# CONTINUED FRACTIONS OF SQUARE ROOTS OF NATURAL NUMBERS

ĽUBOMÍRA BALKOVÁ<sup>*a*,\*</sup>, ARANKA HRUŠKOVÁ<sup>*b*</sup>

<sup>a</sup> Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Czech Republic

<sup>b</sup> Gymnázium Christiana Dopplera, Zborovská 45, 150 00 Praha 5 – Smíchov, Czech Republic

\* corresponding author: lubomira.balkova@fjfi.cvut.cz

ABSTRACT. In this paper, we will first summarize known results concerning continued fractions. Then we will limit our consideration to continued fractions of quadratic numbers. The second author describes periods and sometimes the precise form of continued fractions of  $\sqrt{N}$ , where N is a natural number. In cases where we have been able to find such results in the literature, we recall the original authors, however many results seem to be new.

KEYWORDS: continued fractions, periodic continued fractions, periods of continued fractions, quadratic numbers.

### **1.** INTRODUCTION

Continued fractions have a long history behind them — their origin may go back to the age of Euclid's algorithm for the greatest common divisor, or even earlier. However, they are experiencing a revival nowadays, thanks to their applications in high-speed and highaccuracy computer arithmetics. Some of the advantages of continued fractions in computer arithmetics are: faster division and multiplication than with positional number representations, fast and precise evaluation of trigonometric, logarithmic and other functions, precise representation of transcendental numbers, no roundoff or truncation errors ([6], Kahan's method in [3, p. 179]).

### **2.** CONTINUED FRACTIONS

In this section we summarize some basic definitions and results that can be found in any number theory course [1, 2, 4]. We use  $\lfloor x \rfloor$  to denote the integer part of a real number x.

**Definition 2.1.** The continued fraction (expansion) of a real number x is the sequence of integers  $(a_n)_{n \in \mathbb{N}}$  obtained by the following algorithm

$$x_0 = x, \quad a_n = \lfloor x_n \rfloor, \quad x_{n+1} = \begin{cases} \frac{1}{x_n - a_n} & \text{if } x_n \notin \mathbb{Z}, \\ 0 & \text{otherwise.} \end{cases}$$

Note that  $a_0 \in \mathbb{Z}$  and  $a_n \in \mathbb{N}$ . The algorithm producing the continued fraction is closely related to the Euclidean algorithm for computing the greatest common divisor of two integers. It is thus readily seen that if the number x is rational, then the algorithm eventually produces zeroes, i.e. there exists  $N \in \mathbb{N}$ 

such that 
$$a_n = 0$$
 for all  $n > N$ , thus

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots + \frac{1}{a_{N-1} + \frac{1}{a_N}}}}}.$$
 (1)

We write  $x = [a_0, \ldots, a_N]$ . On the other hand, if we want to find an expression of the form (1) with  $a_0 \in \mathbb{Z}$  and  $a_n \in \mathbb{N} \setminus \{0\}$  otherwise, then there are exactly two of them – the continued fraction  $[a_0, \ldots, a_N]$  and

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_{N-1} + \frac{1}{(a_N - 1) + \frac{1}{1}}}}}.$$

If the number x is irrational, then the sequence of the so-called *convergents* 

$$a_0, a_0 + \frac{1}{a_1}, \dots, a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_{n-1} + \frac{1}{a_n}}}}}$$
 (2)

converges to x for  $n \to \infty$ . On the other hand, every sequence of rational numbers of the form (2) with

 $a_0 \in \mathbb{Z}$  and  $a_n \in \mathbb{N} \setminus \{0\}$  converges to an irrational number (and for every irrational number there is only one such sequence — the sequence of convergents). We write  $x = [a_0, \ldots, a_n, \ldots]$ .

The convergents of the continued fraction are known to represent irrational numbers better than any other fractions.

**Theorem 2.2 (Lagrange).** Let  $x \in \mathbb{R} \setminus \mathbb{Q}$  and let  $\frac{p_n}{q_n}$  be its *n*-th convergent (where  $p_n$  and  $q_n$  are coprime) and let  $\frac{p}{q}$  with  $p, q \in \mathbb{Z}$  be distinct from  $\frac{p_n}{q_n}$  and such that  $0 < q \leq q_n$ . Then

$$\left|x - \frac{p_n}{q_n}\right| < \left|x - \frac{p}{q}\right|.$$

It is also known how well continued fractions approximate irrational numbers.

