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Abstract. We study physics of clusters of galaxies embedded in the cosmic dark energy background.
The equilibrium and stability of polytropic spheres with equation of state of the matter P = Kργ ,
γ = 1 + 1/n, in presence of a non-zero cosmological constant Λ is investigated. The equilibrium state
exists only for central densities ρ0 larger than the critical value ρc and there are no static solutions at
ρ0 < ρc. At this density the radius of the configuration is equal to the zero-gravity radius, at which the
dark matter gravity is balanced by the dark energy antigravity. It is shown, that dark energy reduces
the dynamic stability of the configuration. We show that the dynamical effects of dark energy are
strong in clusters like the Virgo cluster, which halo radius is close to the zero-gravity radius. It is
shown, that the empirical data on clusters like the Virgo cluster or the Coma cluster, are consistent
with the assumption that the local density of dark energy on the scale of clusters of galaxies is the
same as on the global cosmological scales.
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1. Introduction
Analysis of the observations of distant SN Ia [16, 17]
and of the spectrum of fluctuations of the cosmic mi-
crowave background radiation (CMB), see e.g. [18],
have lead to conclusion that the term, representing
“dark energy” (DE) contains about 70% of the av-
erage energy density in the present universe and
its properties are very close to the properties of
the Einstein cosmological Λ term, with a density
ρΛ = c2

8πGΛ = 0.7 × 10−29 g/cm3, and pressure
PΛ = − c2

8πGΛ, PΛ = −ρΛ, c = 1. Merafina et al. [15]
constructed Newtonian self-gravitating models with a
polytropic equation of state in presence of DE. The
additional parameter β represents the ratio of the
density of DE to the matter central density of the
configuration. The limiting values βc were found, so
that at β > βc there are no equilibrium configurations.
Dynamic stability of the equilibrium models with DE
is analyzed, using an approximate energetic method.
It is shown that DE produces a destabilizing effect
contrary to the stabilizing influence of the cold dark
matter [2, 14].
Local dynamical effects of dark energy were first

recognized by Chernin et al. (2000), basing on the
studies of the Local Group of galaxies and the expan-
sion outflow of dwarf galaxies around it [1, 5–7, 12, 19].
Chernin et al. [10] have shown that in the nearest rich
cluster of galaxies, the Virgo cluster, the matter grav-
ity dominates in the volume of the cluster, while the
dark energy antigravity is stronger than the matter

gravity in the Virgocentric outflow at the distances
of ' 10 ÷ 30Mpc from the cluster center. The key
physical parameter here is its “zero-gravity radius”
which is the distance from the system center, where
the matter gravity and the dark energy antigravity
exactly balance each other. Bisnovatyi-Kogan and
Chernin [4] have considered a cluster as a gravita-
tionally bound quasi-spherical configuration of cold
non-relativistic collisionless dark and baryonic matter
in the cosmological proportion, in presence of a dark
energy with the cosmological density ρΛ in the same
volume. It was shown that the zero-gravity radius may
serve as a natural cut-off radius for the dark matter
halo of a cluster. The organization of the paper is
the following: in sections 2 and 3 we derive equations,
find equilibrium solutions, and analyze a stability of
polytropic configurations in presence of a dark energy,
in the form of a cosmological constant. The section 4
is devoted to application of these result to the estima-
tion of parameters of Local and Virgo clusters. This
presentation follows the papers of Merafina et al. [15],
and Bisnovatyi-Kogan and Chernin [4].

2. Main equations
Let us consider spherically symmetric equilibrium con-
figuration in Newtonian gravity, in presence of DE,
represented by the cosmological constant Λ. In this
case, the gravitational force Fg which a unit mass un-
dergoes in a spherically symmetric body is written as
Fg = −Gmr2 + Λr

3 , where m = m(r) is the mass inside
the radius r. Its connections with the matter den-
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sity ρ and the equilibrium equation are respectively
written as dm

dr = 4πρr2, 1
ρ

dP
dr = −Gmr2 + Λr

3 , and the
DE density ρv is connected with Λ as ρv = Λ

8πG . Let
us consider a polytropic equation of state P = Kργ ,
with γ = 1 + 1/n. By introducing the nondimensional
variables ξ and θn so that r = αξ and ρ = ρ0θn

n,
α2 = (n+1)K

4πG ρ
1
n −1
0 , we obtain the Lane–Emden equa-

tion for polytropic models with DE

1
ξ2

d
dξ

(
ξ2 dθn

dξ

)
= −θnn + β. (1)

