
doi:10.14311/AP.2013.53.0677
Acta Polytechnica 53(Supplement):677–682, 2013 © Czech Technical University in Prague, 2013

available online at http://ojs.cvut.cz/ojs/index.php/ap

ACCRETION DISKS WITH A LARGE SCALE MAGNETIC FIELD
AROUND BLACK HOLES

Gennady Bisnovatyi-Kogana,b,∗, Alexandr S. Klepneva,b,
Richard V.E. Lovelacec

a Space Research Institute Rus. Acad. Sci., Moscow, Russia
b Moscow Engineering Physics Institute, Moscow, Russia
c Cornell University, Ithaca, USA
∗ corresponding author: gkogan@iki.rssi.ru

Abstract. We consider accretion disks around black holes at high luminosity, and the problem of the
formation of a large-scale magnetic field in such disks, taking into account the non-uniform vertical
structure of the disk. The structure of advective accretion disks is investigated, and conditions for the
formation of optically thin regions in central parts of the accretion disk are found. The high electrical
conductivity of the outer layers of the disk prevents outward diffusion of the magnetic field. This
implies a stationary state with a strong magnetic field in the inner parts of the accretion disk close to
the black hole, and zero radial velocity at the surface of the disk. The problem of jet collimation by
magneto-torsion oscillations is investigated.
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1. Introduction
Quasars and AGN contain supermassive black holes,
about 10 HMXR contain stellar mass black holes –
microquasars. Jets are observed in objects with black
holes: collimated ejection from accretion disks.

The standard model for accretion disks of Shakura
and Sunyaev [20] is based on several simplifying as-
sumptions. The disk must be geometrically thin and
rotate at the Kepler angular velocity. These assump-
tions make it possible to neglect radial gradients and
to proceed from differential to algebraic equations.
For low accretion rates Ṁ , this assumption is fully ap-
propriate. However, for high accretion rates, the disk
structure may differ from the standard model. To solve
the more general problem, advection and a radial pres-
sure gradient have been included in the analysis of the
disk structure by Paczynski & Bisnovatyi-Kogan [19].
It was shown by Artemova et al. [1], that for large
accretion rates there are no local solutions that are
continuous over the entire region of existence of the
disk and undergo Kepler rotation. A self-consistent
solution for an advective accretion disk with a con-
tinuous description of the entire region between the
optically thin and optically thick regions has been
obtained by Artemova et al. [3], and Klepnev and
Bisnovatyi-Kogan [13].
Early work on disk accretion to a black hole ar-

gued that a large-scale magnetic field of, for ex-
ample, the interstellar medium would be dragged
inward and greatly compressed by the accreting
plasma [11, 12, 14]. Subsequently, analytic models of
the field advection and diffusion in a turbulent disk
suggested, that the large-scale field diffuses outward
rapidly [15, 17], and prevents a significant amplifica-

tion of the external poloidal field. This has led to the
suggestion that special conditions (non-axisymmetry)
are required for the field to be advected inward [21].
The question of the advection/diffusion of a large-scale
magnetic field in a turbulent plasma accretion disk was
reconsidered by Bisnovatyi-Kogan & Lovelace [6, 7],
taking into account its non-uniform vertical structure.
The high electrical conductivity of the surface layers
of the disk, where the turbulence is suppressed by the
radiation flux and the high magnetic field, prevents
outward diffusion of the magnetic field. This leads to
a strong magnetic field in the inner parts of accretion
disks.

2. Basic equations for accretion
disk structure

We use equations describing a thin, steady-state ac-
cretion disk, averaged over its thickness [3]. These
equations include advection and can be used for any
value of the vertical optical thickness of the disk. We
use a pseudo-newtonian approximation for the struc-
ture of the disk near the black hole, where the ef-
fects of the general theory of relativity are taken into
account using the Paczyñski & Wiita [18] potential
Φ(r) = − GM

r−2rg
, where M is the mass of the black

hole, and 2rg = 2GM/c2 is the gravitational radius.
The self-gravitation of the disk is neglected, the vis-
cosity tensor trφ = −αP . The conservation of mass
is expressed in the form Ṁ = 4πrhρv, where Ṁ is
the accretion rate, Ṁ > 0, and h is the half thickness
of the disk. The equilibrium in the vertical direction
dP
dz = −ρzΩ2

K is replaced by the algebraic relation in
the form h = cs

ΩK
, where cs =

√
P/ρ is the isothermal
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sound speed. The equations of motion in the radial
and azimuthal directions are, respectively, written as

v
dv
dr = −1

ρ

dP
dr + (Ω2 −Ω2

K)r, (1)