**Theorem 2.3.** Let  $x \in \mathbb{R} \setminus \mathbb{Q}$  and let  $\frac{p_n}{q_n}$  be its *n*-th convergent (where  $p_n$  and  $q_n$  are coprime). Then either

$$\left|x - \frac{p_n}{q_n}\right| < \frac{1}{2q_n^2}$$
 or  $\left|x - \frac{p_{n+1}}{q_{n+1}}\right| < \frac{1}{2q_{n+1}^2}$ 

And in a certain way, only continued fractions get very close to irrational numbers.

**Theorem 2.4 (Legendre).** Let  $x \in \mathbb{R} \setminus \mathbb{Q}$  and let  $\frac{p}{q}$  with  $p, q \in \mathbb{Z}$  satisfy  $|x - \frac{p}{q}| < \frac{1}{2q^2}$ . Then  $\frac{p}{q}$  is a convergent of x.

# 2.1. Continued fractions and continuants

The convergents of continued fractions are closely related to the so-called *continuants*  $K_n(x_1, \ldots, x_n)$ .

**Theorem 2.5.** Let  $a_0 \in \mathbb{R}$ ,  $a_i > 0$ ,  $i \in \mathbb{N}$ . Then it holds

$$a_0 + \frac{1}{a_1 + \frac{1}{\dots + \frac{1}{a_n}}} = \frac{K_{n+1}(a_0, a_1, \dots, a_n)}{K_n(a_1, \dots, a_n)},$$

where the polynomial  $K_n(x_1, \ldots, x_n)$  is given by the recurrence relation  $K_{-1} = 0$ ,  $K_0 = 1$  and for  $n \ge 1$  by  $K_n(x_1, \ldots, x_n) = K_{n-2}(x_1, \ldots, x_{n-2}) + x_n K_{n-1}(x_1, \ldots, x_{n-1}).$ 

**Corollary 2.6.** Let  $[a_0, \ldots, a_n, \ldots]$  be the continued fraction of an irrational number x. Then its *n*-th convergent  $\frac{p_n}{q_n}$  satisfies

$$p_n = K_{n+1}(a_0, \dots, a_n), \quad q_n = K_n(a_1, \dots, a_n).$$

**Theorem 2.7.** For every  $n \in \mathbb{N}$  and  $a_1, \ldots, a_n \in \mathbb{R}$ , we have

$$K_n(a_1,\ldots,a_n)=K_n(a_n,\ldots,a_1).$$

## 2.2. CONTINUED FRACTIONS OF QUADRATIC NUMBERS

We will call a *quadratic irrational* an irrational root  $\alpha$  of a quadratic equation

$$Ax^2 + Bx + C = 0,$$

where  $A, B, C \in \mathbb{Z}$ . The second root of the equation will be denoted  $\alpha'$  and called the *(algebraic) conjugate* of  $\alpha$ .

In order to state the theorem describing continued fractions of quadratic irrationals, we need to recall that a continued fraction  $[a_0, \ldots, a_n, \ldots]$ is called *eventually periodic* if  $[a_0, \ldots, a_n, \ldots] =$  $[a_0, \ldots, a_{k-1}, \overline{a_k, \ldots, a_\ell}]$  starts with a preperiod  $a_0, \ldots, a_{k-1}$  and then a period  $a_k, \ldots, a_\ell$  is repeated an infinite number of times. It is called *purely periodic* if  $[a_0, \ldots, a_n, \ldots] = [\overline{a_0, \ldots, a_\ell}]$ , i.e., if the preperiod is empty.

**Theorem 2.8 (Lagrange).** Let  $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ . The continued fraction of  $\alpha$  is eventually periodic if and only if  $\alpha$  is a quadratic irrational.

**Theorem 2.9 (Galois).** Let  $\alpha$  be a quadratic irrational and  $\alpha'$  its conjugate. The continued fraction of  $\alpha$  is purely periodic if and only if  $\alpha > 1$  and  $\alpha' \in (-1,0)$ .

