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Abstract. The fluctuation of an EEG signal is a useful symptom of EEG quasi-stationarity. Linear
predictive models of three types and their prediction error are studied via traditional and robust
measures. The resulting EEG characteristics are applied to the diagnosis of Alzehimer’s disease. Our
aim is to decide among: forward, backward, and predictive models, EEG channels, and also robust
and non-robust variability measures, and then to find statistically significant measures for use in the
diagnosis of Alzheimer’s disease from EEG.
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1. Introduction
Dementia is a set of clinical symptoms, e.g., memory
loss and communicative difficulties. Two main cat-
egories are cortical and subcortical dementias. The
most important cortical dementia, which accounts
for about 50% of the cases, is Alzheimer’s disease.
In patients with Alzheimer’s disease, brain cells die
quickly and the chemistry and structure of the brain
is changed. EEG is used to study and detect abnor-
malities caused by dementia.

Biological rest is an endogenously dynamic process.
Transient EEG events identify and quantify brain elec-
tric microstates as time epochs with a quasi-stable field
topography [1]. We can assume better predictability
inside microstates, lower predictability during changes
between microstates. Higher fluctuations of EEG pre-
dictability may be connected with higher frequency
of microstate changes.

Falk et al. [2] analysed an EEG signal via its enve-
lope. They first constructed the modulation spectrum
and found the region of significant spectral peaks (SP).
This technique achieves accuracy 81.3% with sensi-
tivity 85.7% and specificity 72.7%. After the Hilbert
transform, they also calculated the percentage mod-
ulation energy (PME) with better accuracy 90.6%,
sensitivity 90.5%, and specificity 90.9%.

Another approach was used by Ahmadlou et al. [3].
The first step in their approach was based on wavelet
decomposition. The resulting patterns were processed
by the Visibility Graph Algorithm (VGA). The power
spectrum of the VGA structures was used for fea-
ture extraction. Two types of classifier (RBFNN,
PCA-RBFNN) were used for the final decision. The
accuracy was 96.50% with sensitivity 100% and speci-
ficity 87.03% in the case of RBFNN. PCA-RBFNN

increased the accuracy to 97.75% with sensitivity
100% and specificity 91.08%.

2. Models
The main hypothesis of this work is that predictability
of the brain activity differs between groups of patients
with Alzheimer’s disease (AD) and normal controls
(CN). The activity of the human brain is measured via
multichannel EEG, which produces a time series. On
the basis of the quasi-stationarity of the EEG signal,
the time series were decomposed into non-overlapping
segments of constant length. Each segment of a given
EEG channel and of each patient produced a short
time series, the properties of which were studied via
linear autoregressive models of three types.

2.1. Predictive model
Let m be the length of a segment. Let n be the model
size as a number of parameters. Let x1, . . . , xm be an
EEG [4] data segment. The linear predictive model
has the form

xk =
n∑

i=1
aixk−i + ek, , (1)

for k = n+1, . . . ,m, where ek is the model error in the
k-th measurement and ai is the model parameter for
i = 1, . . . , n. Formula (1) represents the traditional
AR (autoregressive) model [5].

2.2. Back-predictive model
The predictive AR model (1) can also be used in the
opposite time direction. The resulting model is

xk =
n∑

i=1
aixk+i + ek, (2)
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Ch Predictive Back-predictive Symmetric
STD MAD1 MAD2 STD MAD1 MAD2 STD MAD1 MAD2

1 0.1027 0.0402 0.0314 0.0711 0.0338 0.0270 0.0503 0.0131 0.0074
2 0.0065 0.0016 6.52·10−4 0.0031 0.0012 5.06·10−4 0.0015 2.16·10−4 6.00·10−5