Ṁ

4π
d`
dr + d

dr (r2htrφ) = 0,

where ΩK is the Kepler angular velocity, given by
Ω2
K = GM/r(r−2rg)2; ` = Ωr2 is the specific angular

momentum. Other components of the viscosity tensor
are assumed negligibly small. The vertically averaged
equation for the energy balance is Qadv = Q+ −Q−,
where

Qadv = − Ṁ

4πr

[
dE
dr + P

d
dr

(
1
ρ

)]
,

Q+ = −Ṁ4π rΩ
dΩ
dr

(
1− lin

l

)
, (2)

Q− = 2aT 4c

3(τα + τ0)h

[
1 + 4

3(τ0 + τα) + 2
3τ2

∗

]−1

are the energy fluxes (erg cm−2 s−1) associated with
advection, viscous dissipation, and radiation from the
surface, respectively, τ0 is the Thomson optical depth,
and τ0 = 0.4ρh for the hydrogen composition. We
have introduced the optical thickness for absorption,
τα ' 5.2×1021 ρ2T 1/2h

acT 4 , and the effective optical thick-
ness τ∗ = [(τ0 + τα) τα]1/2. The equation of state for a
mixture of a matter and radiation is Ptot = Pgas+Prad.
The gas pressure is given by the formula Pgas = ρRT ,
R is the gas constant, and the radiation pressure is
given by

Prad = aT 4

3
1 + 4

3(τ0+τα)

1 + 4
3(τ0+τα) + 2

3τ2
∗

. (3)

The specific energy of the mixture of the matter and
radiation is determined as ρE = 3

2Pgas + 3Prad. Ex-
pressions for Q− and Prad, valid for any optical thick-
ness, were obtained by Artemova et al. [1].

3. Method of solution and
numerical results

The system of differential and algebraic equations can
be reduced to two ordinary differential equations,

x

v

dv
dx = N

D
, (4)

x

v

dcs
dx = 1−

(
v2

c2
s
− 1
)
N

D
+

+ x2

c2
s

(
Ω2 − 1

x(x− 2)2

)
+ 3x− 2

2(x− 2) . (5)

Here the numerator N and and denominator D are
algebraic expressions depending on x, v, cs, and lin,
the equations are written in dimensionless form with

Figure 1. The radial dependence of the temperature
of the accretion disk for an accretion rate ṁ = 50, and
viscosity parameters α = 0.01 (dotted curve), α = 0.1
(smooth curve), and α = 0.4 (dashed curve).

x = r/rg, rg = GM/c2. The velocities v and cs have
been scaled by the speed of light c, and the specific
angular momentum lin by the value c/rg. This sys-
tem of differential equations has two singular points,
defined by the conditions D = 0, N = 0. The inner
singularity is situated near the last stable orbit with
r = 6rg. The outer singularity, lying at distances
much greater than rg, is an artifact arising from our
use of the artificial parametrization trφ = −αP of the
viscosity tensor. The system of ordinary differential
equations was solved by a finite difference method
discussed by Artemova et al. [2]. The method is based
on reducing the system of differential equations to
a system of nonlinear algebraic equations which are
solved by an iterative Newton–Raphson scheme, with
an expansion of the solution near the inner singular-
ity and using lin as an independent variable in the
iterative scheme [2]. The solution is almost indepen-
dent of the outer boundary condition. The numerical
solutions have been obtained for the structure of an
accretion disk over a wide range of the parameters ṁ(
ṁ = Ṁc2

LEDD

)
and α. For low accretion rates, ṁ < 0.1,

the solution for the advection model has τ∗ � 1,
v � cs, and the angular velocity is close to the Kepler
velocity everywhere, except a very thin layer near the
inner boundary of the disk. As the accretion rate
increases, the situation changes significantly. The
changes show up primarily in the inner region of the
disk. The calculations made by Klepnev & Bisnovatyi-
-Kogan [8] are presented in Fig. 1, where there are
given the radial dependences of the temperature of
the accretion disk for the accretion rate ṁ = 50, and
different values of the viscosity parameter α = 0.01,
0.1 and 0.4. Clearly, for large ṁ and α the inner part
of the disk becomes optically thin. Because of this,
a sharp increase in the temperature of the accretion
disk is observed in this region.