**Example 2.10.** Let  $\alpha = \frac{1+\sqrt{5}}{2}$ , i.e., the so-called *Golden ratio*, then it is the root of  $x^2 - x - 1 = 0$  and  $\alpha' = \frac{1-\sqrt{5}}{2} \in (-1,0)$ . The continued fraction of  $\alpha$  is indeed purely periodic since

$$\alpha = 1 + \frac{-1 + \sqrt{5}}{2} = 1 + \frac{1}{\frac{1 + \sqrt{5}}{2}} = 1 + \frac{1}{\alpha},$$

consequently  $\alpha = [\overline{1}].$ 

In the sequel when we restrict our consideration to square roots of natural numbers, we will make use of the following lemma from [4].

**Lemma 2.11.** Let  $\alpha$  be a quadratic irrational and  $\alpha'$  its conjugate. If  $\alpha$  has a purely periodic continued fraction  $[\overline{a_0, a_1, \ldots, a_n}]$ , then  $\frac{-1}{\alpha'} = [\overline{a_n, \ldots, a_1, a_0}]$ .

### **3.** Continued fractions of $\sqrt{N}$

Let us consider  $N \in \mathbb{N} \setminus \{0\}$ . If  $N = k^2$  for some  $k \in \mathbb{N}$ , then  $\sqrt{N} = k$  and the continued fraction is  $\sqrt{N} = [k]$ . Therefore, we limit our considerations to  $N \in \mathbb{N} \setminus \{0\}$  which is not a square in the sequel. Then there exists a unique  $n \in \mathbb{N} \setminus \{0\}$  and a unique  $j \in \{1, \ldots, 2n\}$  such that  $N = n^2 + j$ .

The proofs of the two following theorems can be found in [4] page 15. However we repeat them here since they follow almost immediately from the previous statements and they give an insight into the form of continued fractions of quadratic numbers. **Theorem 3.1.** For every  $n \in \mathbb{N} \setminus \{0\}$  and every  $j \in \{1, \ldots, 2n\}$  the continued fraction of  $\sqrt{n^2 + j}$  is of the form  $[n, \overline{a_1, \ldots, a_r, 2n}]$ , where  $a_1 \ldots a_r$  is a palindrome.

Proof. Denote  $\alpha = n + \sqrt{n^2 + j}$ . Then  $\alpha$  is a quadratic irrational greater than 1 and  $\alpha' = n - \sqrt{n^2 + j} \in (-1, 0)$ . Therefore  $\alpha$  has by Theorem 2.9 a purely periodic continued fraction, i.e., there exist  $a_1, \ldots, a_r \in \mathbb{N}$  such that  $\alpha = [2n, a_1, \ldots, a_r]$ . It is thus evident that  $\sqrt{n^2 + j} = [n, \overline{a_1, \ldots, a_r, 2n}]$ . It remains to prove that  $a_1 \ldots a_r$  is a palindrome. According to Lemma 2.11 the number  $\frac{-1}{\alpha'}$  has its continued fraction equal to  $[\overline{a_r, \ldots, a_1, 2n}]$ . We obtain thus

$$\sqrt{n^2 + j} = n + \frac{1}{\frac{-1}{n - \sqrt{n^2 + j}}} = n + \frac{1}{\frac{-1}{\alpha'}}$$
$$= [n, \overline{a_r, \dots, a_1, 2n}]$$

Since the continued fraction of irrational numbers is unique and we have

$$\sqrt{n^2 + j} = [n, \overline{a_1, \dots, a_r, 2n}] = [n, \overline{a_r, \dots, a_1, 2n}],$$

it follows that  $a_1 = a_r$ ,  $a_2 = a_{r-1}$  etc. Consequently,  $a_1 \dots a_r$  is a palindrome.

**Theorem 3.2.** The continued fraction of the form  $[n, \overline{a_1, \ldots, a_r, 2n}]$ , where  $a_1 \ldots a_r$  is a palindrome, corresponds to  $\sqrt{N}$  for a rational number N.

