
Acta Polytechnica 53(1):58–62, 2013 © Czech Technical University in Prague, 2013
available online at http://ctn.cvut.cz/ap/

LUIZA: ANALYSIS FRAMEWORK FOR GLORIA

Aleksander Filip Żarneckia,∗, Lech Wiktor Piotrowskia,b,
Lech Mankiewiczc, Sebastian Małekd

a Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland
b RIKEN Advanced Science Institute, Wako, Japan
c Center for Theoretical Physics, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
d National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw, Poland
∗ corresponding author: zarnecki@fuw.edu.pl

Abstract. The Luiza analysis framework for GLORIA is based on the Marlin package, which was
originally developed for data analysis in the new High Energy Physics (HEP) project, International
Linear Collider (ILC). The HEP experiments have to deal with enormous amounts of data and
distributed data analysis is therefore essential. The Marlin framework concept seems to be well suited
for the needs of GLORIA. The idea (and large parts of the code) taken from Marlin is that every
computing task is implemented as a processor (module) that analyzes the data stored in an internal
data structure, and the additional output is also added to that collection. The advantage of this
modular approach is that it keeps things as simple as possible. Each step of the full analysis chain, e.g.
from raw images to light curves, can be processed step-by-step, and the output of each step is still self
consistent and can be fed in to the next step without any manipulation.

Keywords: Telescope network, image processing, data analysis.

1. Introduction
GLORIA [1] (GLObal Robotic-telescope Intelligent
Array) is an innovative citizen-science network of
robotic observatories, which will give free access to
professional telescopes for a virtual community via the
Internet. The GLORIA project will develop free stan-
dards and tools for doing research in astronomy, both
by making observations with robotic telescopes and
by analyzing data that other users have acquired with
GLORIA and/or from other free access databases,
e.g. the European Virtual Observatory. Dedicated
tools will be implemented for designing and running
so called off-line experiments, based on analysis of
available data. Many different types of experiments
are considered, for example classification of variable
stars, searches for optical transients, and searches for
occultations of stars by solar system objects.
One of the challenges we have to face in designing

the environment for off-line GLORIA experiments is
how to deal with huge amounts of data and a large
variety of analysis tasks. We need an analysis frame-
work that will be both very efficient and very flexible.
These requirements are new to astronomy. However,
High Energy Physics experiments have long years
of experience of dealing with enormous amounts of
data and complicated analysis tasks. Experiments at
the CERN Large Hadron Collider read information
from about 100 million electronic channels, which is
equivalent to taking 100MPixel image of the detector,
every 50 ns (20 million times per second). Even after
very strong (10−5) on-line selection of events (using
multi-level trigger systems) GBs of data are stored

every second. Data analysis for LHC experiments
has to be performed on the LHC Computing Grid
(WLCG), which currently includes about 170000TB
of disk space and CPU power of about 1800000 HEP-
SPEC06 units. However, this analysis is only possible
thanks to custom-designed, highly efficient analysis
software.
Detectors at the future International Linear Col-

lider (ILC), which is the next generation e+e− collider
under study, will deal with even larger “images”. Al-
though the project will not be realized before 2020,
detailed studies of physics and detector concepts, and
also detector prototype tests, have been under way
for many years. Large samples of Monte Carlo data
have already been generated to test detector perfor-
mance and analysis methods. A dedicated Marlin [2]
framework has been developed for efficient data re-
construction (corresponding to image reduction in
astronomy) and analysis. We decided to adopt this
framework for the needs of data analysis in GLORIA.

2. Basic concept
Marlin (Modular Analysis and Reconstruction for the
LINear collider) is a simple modular application frame-
work for developing reconstruction and analysis code
for ILC. Data reconstruction and analysis should be
divided into small, well defined steps, implemented
as so called processors. Processors are grouped in
modules, dedicated to particular tasks or types of
analysis. Since many different groups worldwide are
involved in the ILC project, it was assumed that the
framework should allow distributed development of

58

http://ctn.cvut.cz/ap/


vol. 53 no. 1/2013 Luiza: Analysis Framework for GLORIA

Figure 1. Example of the Marlin analysis chain for MIMOSA silicon pixel detectors, developed within the EUDET
project (EUTelescope package).