Two distinct regions can be seen in the plot of the
radial dependence of the temperature of the accretion
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disk. This is especially noticeable for a viscosity pa-
rameter α = 0.4, where one can see the inner optically
thin region with a dominant non-equilibrium radiation
pressure Prad, and an outer region which is optically
thick with dominant equilibrium radiation pressure.
Things are different when the viscosity parameter is
small. Only a small (considerably smaller than for
α = 0.4) inner region becomes optically thin for ac-
cretion rates of ṁ ≈ 30÷ 70. Meanwhile, in the case
of α = 0.01, there are no optically thin regions at all.

4. The fully turbulent model
There are two limiting accretion disk models which
have analytic solutions for a large-scale magnetic field
structure. The first was constructed by Bisnovatyi-
-Kogan & Ruzmaikin [12] for a stationary non-rotating
accretion disk. A stationary state is maintained by
the balance between magnetic and gravitational forces,
and a local thermal balance is maintained by Ohmic
heating and radiative heat conductivity for optically
thick conditions. The mass flux to the black hole in
the accretion disk is determined by the finite electri-
cal conductivity of the disk matter and the diffusion
of matter across the large-scale magnetic field. It is
widely accepted that the laminar disk is unstable to
different hydrodynamic, magneto-hydrodynamic and
plasma instabilities, which implies that the disk is
turbulent. In X-ray binary systems the assumption of
a turbulent accretion disk is necessary for construc-
tion of realistic models [20]. The turbulent accretion
disks were constructed for non-rotating models with
a large-scale magnetic field. A formula for turbu-
lent magnetic diffusivity was derived by Bisnovatyi-
-Kogan and Ruzmaikin [12], similar to the scaling of
the shear α-viscosity in a turbulent accretion disk in
binaries [20]. Using this representation, the expression
for the turbulent electrical conductivity σt is written
as

σt = c2

α̃4πh
√
P/ρ

. (6)

Here, α̃ = α1α2. The characteristic turbulence scale is
` = α1h, where h is the half-thickness of the disk, and
the characteristic turbulent velocity is vt = α2

√
P/ρ.

The large-scale magnetic field threading a turbulent
Keplerian disk arises from external electrical currents
and currents in the accretion disk. The magnetic
field may become dynamically important, influencing
the accretion disk structure, and leading to power-
ful jet formation, if it is strongly amplified during
the radial inflow of the disk matter. This is possible
only when the radial accretion speed of matter in
the disk is larger than the outward diffusion speed
of the poloidal magnetic field due to the turbulent
diffusivity ηt = c2/(4πσt). Estimates by Lubow, Pa-
paloizou & Pringle [17] have shown that for turbulent
conductivity (Eq. 6), the outward diffusion speed is
larger than the accretion speed, and there is no large-
scale magnetic field amplification. The numerical

Figure 2. Sketch of the large-scale poloidal magnetic
field threading a rotating turbulent accretion disk with
a radiative outer boundary layer. The toroidal current
flows mainly in the highly conductive radiative layers.
The large-scale (average) field in the turbulent region
is almost vertical.

calculations of Lubow, Papaloizou & Pringle [17] are
reproduced analytically for the standard accretion
disk structure by Bisnovatyi-Kogan & Lovelace [6, 7].
The characteristic time tvisc of the matter advection
due to the shear viscosity is tvisc = r

vr
= j

αv2
s
. The

time of the magnetic field diffusion is tdiff = r2

η
h
r
Bz
Br

,
η = c2

4πσt
= α̃hvs. In the stationary state, the large-

scale magnetic field in the accretion disk is determined
by the equality tvis = tdiff, which determines the ratio
Br
Bz

= α
α̃
vs
vK

= α
α̃
h
r � 1, vK = rΩK and j = rvK for a

Keplerian disk. In a turbulent disk, matter penetrates
through magnetic field lines, almost without field am-
plification: the field induced by the azimuthal disk
currents has Bzd ∼ Brd.

5. Turbulent disk with radiative
outer zones

Near the surface of the disk, in the region of low
optical depth, the turbulent motion is suppressed
by the radiative and magnetic fluxes, similar to the
suppression of the convection over the photospheres of
stars with outer convective zones. The presence of the
outer radiative layer does not affect the characteristic
time tvisc of the matter advection in the accretion
disk, determined by the main turbulent part of the
disk. The time of the field diffusion, however, is
significantly changed, because the electrical current
is concentrated in the radiative highly conductive
regions, which generate the main part of the magnetic
field.
The structure of the magnetic field with outer ra-

diative layers is shown in Fig. 2.
Inside the turbulent disk the electrical current is

negligibly small, so that the magnetic field there is
almost fully vertical, with Br � Bz. In the outer
radiative layer, the field diffusion is very small, so
that the matter advection leads to strong magnetic
field amplification. We suppose that in the stationary
state the magnetic forces support the optically thin
regions against gravity. When the magnetic force
balances the gravitational force in the optically thin
part of the disk of surface density Σph, the relation
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takes place [12]