*Proof.* Denote by x the number whose continued fraction equals  $[n, \overline{a_1, \ldots, a_r, 2n}]$ , i.e.,

$$x = n + \frac{1}{a_1 + \frac{1}{ \cdots + \frac{1}{a_r + \frac{1}{2n + (x - n)}}}}$$

Hence by Theorem 2.5,

$$x - n = \frac{K_r(a_2, \dots, a_r, x + n)}{K_{r+1}(a_1, \dots, a_r, x + n)}$$
  
=  $\frac{K_{r-2}(a_2, \dots, a_{r-1}) + (x + n)K_{r-1}(a_2, \dots, a_r)}{K_{r-1}(a_1, \dots, a_{r-1}) + (x + n)K_r(a_1, \dots, a_r)}$ 

By Theorem 2.7 and since  $a_1 \ldots a_r$  is a palindrome, we have  $K_{r-1}(a_1, \ldots, a_{r-1}) = K_{r-1}(a_2, \ldots, a_r)$ . Consequently, we obtain

$$x = \sqrt{n^2 + \frac{2nK_{r-1}(a_1,\dots,a_{r-1}) + K_{r-2}(a_2,\dots,a_{r-1})}{K_r(a_1,\dots,a_r)}},$$

where under the square root, there is certainly a rational number since by their definition, continuants with integer variables are integers.

In the sequel, let us study the length of the period and the form of the continued fraction of  $\sqrt{N} = \sqrt{n^2 + j}$  in dependence on n and j, where  $n \in \mathbb{N} \setminus \mathbb{N}$ 

{0} and  $j \in \{1, \ldots, 2n\}$ . We will prove only some observations since the proofs are quite technical and space-demanding. The rest of the proofs may be found in [5]. In Table 1, we have highlighted all classes of n and j for which their continued fractions of  $\sqrt{N} = \sqrt{n^2 + j}$  have been described.

**Observation 3.3.** The continued fraction of  $\sqrt{N}$  has period of length 1 if and only if  $N = n^2 + 1$ . It holds then  $\sqrt{N} = [n, \overline{2n}]$ .

*Proof.* This observation has already been made in [7].  $(\Leftarrow)$ :

$$\sqrt{n^2 + 1} = n + \frac{\sqrt{n^2 + 1} - n}{1} =$$
$$= n + \frac{1}{\sqrt{n^2 + 1} + n} = n + \frac{1}{2n + \frac{\sqrt{n^2 + 1} - n}{1}},$$

hence  $\sqrt{N} = [n, \overline{2n}].$ 

 $(\Rightarrow)$ : If the length of the period equals 1, then by Theorem 3.1 we have  $\sqrt{N} = [n, \overline{2n}]$ .

$$\sqrt{n^2 + j} = n + (\sqrt{n^2 + j} - n)$$
  
=  $n + \frac{1}{2n + \sqrt{n^2 + j} - n}$ 

hence we have

$$\sqrt{n^{2} + j} - n = \frac{1}{2n + \sqrt{n^{2} + j} - n},$$
$$\frac{j}{\sqrt{n^{2} + j} + n} = \frac{1}{\sqrt{n^{2} + j} + n},$$
$$j = 1.$$

**Observation 3.4.** The continued fraction of  $\sqrt{N}$  has period of length 2 if and only if  $\frac{2n}{j}$  is an integer. It holds then  $\sqrt{N} = [n, \frac{2n}{j}, 2n]$ .

Proof. 
$$(\Leftarrow)$$
:

$$\begin{split} \sqrt{n^2 + j} &= n + (\sqrt{n^2 + j} - n) \\ &= n + \frac{j}{\sqrt{n^2 + j} + n} \\ &= n + \frac{1}{\frac{2n}{j} + \frac{\sqrt{n^2 + j} - n}{j}}, \\ &= n + \frac{1}{\frac{2n}{j} + \frac{1}{\sqrt{n^2 + j} + n}}, \\ &= n + \frac{1}{\frac{2n}{j} + \frac{1}{2n + (\sqrt{n^2 + j} - n)}}, \end{split}$$

thus  $\sqrt{N} = [n, \overline{\frac{2n}{j}, 2n}].$ 



TABLE 1. All classes of  $n \leq 40$  (first column) and  $j \leq 31$  (first row) for which their continued fractions of  $\sqrt{N} = \sqrt{n^2 + j}$  have been described are highlighted.