3 0.0121 0.0038 0.0014 0.0141 0.0035 0.0013 0.0172 0.0010 2.24·10−4

4 0.1408 0.0612 0.0337 0.1470 0.0540 0.0308 0.0635 0.0081 0.0029
5 0.2551 0.1906 0.1277 0.2573 0.1690 0.1141 0.2063 0.0867 0.0441
6 0.0643 0.0476 0.0275 0.0647 0.0391 0.0223 0.0417 0.0165 0.0064
7 0.0279 0.0192 0.0103 0.0232 0.0166 0.0086 0.0288 0.0214 0.0091
8 0.0917 0.1619 0.1290 0.0947 0.1474 0.1152 0.0572 0.0908 0.0664
9 0.1780 0.2093 0.1512 0.1815 0.1797 0.1308 0.1862 0.0832 0.0504
10 0.6823 0.8572 0.8429 0.7739 0.8309 0.8136 0.6093 0.6226 0.5553
11 0.2358 0.1763 0.1203 0.2218 0.1540 0.1046 0.1234 0.0527 0.0255
12 0.0910 0.0598 0.0467 0.0924 0.0545 0.0446 0.0359 0.0285 0.0216
13 0.1183 0.2376 0.1806 0.0953 0.2120 0.1607 0.0997 0.1113 0.0602
14 0.1027 0.1964 0.1744 0.1114 0.1779 0.1595 0.0706 0.0827 0.0558
15 0.2297 0.2925 0.2539 0.2363 0.2521 0.2174 0.1673 0.1517 0.0985
16 0.4478 0.5942 0.5282 0.4009 0.5395 0.4806 0.3636 0.3136 0.2170
17 0.0680 0.1197 0.1094 0.0437 0.1070 0.0965 0.0288 0.0304 0.0175
18 0.0418 0.0634 0.0595 0.0545 0.0694 0.0654 0.0296 0.0299 0.0219
19 0.2875 0.3889 0.3288 0.2483 0.3431 0.2868 0.1506 0.1568 0.1025

Table 1. Traditional fluctuation measures.

where ek is again the model error, but for k =
1, . . . ,m− n.

2.3. Symmetric model
The third AR model is symmetric, and thus with lower
prediction error for smooth signals. Supposing n is
even, the adequate model is

xk =
n/2∑
i=1

aixk−i +
n/2∑
i=1

an/2+ixk+i + ek, (3)

where ek is the model error for k = n/2 + 1, . . . ,m−
n/2.

2.4. Model error
The three AR models above are easily comparable,
because they produce an overdetermined system of
M = m− n linear equations for n unknown variables
a1, . . . , an. The unknown parameters a1, . . . , an were
estimated by the method of least squares (LSQ) [6]
and the residues r1, . . . , rM are determined as the
difference between an observed value and a predicted
value. The estimate of the prediction error inside the
given segment is

se =

√∑M
i=1 ri

2

M − n
. (4)

3. Fluctuation of the model
error

Three basic characteristics were used to characterize
EEG fluctuations: the standard deviation (STD), the
mean of the absolute differences from the mean value

(MAD1), and the mean of the absolute differences
from the median value (MAD2). However, these char-
acteristics are excessively sensitive to outlier values.
We preferred robust measures of EEG fluctuations:
the median of the absolute differences from the median
(MAD3), the interquartile range (IQR), and the first
quartile of the absolute mutual differences (MED).

Let N be the number of EEG signal segments. Let
s = (s1, s2, . . . , sN ) be the vector of errors (4) in all
segments. Let Q1, Q2, Q3, E be the first, the second,
and the third quartile and mean value functions. The
fluctuation criteria are defined as

STD = (E(s− E(s))2)1/2, (5)
MAD1 = E(|s− E(s)|), (6)
MAD2 = E(|s−Q2(s)|), (7)
MAD3 = Q2(|s−Q2(s)|), (8)

IQR = Q3(s)−Q1(s), (9)
MED = Q1(|si − sj |). (10)

We obtained the STD, MAD1, MAD2, MAD3, IQR,
and MED values of the model fluctuations of each
channel for all AD and CN patients. The null hy-
pothesis H0: µAD = µCN was tested via a two-sample
t-test [7] against the alternative HA: µAD 6= µCN.
Here, µAD = E ln fluctuation (5–10) for AD group
and µCN = E ln fluctuation (5–10) for CN group.

4. Experimental part
Groups of 26 AD and 139 CN patients were used for
testing. We used the international 10–20 electrode sys-
tem with constant sampling frequency 200Hz. A pre-
dictive model (1), a back-predictive model (2), and a
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Ch Predictive Back-predictive Symmetric
STD MAD1 MAD2 STD MAD1 MAD2 STD MAD1 MAD2

1 0.0029 0.0265 0.0018 0.0035 0.0236 0.0021 2.6·10−4 0.0025 2.3·10−4

2 6.9·10−6 6.2·10−5 4.8·10−6 1.0·10−5 5.1·10−5 4.8·10−6 3.9·10−7 3.0·10−6 5.1·10−7

3 3.5·10−6 6.5·10−5 3.5·10−6 1.7·10−6 4.2·10−5 3.7·10−6 1.8·10−7 1.6·10−6 3.0·10−7

