by the GA/RGA.

The previous experiment suggested that during the
simulation of 20000 steps the architecture should be
able to successfully learn the desired behavior. The
evaluation of an individual is therefore determined
by means of Prosperity values of the Physiological
Neural Module, and is obtained after simulation of
the architecture for 20000 steps. The parameters of
GAs and RGAs were empirically set to the following
values. The population size is PopSize = 50, the
number of generations MaxGens = 80. Each gene
is mutated with probability of pMut = 0.05. The
one-point crossover is applied to two individuals with
the probability of pCross = 0.8. The GA mutation
is defined as flipping the value of a given gene. For
the RGA, the mutation was implemented as sampling
the Gaussian Function with the standard deviation
of σ = 1 with mean value of µ = genei, where genei

is the value of mutated genei ∈ R (the constraints of
interval are applied after the mutation).

4.3. Evolutionary design
of new architectures

Since the prosperity of the Physiological Module is
determined by the agent’s ability to learn new knowl-
edge and use it, the suitability of the wiring of both
modules is represented in the Prosperity of the Physio-
logical Module. We therefore define the Simple Fitness
(SF) is defined, which is equal to the Prosperity of
the Physiological Module:

Parch = SFarch = Pphys = 1− SF t, (16)
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Comparing SOrGA and SOGA on Designing new Architectures

 

 

Best fitness during SOrGA (fitted by pol. of ord.5)
Best fitness during SOGA (fitted by pol. of ord.8)
Mean value of best fitness
Mean value of best fitness
95% Prediction Intervals

Figure 7. Comparing GA and RGA with Single Ob-
jective Fitness (SF). The fitness is defined as a Pros-
perity of the Physiology Module (but the courses of
evolution for the composed-fitness CF look similar).
The GA finds solution with similar quality faster than
the RGA in both cases. Note that each result is av-
eraged over 10 runs of the algorithm and fitted by
a polynomial for better readability.

where Pphys is the Prosperity of the Physiological Mod-
ule. This means that Single-Objective GA (SOGA)
and Single-Objective RGA (SORGA) will maximize
only the Prosperity of the Physiological Module.

Here, GA and RGA were used to design new archi-
tectures for the described environment. The graph
in Fig. 7 compares the convergence of the two types
of evolutionary design of agent architectures. Again,
it can be said that SOGA is able to find a similarly
fit solution faster than SORGA. The following sec-
tions will describe some typical automatically found
architectures and their properties.

4.3.1. Analyzing new architectures
found by SOGA

Table 1 shows several automatically-designed architec-
tures by means of SORGA and SOGA, and compares
them to the manually-designed architecture. SOGA
found functional architectures relatively fast. Both
selected typical individuals (marked as Ind1 and Ind2
in the table) have the following properties:
• The reward input of the Q-Lambda Module is wired
correctly, so that the RL part works as expected.

• Both environment state variables, and also the moti-
vation output of the physiology are connected to the
motivation input of the Q-Lambda Module. This
means that the motivation-driven RL is also used.
The motivation is directly proportional to the mo-
tivation produced by physiology and to the agent’s
position/distance from the reward source.

• The binary reward output of the physiology is also
connected to the motivation source, but this has no
significant influence on the agent’s behavior.

Parameters A B C D
(see Fig. 4) E F G H I J

K L M N

Hand-designed 1 0 0 1
SF = 0.625 0 0 0 1 0 0

1 0 0 0
SOGA – Ind1 1 0 0 1
SF = 0.699 0 0 0 1 0 0

1 1 1 1
SOGA – Ind2 1 1 0 1
SF = 0.697 0 0 0 1 0 1

1 1 1 1
SORGA – Ind1 0 1 1 0.71
SF = 0.745 0 0 0 1 1 0

0.89 0 1 1
SORGA – Ind2 0 0.51 1 0
SF = 0.723 0 0 0 1 0 0

0.76 0 0.3 0.44

Table 1. Comparison of agent architectures’ genomes:
hand-designed, two SORGA-designed and two SOGA-
designed architectures.

Also note that Ind1 has correctly wired state variables
to the agent’s position, while the Ind2 has one dimen-
sion “diagonalized” (both, the X coordinate and the
Y coordinate are connected to the S1 variable). This
means that only one half of the Q(s, a) matrix was
used here, but still the architecture still performed rel-
atively well. Figure 8 shows the behavior of a typical
best architecture found by SOGA. The architecture
performs similarly to the hand-designed architecture
(see Fig. 6). Compared to the hand-designed architec-
ture, this architecture has bigger motivation to stay
near the reward source, so that the overall prosper-
ity of the Physiological Module is higher, while the
number of explored states is lower.