 $(\Rightarrow)$ : If the length of the period equals 2, then by Theorem 3.1 we have  $\sqrt{N} = [n, \overline{x, 2n}]$ .

$$\sqrt{n^2 + j} = n + (\sqrt{n^2 + j} - n)$$
  
=  $n + \frac{1}{x + \frac{1}{2n + (\sqrt{n^2 + j} - n)}},$ 

hence we have

$$\sqrt{n^2 + j} - n = \frac{1}{\frac{x(\sqrt{n^2 + j} + n) + 1}{\sqrt{n^2 + j} + n}},$$
$$x = \frac{2n}{j}.$$

**Observation 3.5.** The continued fraction of  $\sqrt{N}$  has period of length 3 if and only if j = 4ak + 1 and n = aj + k for some  $a, k \in \mathbb{N}$ ,  $a \ge 1$ ,  $k \ge 1$ . It holds then  $\sqrt{N} = [n, \overline{2a, 2a, 2n}]$  and  $5 \le j \le n - 1$ .

*Proof.*  $(\Rightarrow)$ : If the length of the period equals 3, then by Theorem 3.1 we have  $\sqrt{N} = [n, \overline{x, x, 2n}]$ .

$$\sqrt{n^2 + j} = n + \frac{1}{x + \frac{1}{x + \frac{1}{2n + (\sqrt{n^2 + j} - n)}}},$$

hence we get  $j = \frac{2xn+1}{x^2+1}$ . Since j is an integer, x must be even. Furthermore, as  $j \neq 1$  by Observation 3.3, there exists  $a \geq 1$  such that x = 2a. It follows then from  $j = \frac{4an+1}{4a^2+1}$  that  $n = aj + \frac{j-1}{4a}$ . Since n is an integer, we obtain finally j = 4ak+1 and n = aj + k for some  $k \geq 1$ . It is easy to verify that  $j \geq 5$  and  $j \leq n-1$ .

 $(\Leftarrow)$ : The reverse implication is only an exercise in manipulation with square roots and integer parts. We have it for the reader.