Here ρ0 is the matter central density, α is the char-
acteristic radius, β = Λ/4πGρ0 = 2ρv/ρ0 is twice
the ratio of the DE density to the central density of
the configuration. The spherically symmetric Poisson
equation for the gravitational potential ϕ∗ in presence
of DE is given by

1
r2

d
dr

(
r2 dϕ∗

dr

)
= 4πG(ρ−2ρv), ϕ∗ = ϕ+ϕΛ. (2)

The gravitational energy of a spherical body εg

is εg = −G
∫M

0
m
r dm, m = 4π

∫ r
0 ρr

2dr, where
M = m(R), R is the total radius, and the energy εΛ,
representing the interaction of the matter with DE,
is given by εΛ =

∫M
0 ϕΛdm, ϕΛ = −4πGρvr

2/3.
The relations between gravitational εg, thermal εth
energies, and the energy εΛ (the virial theorem) have
been found by Merafina et al. [15].

εg = − 3
5− n

GM2

R
− Λ

2(5− n)MR2− 2n+ 5
5− n εΛ, (3)

εth = n

5− n
GM2

R
+ nΛ

6(5− n)MR2 + 5n
5− nεΛ. (4)

εtot = n− 3
5− n

GM2

R
+ (n− 3)Λ

6(5− n)MR2 + 2n
5− nεΛ. (5)

3. Equilibrium solutions
The equilibrium mass Mn for a polytropic configura-
tion which is solution of the Lane–Emden equation is
written as

Mn = 4π
[

(n+ 1)K
4πG

]3/2
ρ

3
2n − 1

2
0

∫ ξout

0
θn
nξ2dξ. (6)

Using Eq. 1, the integral in the right site may be
calculated by partial integration, giving the following
relation for the mass of the configuration

Mn = 4πρ0α
3
[
−ξ2

out

(
dθn
dξ

)
out

+ βξ3
out
3

]
.

Here θn(ξ) is not a unique function, but depends
on the parameter β, according to Eq. 1. For the
limiting configuration, with β = βc, we have on the

outer boundary θn(ξout) = 0, dθn

dξ |ξout = 0, and the
mass Mn,lim of the limiting configuration is written as
Mn,lim = 4π

3 rout
3βcρ0c = 4π

3 rout
3ρ̄c, so that the limit-

ing value βc is exactly equal to the ratio of the average
matter density ρ̄c of the limiting configuration to its
central density ρ0c: βc = ρ̄c/ρ0c. For the Lane–Emden
solution with β = 0, we have ρ0/ρ̄ = 3.290, 5.99, 54.18
for n = 1, 1.5, 3, respectively. Let us consider the
curve M(ρ0) for a constant DE density ρv = Λ/8πG.
For plotting this curve in the nondimensional form,
we introduce an arbitrary scaling constant ρch and
write the mass in the form

Mn = 4π
[

(n+ 1)K
4πG

]3/2
ρ

3
2n − 1

2
ch M̂n,

with

M̂n = ρ̂
3

2n − 1
2

0

[
βξ3

out
3 − ξ2

out

(
dθn
dξ

)
out

]
,

where ρ̂0 = ρ0/ρch is the nondimensional central den-
sity, M̂n is the nondimensional mass. The numerical
solutions of the Eq. 1 have been obtained by Mera-
fina et al. [15] for n = 1, 3, 1.5. At n = 1 we have
ξout = π, 3.490, 4.493, for β = 0, β = 0.5βc = 0.089,
β = βc = 0.178, respectively. The nondimensional
curve M̂n(ρ̂0), at constant ρv = βρ0/2 is plotted in
Fig. 1 for βin = 0, βin = 0.5βc, βin = βc, for which
M̂1 = π, 3.941, 5.397 at ρ̂0 = 1, ρ̂0β = βin = const.
At n = 3 the numerical solution of the equilibrium
equation gives ξout = 6.897, 7.489, 9.889, for β = 0,
β = 0.5βc = 0.003, β = βc = 0.006, respectively. In
Fig. 2 we show the behavior of M̂3(ρ̂0)|Λ, for different
values of βin = 0, βin = 0.5βc, βin = βc, for which
M̂3 = 2.018, 2.060, 2.109, at ρ̂0 = 1, respectively. At
n = 1.5 we have ξout = 3.654, 3.984, 5.086, for β = 0,
β = 0.5βc = 0.041, β = βc = 0.082, respectively. For
βin = 0, βin = 0.5βc, βin = βc, we have M̂3/2 = 2.714,
3.081, 3.622, at ρ̂0 = 1, respectively.