modules and should combine existing modules in a
larger application according to users’ needs. The cru-
cial requirement in such an approach is that each step
of the analysis has a well defined input and output
data structure. In the case of Marlin, all possible data
classes that can be exchanged between processors are
defined in the LCIO (Linear Collider I/O) data model.
LCIO is used by almost all groups involved in linear
collider detector studies and thus has become a de
facto standard in software development. By defining
universal data structures we make sure that different
processors can be connected in a single analysis chain,
and can exchange data and analysis results.
The base class for a Marlin processor is also de-

fined in the Marlin framework. It defines a set of
standard callbacks that the user can implement in
their subclasses. These callbacks are used to initialize
the analysis chain, process subsequent sets of data
and to conclude the analysis. A steering file mecha-
nism allows the needed processors to be activated and
their parameters to be set at run time. The dedicated
processor manager loads selected processors and calls
their corresponding methods for subsequent steps of
data analysis. An example of the Marlin analysis
chain for silicon pixel detectors, developed within the
EUDET project [3], is shown in Fig. 1. Processing
data from pixel detectors in High Energy Physics is in
fact like CCD image analysis in astronomy. Charged
particle tracks are measured instead of photons, but
the analysis steps are similar: raw data are read from
file, pixel cluster are found (object finding), their po-
sition and charge are reconstructed (photometry) and
are used to fit the particle track (astrometry).
The Marlin framework has turned out to be very

efficient and flexible, and is widely used by the ILC
community. It is designed to run in a batch mode,
without user interaction, with all input streams, anal-
ysis tasks, parameters and options specified in the
steering file. This approach enables huge amounts
of data to be handled and distributed computing re-
sources to be used (Grid Computing). We therefore
decided to use the same concept in developing the

Luiza framework for GLORIA. The package is devel-
oped mostly in C++, and makes wide use of Standard
Template Library (STL) classes and methods.

3. Luiza framework
3.1. Data structures
FITS [4] (Flexible Image Transport System) is the
standard astronomical data format endorsed by both
NASA and the IAU. FITS is much more than an
image format (such as JPG or GIF), and is primarily
designed to store scientific data sets consisting of
multi-dimensional arrays (1-D spectra, 2-D images or
3-D data cubes) and 2-dimensional tables containing
rows and columns of data. When developing Luiza,
we decided to use CFITSIO [5] library for reading and
writing data files in FITS format. The following basic
data classes are defined:

The GloriaFitsImage class — for storing 2-dimen-
sional FITS images, with either integer or floating
point pixels. It includes basic methods for image
manipulation (addition, subtraction, multiplication
and division);

The GloriaFitsTable class — for storing data
tables. Various column types are allowed (inte-
gers, floats, strings, and also vectors of integers and
floats);

The GloriaFitsHeader class — for storing FITS
header data. This includes basic methods for ac-
cessing and modifying header information. Both
GloriaFitsImage and GloriaFitsTable inherit from
this class.

Additional classes can be implemented on this basis,
for example the GloriaObjectList class. This class
defines the GloriaFitsTable with predefined columns
for storing object position on CCD (“CCD_X” and
“CCD_Y”) and object brightness (“Signal”). This
ensures that object lists will be exchangeable between
processors. A user can add additional columns if
needed.

59



A. F. Żarnecki, L. W. Piotrowski, L. Mankiewicz, S. Małek Acta Polytechnica

<processor name="DarkImageReader" type="FitsImageReader">
<!--Processor for reading input FITS images. Reads images from given files-->
<!--List of FITS files to be read-->
<parameter name="FitsFileList" type="StringVec"> dark.fit </parameter>
<!--Name of the image collection to which images from file should be stored-->
<parameter name="ImageCollectionName" type="string">DarkImages </parameter>
<!--Number of images to be read per processing loop (0 for all))-->
<parameter name="ImagesPerLoop" type="int">0 </parameter>
<!--Name of file containing FITS file list (one per line)-->
<parameter name="ListFileName" type="string"> </parameter>
<!--Flag for collections, which should not be deleted after loop is finished-->
<parameter name="PermanentCollection" type="bool">true </parameter>
<!--verbosity level for processor ("DEBUG,MESSAGE,WARNING,ERROR,SILENT")-->
<parameter name="Verbosity" type="string"> MESSAGE </parameter>

</processor>

Figure 3. Example section of the steering file for Luiza, with parameters of the processor reading dark frames.