In order to save space in the proofs, let us introduce

|             | n                                       | j                     | $\sqrt{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|-----------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\ell = 4$  | $2k+1, \ k \ge 2$                       | 2n - 3                | $[n,\overline{1,\frac{n-3}{2},1,2n}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | $2k+1, \ k \ge 1$                       | $\frac{3n+1}{5m^2+2}$ | $[n, \frac{1, 2, 1, 2n}{1, 2}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 3k+2                                    | $\frac{3n+2}{3}$      | $[n, \underline{1, 4, 1, 2n}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | $3k+2, \ k \ge 1$                       | 2n-2                  | $[n, \frac{1}{3}, \frac{2n-4}{3}, 1, 2n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 3k+2                                    | $\frac{10+1}{3}$      | $[n, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{2n-4}{2}, \frac{2}{2}, \frac{2n-4}{2}, \frac{2}{2}, \frac{2n-4}{2}, \frac{2}{2}, \frac{2}{2$ |
|             | $5k+2, \ k \ge 1$                       | $n-1 \\ 8n+3$         | $[n, 2, \frac{2n}{5}, 2, 2n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | 5k + 4<br>6k + 1 $k > 1$                | 5n+1                  | $[n, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, \frac{2}{2}, \frac{2}{2}n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 6k+5                                    | $\frac{6}{2n-1}$      | $\begin{bmatrix} n, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 9k + 4, k > 1                           | $n = 2^{3}$           | $[n, 2, \frac{2n-8}{2}, 2, 2n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |                                         | 4                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\ell = 5$  | $2k+1, \ k \ge 1$<br>5k+3               | $4 \\ 6n+2$           | $[n, \frac{n-2}{2}, 1, 1, \frac{n-2}{2}, 2n]$<br>$[n, \frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}, 2n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 56 + 5                                  | 5                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\ell = 6$  | $2k, \ k \ge 2$                         | 2n-3                  | $[n, \underline{1, \frac{n}{2} - 1, 2, \frac{n}{2} - 1, 1, 2n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 10k + 7                                 | $\frac{2n+1}{5}$      | $[n, 4, 1, \frac{n-3}{2}, 1, 4, 2n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | $3k+1, k \ge 1$                         | $\frac{2n+1}{3}$      | [n, 2, 1, n-1, 1, 2, 2n]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | $3k+1, \ k \ge 1$                       | $n+1 \\ 4n+2$         | $[n, 1, 1, \frac{2n-2}{3}, 1, 1, 2n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | $5\kappa + 1, \ \kappa \ge 1$<br>6k + 4 | 7n+2                  | $\begin{bmatrix} n, 1, 2, n, 2, 1, 2n \end{bmatrix}$ $\begin{bmatrix} n & 1 & 1 & 2 & 1 & 1 & 2n \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | $7k \perp 3  k > 1$                     | $6 \\ n \perp 2$      | $\begin{bmatrix} n, \frac{1}{2}, \frac{1}{2}, \frac{2}{2}, \frac{1}{2}, \frac{2}{2}n - \frac{6}{2} \end{bmatrix} \begin{bmatrix} n, \frac{1}{2}, \frac{2}{2}n - \frac{6}{2} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | $1k + 0, k \ge 1$                       | 11   2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\ell = 8$  | $4k+1, \ k \ge 2$                       | 2n - 7                | $[n, \frac{1, \frac{n-5}{4}, 2, \frac{n-1}{2}, 2, \frac{n-5}{4}, 1, 2n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | $6k, \ k \ge 1$                         | $\frac{4n}{3}$        | $[n, \frac{1, 1, 1, \frac{n-2}{2}, 1, 1, 1, 2n]}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | $6k+2, \ k \ge 1$                       | $\frac{2n-1}{3}$      | $[n, \frac{3, \frac{n-2}{2}, 1, 4, 1, \frac{n-2}{2}, 3, 2n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 7k + 5                                  | $\frac{8n+2}{7}$      | [n, 1, 1, 3, n, 3, 1, 1, 2n]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | $9k+3, \ k \ge 1$                       | 9                     | $[n, \frac{2n-6}{9}, 1, 2, \frac{2n-6}{9}, 2, 1, \frac{2n-6}{9}, 2n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | $9k+6, \ k \ge 1$                       | 9                     | $[n, \frac{2n-3}{9}, 2, 1, \frac{2n-12}{9}, 1, 2, \frac{2n-3}{9}, 2n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\ell = 10$ | $6k+3, \ k \ge 1$                       | $\frac{4n}{3}$        | $[n, \overline{1, 1, 1, \frac{n-1}{2}, 6, \frac{n-1}{2}, 1, 1, 1, 2n}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 9k + 6                                  | $\frac{10n+3}{9}$     | $[n, \frac{1, 1, 3, 1, \tilde{n} - 1, \tilde{1}, 3, 1, 1, 2n]}{[n, 1, 1, 3, 1, 1, 2n]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | $10k+5, \ k \ge 1$                      | $\frac{4n}{5}$        | $[n, \overline{2, 1, 1, \frac{n-1}{2}, 10, \frac{n-1}{2}, 1, 1, 2, 2n}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

TABLE 2. Lengths  $\ell$  of periods and the form of continued fractions for several classes.

the following notation

$$\langle a_0, a_1, \dots, a_{N-1}, a_N \rangle = a_0 + \frac{1}{a_1 + \frac{1}{\ddots + \frac{1}{a_{N-1} + \frac{1}{a_N}}}},$$

where  $a_i \in \mathbb{N}$  for  $i \in \{0, 1, 2, \dots, N-1\}$ , but  $a_N \in \mathbb{R}$ .

**Observation 3.6.** Let j = 4. If n is even, then the length of the period is 2 and  $\sqrt{N} = \left[n, \frac{2n}{j}, 2n\right]$ . If n is odd, then the length of the period is 5 and  $\sqrt{N} = \left[n, \frac{n-1}{2}, 1, 1, \frac{n-1}{2}, 2n\right]$ .