Stability analysis of these configurations done by
Merafina et al. [15] using an approximate energetic
method [3, 20]. The density in the configuration is
distributed according to the Lane–Emden solution at
n = 3, ρ = ρ0 θ

3
3(ξ), and we investigate the stability to

homologous perturbations. Taking ρ = ρ0φ
(
m
M

)
, with

a nondimensional function φ, remaining constant dur-
ing homologous perturbations we write the derivative
of the total energy ε equal to zero, as an equilibrium
equation

∂ε

∂ρ
1/3
0

= 3ρ−4/3
0

∫ M

0
P

dm
φ(m/M) − 0.639GM5/3+

+ 0.208ΛM5/3ρ−1
0 − 1.84G

2M7/3

c2 ρ
1/3
0 = 0.

(7)

The dynamical stability is defined by the sign of the
second derivative. The DE input in the stability of the
configuration is negative like the general relativistic
correction [15].
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Figure 1. Nondimensional mass M̂1 of the equilib-
rium polytropic configurations at n = 1 as a function
of the nondimensional central density ρ̂0, for different
values of βin. The cosmological constant Λ is the same
along each curve. The curves at βin 6= 0 are limited
by the configuration with β = βc.

4. Local and Virgo Clusters
For presently accepted values of the DE density ρv =
(0.72±0.03)×10−29 g/cm3, the mass of the local group,
including the dark mater input, is between MLC ∼
3.5 × 1012 M� [8], and MLC ∼ 1.3 × 1012 M� [11].
The radius RLC of the LC may be estimated by mea-
suring the velocity dispersion vt of galaxies in LC
and by the application of the virial theorem, so that
RLC ∼

√
(GMLC/vt). The estimated vt = 63 km/s

is close to the value of the local Hubble constant
H = 68 km s−1 Mpc−1 [11]. The radius of the LC may
be estimated as RLC = (GMLC/v

2
t ) = (1.5÷ 4)Mpc.

Chernin et al. [8] identifies the radius RLC with the
radius RΛ of the zero-gravity force,

1.2 < MLC < 3.7× 1012 M�

and
1.1 < RΛ < 1.6Mpc.

These estimations indicate the importance of DE for
the structure and dynamics of the outer parts of LC.

Clusters of galaxies are known as the largest gravi-
tationally bound systems, and the zero-gravity radius
is an absolute upper limit for the radial size R of a
static cluster with a mass M :

R < RΛ =
[
M

8π
3 ρΛ

]1/3
.

Taking the total mass of the Virgo cluster (dark
matter and baryons) M = (0.6 ÷ 1.2) × 1015M� [4],
one finds the zero-gravity radius of the Virgo cluster:
RΛ = (9÷ 11)Mpc ' 10Mpc. For the richest clusters
like the Coma cluster with the masses ' 1016M� the
zero-gravity radius is about 20Mpc.

Figure 2. Same as in Fig. 1, for n = 3.

The data of the Hubble diagram for the Virgo sys-
tem [13] enable us to obtain another approximate
empirical equality:[

RV 2

GM

]
Virgo

' 1.

This relation does not assume either any kind of equi-
librium state of the system, or any special relation
between the kinetic and potential energies. It assumes
only that the system is embedded in the dark energy
background and it is gravitationally bound. The data
on the Local Group [8, 12] give[

RV 2

GM

]
Virgo

'
[
RV 2

GM

]
LG
' 1.