4 2.4·10−4 0.0019 2.2·10−4 6.6·10−4 0.0026 3.4·10−4 4.8·10−6 4.6·10−5 9.1·10−6

5 0.0017 0.0124 0.0022 0.0038 0.0170 0.0025 1.4·10−4 0.0015 2.1·10−4

6 2.9·10−4 0.0047 4.1·10−4 2.9·10−4 0.0039 3.2·10−4 2.4·10−5 2.4·10−4 3.2·10−5

7 2.4·10−4 0.0025 1.9·10−4 1.7·10−4 0.0019 1.7·10−4 2.9·10−4 0.0014 2.6·10−4

8 0.0478 0.0787 0.0390 0.0495 0.0679 0.0406 0.0174 0.0384 0.0204
9 0.0159 0.0490 0.0127 0.0130 0.0387 0.0123 0.0013 0.0066 0.0023
10 0.8614 0.6785 0.7914 0.8522 0.6462 0.7958 0.3281 0.2948 0.3613
11 0.0038 0.0227 0.0034 0.0021 0.0151 0.0031 1.8·10−4 0.0015 2.4·10−4

12 0.0054 0.0182 0.0082 0.0066 0.0201 0.0121 0.0051 0.0100 0.0083
13 0.0177 0.0722 0.0212 0.0201 0.0730 0.0219 7.0·10−4 0.0085 6.9·10−4

14 0.0713 0.1341 0.0873 0.0676 0.1056 0.0885 0.0040 0.0180 0.0053
15 0.0877 0.1351 0.0791 0.0581 0.0994 0.0631 0.0028 0.0139 0.0050
16 0.2547 0.2882 0.2583 0.2338 0.2464 0.2512 0.0131 0.0368 0.0195
17 0.0307 0.0740 0.0359 0.0277 0.0676 0.0338 4.3·10−4 0.0038 4.7·10−4

18 0.0511 0.1400 0.0317 0.0451 0.1313 0.0375 0.0032 0.0257 0.0033
19 0.0491 0.1666 0.0492 0.0448 0.1625 0.0439 0.0017 0.0253 0.0021

Table 2. Robust fluctuation measures.

Predictive Back-predictive Symmetric
MAD3 3 3 2, 3, 4
IQR 2, 3
MED 2, 3 2, 3 2, 3

Table 3. Significant channels.

symmetric model (3) were identified, and the model
errors (4) and their fluctuations were studied for seg-
ment length m = 150 and model size n = 50. The
number of EEG segments varied patient-by-patient
and satistisfied the inequality 352 ≤ N ≤ 762.

The significance level for the testing was α = 0.001.
The hypotheses of mean equity were tested on 19 EEG
channels, three predictive models, and six fluctuation
characteristics. This is a kind of multiple testing, with
342 potentially dependent tests. The standard False
Discovery Rate (FDR) methodology [8] was used to
eliminate the acceptance of a false hypothesis.
The corrected critical value was determined as

αFDR = 4.8347 · 10−6. The t-test results (pvalue) for
traditional measures are included in Tab. 1. Results
for robust measures are collected in Tab. 2. Bold font
was used for a pvalue below the critical probability
αFDR. The null hypothesis was rejected only in chan-
nels 2, 3, 4, which correspond to the frontal domain
of the human brain. Only three robust fluctuation
characteristics are significant: ln MAD3, ln IQR, and
ln MED.
The second channel is significant only for ln MED

or symmetrical prediction. The third channel is
significant only for ln MED, ln MAD3 or symmetric

prediction. The fourth channel is significant only
for ln MAD3 together with symmetrical prediction.
Tab. 4 summarizes the results.

The best pvalue = 1.8885 · 10−7 was obtained on
the third channel for the symmetric model and the
ln MAD3 criterion. Figure 1 shows its Receiver oper-
ating characteristic (ROC) curve [9]. The area under
the curve (AUC) is 0.77, which evaluates the model as
good. The boxplot in Fig. 2 displays the differences
between AD and CN patients.

5. Discussion
While the autoregressive model is linear and requires a
stationary signal, the higher fluctuation of the model
error in Alzheimer’s subjects may reflect a different
structure of brain microstates than in healthy subjects.
It may reflect alterations in the brain anatomical
cortical connectivity in resting-state networks.

In contrast to applying robust methods and filters,
the autoregressive linear model offers a simple and
traditional solution that provides results with a suffi-
cient level of significance. These results could also be
influenced by the small group of testing data.
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Figure 1. ROC for ln MAD3

6. Conclusion
Using a symmetric predictive model of the EEG sig-
nal and MAD3, IQR, and MED robust measures of
predictive error fluctuations, we recognize significant
differences between AD and CN groups in the case
of frontal electrodes, which are represented by the
second, the third, and the fourth channel of EEG.

This result is directly applicable to the diagnosis of
Alzheimer’s disease. The accuracy of our method
is 63.64% with sensitivity 84.62% and specificity
59.71%. However, methods based on the modula-
tion spectrum and the Hilbert transform [2] or on the
Visibility Graph Algorithm [3] are better in accuracy,
sensitivity, and specificity.
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