*Proof.* If n is even, then  $\frac{2n}{j}$  is an integer and the statement is a corollary of Observation 3.4. If n is odd, it holds

$$\sqrt{n^2 + 4} = n + \left(\sqrt{n^2 + 4} - n\right)$$
$$= \left\langle n, \frac{\sqrt{n^2 + 4} + n}{4} \right\rangle$$

$$= \left\langle n, \frac{n-1}{2}, \frac{\sqrt{n^2+4}+n-2}{n} \right\rangle$$
  
=  $\left\langle n, \frac{n-1}{2}, 1, \frac{\sqrt{n^2+4}+2}{n} \right\rangle$   
=  $\left\langle n, \frac{n-1}{2}, 1, 1, \frac{\sqrt{n^2+4}+n-2}{4} \right\rangle$   
=  $\left\langle n, \frac{n-1}{2}, 1, 1, \frac{n-1}{2}, 2n + (\sqrt{n^2+4}-n) \right\rangle$ ,

thus 
$$\sqrt{N} = [n, \overline{\frac{n-1}{2}, 1, 1, \frac{n-1}{2}, 2n}].$$

**Observation 3.7.** For n > 1 and j = 2n - 1 the length of the period is 4 and the continued fraction is then  $\sqrt{N} = [n, \overline{1, n - 1, 1, 2n}]$ .

Proof.

$$\sqrt{n^2 + 2n - 1} = n + \left(\sqrt{n^2 + 2n - 1} - n\right)$$
$$= \left\langle n, \frac{\sqrt{n^2 + 2n - 1} + n}{2n - 1} \right\rangle$$

$$= \left\langle n, 1, \frac{\sqrt{n^2 + 2n - 1} + (n - 1)}{2} \right\rangle$$
  
=  $\left\langle n, 1, n - 1, \frac{\sqrt{n^2 + 2n - 1} + (n - 1)}{2n - 1} \right\rangle$   
=  $\left\langle n, 1, n - 1, 1, 2n + \left(\sqrt{n^2 + 2n - 1} - n\right) \right\rangle$ ,

hence  $\sqrt{N} = [n, \overline{1, n - 1, 1, 2n}]$ 

**Observation 3.8.** For n > 3 and j = 2n - 3, either the length of the period is 4 if n is odd and the continued fraction is then  $\sqrt{N} = [n, \overline{1, \frac{n-3}{2}}, 1, 2n]$ , or the length of the period is 6 if n is even and the continued fraction is then  $\sqrt{N} = [n, \overline{1, \frac{n}{2}} - 1, 2, \frac{n}{2} - 1, 1, 2n]$ .

*Proof.* For n odd:

$$\begin{split} \sqrt{n^2 + 2n - 3} &= n + \left(\sqrt{n^2 + 2n - 3} - n\right) \\ &= \left\langle n, \frac{\sqrt{n^2 + 2n - 3} + n}{2n - 3} \right\rangle \\ &= \left\langle n, 1, \frac{\sqrt{n^2 + 2n - 3} - (n - 3)}{4} \right\rangle \\ &= \left\langle n, 1, \frac{n - 3}{2}, \frac{\sqrt{n^2 + 2n - 3} + (n - 3)}{2n - 3} \right\rangle \\ &= \left\langle n, 1, \frac{n - 3}{2}, 1, 2n + \left(\sqrt{n^2 + 2n - 3} - n\right) \right\rangle \end{split}$$

thus  $\sqrt{N} = \left[n, \overline{1, \frac{n-3}{2}, 1, 2n}\right]$ . For *n* even:

$$\begin{split} \sqrt{n^2 + 2n - 3} &= n + \left(\sqrt{n^2 + 2n - 3} - n\right) \\ &= \left\langle n, \frac{\sqrt{n^2 + 2n - 3} + n}{2n - 3} \right\rangle \\ &= \left\langle n, 1, \frac{\sqrt{n^2 + 2n - 3} - (n - 3)}{2n - 3} \right\rangle \\ &= \left\langle n, 1, \frac{n}{2} - 1, \frac{\sqrt{n^2 + 2n - 3} + (n - 1)}{n - 1} \right\rangle \\ &= \left\langle n, 1, \frac{n}{2} - 1, 2, \frac{\sqrt{n^2 + 2n - 3} + (n - 1)}{4} \right\rangle \\ &= \left\langle n, 1, \frac{n}{2} - 1, 2, \frac{n}{2} - 1, \frac{\sqrt{n^2 + 2n - 3} + (n - 3)}{2n - 3} \right\rangle \\ &= \left\langle n, 1, \frac{n}{2} - 1, 2, \frac{n}{2} - 1, 1, \frac{2n + (\sqrt{n^2 + 2n - 3} - n)}{2n - 3} \right\rangle. \end{split}$$

Thus 
$$\sqrt{N} = [n, \overline{1, \frac{n}{2} - 1, 2, \frac{n}{2} - 1, 1, 2n}]$$

The following table will include all remaining cases of continued fractions of  $\sqrt{n^2 + j}$  that we were able to determine in terms of n and j.