GMΣph

r2 ' BzIφ
2c ' B2

z

4π , (7)

The surface density over the photosphere corresponds
to a layer with effective optical depth close to 2/3
(see e.g. [5]). We estimate the lower limit of the
magnetic field strength, taking κes (instead of the
effective opacity κeff = √κesκa, κa � κes). Writing
κesΣph = 2/3, we obtain Σph = 5/3 (g cm−2), for the
Thomson scattering opacity, κes = 0.4 cm2 g−1. We
estimate the lower bound on the large-scale magnetic
field in a Keplerian accretion disk as [6, 7]

Bz =
√

5π
3

c2√
GM�

1
x
√
m
' 108 G 1

x
√
m
. (8)

Here x = r
rg
, m = M

M�
. The maximum magnetic field

is reached when the outward magnetic force balances
the gravitational force on the surface with a mass
density Σph. In equilibrium, Bz ∼

√
Σph. We find

that Bz in a Keplerian accretion disk is about 20 times
less than its maximum possible value from Bisnovatyi-
-Kogan & Ruzmaikin [12], for x = 10, α = 0.1, and
ṁ = 10.

6. Self-consistent numerical
model

Self-consistent models of the rotating accretion disks
with a large-scale magnetic field require solution of
the equations of magneto-hydrodynamics. The strong
field solution is the only stable stationary solution
for a rotating accretion disk. The vertical structure
of the disk with a large-scale poloidal magnetic field
was calculated by Lovelace, Rothstein & Bisnovatyi-
-Kogan [16], taking into account the turbulent viscosity
and diffusivity, and the fact that the turbulence van-
ishes at the surface of the disk. Coefficients of the
turbulent viscosity ν, and magnetic diffusivity η are
connected by the magnetic Prandtl number P ∼ 1,
ν = Pη = α

c2
s0
ΩK

g(z) , where α is a constant determin-
ing the turbulent viscosity [20]; β = c2

s0/v
2
A0, where

vA0 = B0/(4πρ0)1/2 is the midplane Alfvén velocity.
The function g(z) accounts for the absence of turbu-
lence in the surface layer of the disk. In the body of
the disk g = 1, whereas near the surface of the disk g
tends over a short distance to a very small value, effec-
tively zero. Smooth function with similar behavior is
taken by Lovelace, Rothstein & Bisnovatyi-Kogan [16]

in the form g(ζ) =
(

1− ζ2

ζ2
S

)δ
, with δ � 1.

In the stationary state the boundary condition on
the disk surface is ur = 0, and only one free param-
eter – magnetic Prandtl number P – remains in the
problem. In a stationary disk, the vertical magnetic
field has a unique value. An example of the radial
velocity distribution for P = 1 is shown in Fig. 3 from
Bisnovatyi-Kogan & Lovelace [8, 9].

Figure 3. Distribution of the radial velocity over the
thickness in the stationary accretion disk with a large
scale poloidal magnetic field.

Figure 4. Qualitative picture of jet confinement by
magneto-torsional oscillations.

7. Jet collimation by
magneto-torsional
oscillations.

Following Bisnovatyi-Kogan [6, 7], we consider the
stabilization of a jet by a magneto-hydrodynamic
mechanism associated with torsional oscillations. We
suggest that the matter in the jet is rotating, and
different parts of the jet rotate in different directions,
see Fig. 4. Such a distribution of the rotational ve-
locity produces an azimuthal magnetic field, which
prevents a disruption of the jet. The jet represents
a periodical, or quasi-periodical, structure along the
axis, and its radius oscillates with time all along the
axis. The space and time periods of the oscillations
depend on the conditions at jet formation: the length-
scale, the amplitude of the rotational velocity, and the
strength of the magnetic field. The time period of the
oscillations can be obtained during the construction
of the dynamical model, and the model should also
show at what input parameters a long jet stabilized
by torsional oscillations could exist.