4.3.2. Analyzing new architectures
found by SORGA

Finding new architectures by means of SORGA took
more than generations than for SOGA. However,
SORGA has wider options for connecting modules.
For example, it can be seen from the Table 1 that
Ind2 used only half of the Q(s, a) memory. Ind1 uses
swapped coordinates with one dimension slightly di-
agonalized. In both architectures, motivation-driven
RL is used. Again, the amount of motivation origi-
nates from the physiology and the agent’s position in
the map (the agent is therefore afraid of going fur-
ther away from the food). Figure 9 shows the course
of learning of Ind1 and the content of its memory.
The knowledge is diagonalized (see Fig. 9b), but the
learned data corresponds to the reward source. The
position of the obstacle is also visible. The separated
peak is caused by the fact that the reward output
of the Physiological Module is connected to the S1
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(b) Knowledge of selected agent found by the
SOGA – Ind1. Representation is identical to
the hand-designed architecture. Not all envi-
ronment states are explored here.

Figure 8. Analyzing the typical architecture found by the SOGA (marked as Ind1). It can be seen that the higher
motivation (combined from two sources) causes the agent to stay nearer the reward source (once found) than in the
hand-designed architecture. Compared to this, the CORGA approach is able to weight the amount of importance
produced by particular sources.
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(b) Knowledge of the selected agent found by
SORGA – Ind1. The Q-Lambda Module has
swapped axes and the value of the S2 variable
is computed as follows: S2 = X + 0.71Y . This
causes slower convergence of learning. The
“peak” in the graph is caused by connecting the
reward output to the S1 input.

Figure 9. Behavior and knowledge learned in the SORGA-designed architecture.Although the convergence of
learning is slower, the overall results of the behavior are similar to the SOGA-designed architecture (Fig. 8).

input. This means that while receiving the reward,
the perceived X position “jumps” to the maximum
value.

4.3.3. Discussion
It has been shown that the agents’ ability to weight
between exploration and knowledge exploitation can
be represented only by means of the Prosperity of
the Physiological Module. Table 1 shows that all
architectures found by SOGA and SORGA have no-
tably higher fitness values than the hand-designed
architecture. Furthermore, the results of SORGA

(particularly Ind1) suggest that it is more efficient to
use two components as a source of motivation: time
(agent’s physiology) and space (agent’s position). This
is a simple example of how evolution is able to cor-
rectly identify possibly hidden attributes of the task
and employ then while designing architectures suit-
able for the task. Solutions provided by the evolution
typically use less efficient representation of the knowl-
edge in the SRP’s memory, but are able to use Neural
Modules in an unexpected manner. One of goals of
our research is: to test how known algorithms can be
employed in new, unexpected ways.
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5. Conclusion
A novel approach for designing hybrid agent architec-
tures, which is inspired by neuro-evolution has been
presented. This approach uses the newly presented
framework of Hybrid Artificial Neural Network Sys-
tems (HANNS). It searches for new topologies of these
hybrid networks by modifying the connection weights
between particular Neural Modules. This method
enables semi-automatic design of agent architectures
that are specialized for a given task.

It has been shown that this approach is able to do
the following:
• Determine whether and how to the module will be
used by connecting its outputs.

• Define the form of knowledge representation in the
module by connecting its inputs.
It has been shown that, during the design of new

architectures, the approach is able to pick the im-
portant aspects of the task and make efficient use of
this knowledge for designing the architecture. This
method of automatic design is able to find design so-
lutions that are as good as, or even better than, those
designed by hand. This can be particularly useful
in designing autonomous systems, where the task is
too complicated to be fully understood by the human
designer.

In this particular case, evolutionary design was able
to choose the inner representation of a problem in-
side a Neural Module (represent X,Y coordinates),
to discover inherent properties of the task (that the
reward source is near the coordinates to 0, 0) and to
define the solution by wiring the connections between
Neural Modules (e.g., that the importance of knowl-
edge exploitation is directly dependent on the agent’s
position). The RGA discovered that it is a more
robust approach to use two independent sources of
motivation; one based on the agent’s position (envi-
ronment state) and the other based on the agent’s
physiology.

Last but not least, particular nodes in the HANNS
framework are implemented in a way that can be used
in a variety of different (e.g., more complex) archi-
tectures and/or in a variety of modular systems in
the future. For example, multiple (differently con-
figured) RL modules can either compete (for learn-
ing/action selection of antagonistic goals) or cooperate
to learn/execute one (hierarchically decomposable) be-
havior.
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