**Observation 3.9.** Let  $k \in \mathbb{N}$ . Let us summarize in Table 2 the lengths  $\ell$  of periods and the form of continued fractions for several classes (described in an analogous way) of n and j.

The next observation was made in a different way than all previous ones. We prescribed the form of the continued fraction and searched for  $\sqrt{N}$  having such a continued fraction.

**Observation 3.10.** If the period of the continued fraction of  $\sqrt{N} = \sqrt{n^2 + j}$  contains  $p \ge 1$  ones as its palindromic part, i.e.,  $\sqrt{N} = [n, \underbrace{1, \ldots, 1, 2n}_{n}]$  then

 $n = kF_p + \frac{F_p+1}{2}$  for some  $k \in \mathbb{N}$ ,  $p+1 \neq 3\ell$ , where  $\ell \in \mathbb{N}$ , and  $j = \frac{2nF_{p-1}+F_{p-2}}{F_p}$ , where  $F_n$  denotes the *n*-th Fibonacci number given by the recurrence relation  $F_{-1} = 0$ ,  $F_0 = 1$  and  $F_n = F_{n-2} + F_{n-1}$  for all  $n \geq 1$ .

*Proof.* It is a direct consequence of the proof of Theorem 3.2 and the definition of continuants.

The last observation is also of a different form than the previous ones since j and n depend on two parameters.

**Observation 3.11.** Let n = 4ka + 2a, where  $k, a \in \mathbb{N}, k \geq 1, a \geq 1$ , and j = 8a. Then the continued fraction of  $\sqrt{N} = \sqrt{n^2 + j}$  equals

$$\Big[n, \frac{4n-j}{2j}, 1, 1, \frac{n-2}{2}, 1, 1, \frac{4n-j}{2j}, 2n\Big].$$

*Proof.* The proof may be found in [5].

We also made one conjecture that turned out to be false.

**Conjecture 3.12.** For  $\sqrt{N}$  the length of the period of the continued fraction is less than or equal to 2n.

This observation was made when contemplating a table of periods of  $\sqrt{N}$  for  $N \leq 1000$ . However, in [8] it is shown that for N = 1726 with n = 41, the period of the continued fraction of  $\sqrt{N}$  is of length 88 > 82 = 2n. A rougher upper bound comes from [7].

**Theorem 3.13.** For  $\sqrt{N}$  the length of the period of the continued fraction is less than or equal to 2N.

Let us terminate with two conjectures that have not been proved yet.

**Conjecture 3.14.** No element of the period of  $\sqrt{N}$  apart from the last one is bigger than n.

**Conjecture 3.15.** There is no period of an odd length for j = 4k + 3, where  $k \in \mathbb{N}$ .

#### Acknowledgements

The first author acknowledges financial support from Czech Science Foundation grant 13-03538S.

#### References

- Klazar, M.: Introduction to Number Theory, KAM-DIMATIA Series 782, 2006.
- [2] Masáková, Z., Pelantová, E.: *Teorie čísel*, skriptum ČVUT, 2010.
- [3] Muller, J.-M.: *Elementary Functions: Algorithms and Implementation*, 2nd edition, Birkhäuser Boston, 2006.
- [4] Lauritzen, N.: Continued fractions and factoring, http://home.imf.au.dk/niels/cfracfact.pdf, 2009.

- [5] Hrušková, A.: Řetězové zlomky kvadratických čísel, SOČ práce, http://bimbo.fjfi.cvut.cz/~soc/, 2013–2014
- [6] Seidensticker, R.: Continued fractions for high-speed and high-accuracy computer arithmetic, IEEE Symposium on Computer Arithmetic (1983), 184–193
- [7] Sierpinski, W.: *Elementary Theory of Numbers*, Panstwowe Wydawnictwo Naukowe, Warszawa, 1964.
- [8] Hickerson, D. R.: Length of period of simple

continued fraction expansion of  $\sqrt{d}$ , Pacific Journal of Mathematics **46(2)** (1973), 429–432