Let us consider a long cylinder with a magnetic field
directed along its axis. It is possible that a limiting
value of the radius of the cylinder could be reached in
a dynamic state, when the whole cylinder undergoes
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Figure 5. Time dependence of non-dimensional ra-
dius y (upper curve), and non-dimensional velocity z
(lower curve), for D = 2.1, y(0) = 1.

magneto-torsional oscillations. Such oscillations pro-
duce a toroidal field, which prevents radial expansion.
There is competition between the induced toroidal
field, compressing the cylinder in the radial direction,
and the gas pressure, together with the field along
the cylinder axis (poloidal), tending to increase its
radius. During magneto-torsional oscillations there
are phases when either the compression force or the
expansion force prevails, and, depending on the input
parameters, there are three possible kinds of behavior
of such a cylinder with negligible self-gravity.

(1.) The oscillation amplitude is low, so the cylinder
suffers unlimited expansion (no confinement).

(2.) The oscillation amplitude is high, so the pinch
action of the toroidal field destroys the cylinder and
leads to the formation of separated blobs.

(3.) The oscillation amplitude is moderate, so the
cylinder, in the absence of any damping, survives
for an unlimited time, and its parameters (radius,
density, magnetic field etc.) change periodically, or
quasi-periodically, in time.

A simplified equation describing the magneto-
torsional oscillations of a long cylinder was obtained
by Bisnovatyi-Kogan [6, 7].

It describes approximately the time dependence of
the outer radius of the cylinder R(t) in the symmetry
plane, where the rotational velocity remains zero.

The equation contains a dimensionless parameter D,
which determines the dynamic behavior of the cylinder.
An example of the dynamically stabilized cylinder at
D = 2.1 is given in Fig. 5, from Bisnovatyi-Kogan
[6, 7], y and z are the non-dimensional radius and
the radial velocity, respectively. The transition to a
stochastic regime in these oscillations was investigated
by Bisnovatyi-Kogan et al. [10].

8. Discussion
We have obtained an unambiguous solution for the
structure of an advection accretion disk surrounding
a nonrotating black hole for different values of the
viscosity parameter and the accretion rate. This solu-
tion is global, trans-sonic, and, for high ṁ and α, is
characterized by a continuous transition of the disk
from optically thick in the outer region to optically
thin in the inner region. It has a temperature peak in
the inner (optically thin) region, which might cause
the appearance of a hard component in the spectrum.
For a rotating black hole, the peak temperature is

so high that it may lead to the formation of electron-
positron pairs and change the emission spectrum of
the disk at energies of 500 keV and above. Prelimi-
nary calculations have been made for a disk around
a rapidly rotating black hole, with quasi-newtonian
gravitational potential, approximating the effects of
the Kerr metric [4]. We obtain that, for a sufficiently
large Kerr rotation parameter, the temperature in the
optically thin inner region may substantially exceed
500 keV. A consideration with a self-consistent account
of pair creation is under way. In the presence of a
large scale magnetic field we may expect the formation
of relativistic jets with a high lepton excess.
The inner optically thin region may exist only at

α >∼ 0.01. This is because at very high ṁ large
optical thickness is associated with high density in
the inner regions of the disk; at low ṁ large effective
optical depth is connected with high density because
of low temperature. Therefore, the effective optical
depth has a minimum at intermediate values of ṁ,
and for α ≤∼ 0.01 this minimum turns out to be
greater than unity.

The poloidal magnetic field is amplified during disk
accretion, due to high conductivity in the outer radia-
tive layers. A stationary solution is obtained corre-
sponding to β = 240, for Pr = 1. Note that the value
of β is obtained using the density of the disk in the
symmetry plane. The local value of β in the outer
radiative regions is much lower, and approximately
corresponds to equipartition between the pressure of
a gas and the magnetic field.

9. Conclusions
(1.) A global, trans-sonic solution exists, which at
high ṁ and α is characterized by a continuous tran-
sition of the disk from optically thick in the outer
region to optically thin in the inner region.

(2.) The model, with correct accounting for the tran-
sition between the optically thick and optically thin
regions, reveals the existence of a temperature peak
in the inner (optically thin) region, which may cause
the appearance of a hard component in the spec-
trum. A high temperature in the inner region of an
accretion disk may lead to the formation of electron–
positron pairs (in the Kerr metric).
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(3.) When α = 0.5, a very substantial optically thin
region is observed, when α = 0.1 we have a slight op-
tically thin region, and when α = 0.01 no optically
thin region is seen at all.

(4.) The magnetic field is amplified during disk ac-
cretion due to high conductivity in the outer radia-
tive layers. The stationary solution corresponds to
β = 240 for Pr = 1.

(5.) The jets from the accretion disk are magnetically
collimated in the presence of a large-scale poloidal
magnetic field, by torsion oscillations, which may
be regular or chaotic. Jets may be produced in
magneto-rotational explosions (supernova, etc.).
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