Here we use for the Local Group the follow-
ing empirical data: R ' 1Mpc, M ' 1012M�,
V ' 70 km s−1 [12]. Assuming that the the Virgo
system has a zero-gravity radius RΛ, we obtain from
the empirical relation that

V 2 '
(

8π
3

)1/3
GM2/3ρ

1/3
Λ . (8)

The velocity dispersion in the gravitationally bound
system depends only on its mass, and the universal
dark energy density. The relation Eq. 8 enables one to
estimate the matter mass of a cluster by its velocity
dispersion

M ' G−3/2
[

8π
3 ρΛ

]−1/2
V 3 ' 1015

[
V

700 km/s

]3
M�.

The approximate empirical relation may serve as an
estimator of the local dark energy density, ρloc. If
the mass of a cluster and its velocity dispersion are
independently measured, one has

ρloc '
3

8πG3M
−2V 6 ' ρΛ

[
M

1015M�

]−2[
V

700 km/s

]6
,
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what indicates that the observational data on the
Local System and the Virgo System provide evidence
in favor of the universal value of the dark energy
density which is the same on both global and local
scales. The gravitational potential ϕ∗(r) inside the
cluster comes from the Poisson equation Eq. 2.

It was found by Bisnovatyi-Kogan & Chernin [4] in
the model of the isothermal halo the maximum of the
potential

ϕ∗ max = −3
2
GM

RΛ
= −3

2G
(

8π
3 ρΛ

)1/3
M2/3.

The value of ϕ∗ max depends on the cluster matter
mass M and the universal dark energy density. Its
value is the same for any halo profile. It gives a quan-
titative measure to the deepness of the cluster poten-
tial well and determines the characteristic isothermal
velocity of the gravitationally bound objects in the
cluster,

Viso = |ϕ∗ max|1/2

= G1/2
(

3
2

)1/2(8π
3 ρΛ

)1/6
M1/3 =

= 780
[

M

1015M�

]1/3
.

This velocity is rather close to the mean velocity dis-
persion, V ' 700 km/s, of the galaxies in the Virgo
cluster; Viso ' V also for the Coma cluster with its
matter mass M ' 1016M� and V ' 1000 km/s.
The plasma isothermal temperature

Tiso = Gm

3k V 2
iso

= m

3k

(
8π
3 ρΛ

)1/3
M2/3

= 3× 107
[

M

1015M�

]2/3
K,

This temperature is roughly equal to the temperature
of the hot X-ray emitting plasma in clusters like the
Virgo cluster or the Coma cluster.

Identifying theoretical value Viso with the observed
value V for typical clusters, we can estimate the matter
mass of a cluster, if the velocity dispersion of its
galaxies is measured:

M =
(

2
3G

)3/2(8π
3 ρΛ

)−1/2
V 3

iso

= 1015M�

(
V

780 km/s

)3
.

The relation M ∝ V 3 agrees with the empirical rela-
tion following from Eq. 8. In a similar way, the mass
may be found, if the theoretical value of the tempera-
ture Tiso is identified with the measured temperature

of the intracluster plasma:

M =
(

3k
Gm

)3/2(8π
3 ρΛ

)−1/2
T

3/2
iso

=
(

T

2× 107 K

)3/2
× 1015M�.

If the matter mass of a cluster and its velocity dis-
persion or its plasma temperature are measured inde-
pendently, one can estimate the local density of dark
energy:

ρloc = ρΛ

(
M

1015M�

)−2(
V

780 km/s

)6
, (9)

ρloc = ρΛ

(
M

1015M�

)−2(
T

3× 107 K

)3
. (10)

The empirical data on clusters like the Virgo cluster or
the Coma cluster are consistent with our assumption
that the local density of dark energy on the scale
of clusters of galaxies is the same as on the global
cosmological scales.

5. Conclusions
(1.) The key physical parameter of cluster of galaxies
is the zero-gravity radius

RΛ =
[
M

8π
3 ρΛ

]1/3
.

A bound system must have a radius R ≤ RΛ. For
the Virgo cluster R ' RΛ ' 10Mpc.

(2.) The mean density of cluster’s dark matter halo
does not depend on the halo density profile and
is determined by the dark energy density only:
〈ρ〉 = 2ρΛ.

(3.) The available observational data show that the
local density is near the global value ρΛ.
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