<execute>
<processor name="DarkImageReader"/>
<processor name="FlatImageReader"/>
<processor name="RawImageReader"/>
<processor name="CalibrateImage"/>
<processor name="FindObjects"/>
<processor name="DoAstrometry"/>
<processor name="StoreFinalImage"/>

</execute>

Figure 2. Example steering file header, containing
information on the modules selected for the analysis
chain.

For internal storage of all data being processed,
a dedicated class GloriaDataContainer was imple-
mented. It stores vectors, so-called “collections”, of
images or tables. Each collection has a unique name
(string), which can be used to access its elements.
Multiple collections can be stored in memory, each
with multiple images or tables (though in many cases
collections will contain just a single image or table).
The pointer to GloriaDataContainer is passed to each
Luiza processor in the data processing loop. Proces-
sors can analyse data already stored in memory, and
can also add new collections (e.g. when reading data
from storage or saving analysis results).

3.2. Data processing
We assume that every computing task can be imple-
mented as a processor (module) that analyzes the
data stored in a GloriaDataContainer structure and
additional output that is created is also added to that
structure. A user defines the analysis chain at run
time, by specifying a list of active processors in an
XML steering file (see Fig. 2). The idea is to develope
a large number of processors in GLORIA, performing
many different tasks, so that the user is always able
to find a set which matches his/her needs.
The main “work horse” of Luiza is the processor

manager (ProcessorMgr class). This is used by Luiza
to create a list of active processors (after parsing XML
file), and to set values to the parameters required by
these processors (given in the same XML file). The
same processor type (e.g. a processor reading FITS
images - FitsImageReader) can be used many times:
the instances are distinguished by a unique names
given by the user. Each instance has its own set of
parameters, so one instance of an image reader can
be used to read dark frames used for calibration, and
another instance to read actual images; an example
of a parameter section for one processor is shown in
Fig. 3.

3.3. Analysis tools
Until now we have mainly focused on the development
of the general structure and functionality of Luiza:
data classes based on the FITS standard have been de-
signed, steer file parsing and processing management
have been adopted from Marlin, processors for input
and output of FITS image files have been implemented
on the basis of CFITSIO library. Nevertheless, the
current version of Luiza already includes some basic
tools for image processing:

• an image viewer based on the CERN ROOT [6]
package (see Fig. 4)
• an image normalization processor, allowing for

dark/bias subtraction and flat correction
• a processor for image stacking or averaging
• a processor for simple geometry operations: image

cropping and rotations
• two simple object finding algorithms: one based
on the particle identification algorithm developed
for silicon pixel detectors, and the other based on
Python library Mahotas
• an astrometry algorithm based on Astrometry.net
(still being tested)

60



vol. 53 no. 1/2013 Luiza: Analysis Framework for GLORIA

CCDX
50 100 150 200 250 300 350

C
C

D
Y

50

100

150

200

250

300

350

10000

20000

30000

40000

50000

60000

CCDX
180

200
220CCD

Y

200

220

240

410

Figure 4. Various graphics options implemented in CERN ROOT, available for viewing FITS images in Luiza:
as an image (left), as a histogram (centre), and as a histogram in 3D projection (right). Red circles in the middle
plot indicate objects reconstructed in an image by the PixelClusterFinder processor. In the plot on the right, only
small section of the image is shown for clarity, presenting the PSF of flare star RXJ0413.4-0139 at the outburst
maximum.

In addition, a dedicated user interface, LuizaGUI,
has been prepared for creating and editing of XML
steering files.

3.4. Development plans
We plan to continue developing basic tools for image
manipulation and analysis (astrometry, photometry,
light curve reconstruction). General purpose algo-
rithms, which should be flexible enough to cope with
data from all GLORIA telescopes, are assumed not
to be the most highly precise algorithms. They can
be used as examples and starting points for future im-
provements, and in the development of more advanced
tools, dedicated to particular studies. Dedicated pro-
cessors will also be developed in the course of GLORIA
off-line experiments. Our current plans include the
development of:

• an interface to star catalogues and external
databases ;
• an interface to Virtual Observatory resources;
• a processor for smart image stacking (correcting for
image shifts and rotations);
• frame quality analysis;
• high quality aperture and profile photometries;
• light curve determination and variability analysis;
• searches for optical bursts, flares etc.

Thanks to the simple and modular structure of
Luiza, individual GLORIA users will also be able to
contribute to software development. New packages
can be compiled as independent libraries and loaded
dynamically at run time without the need to change
anything in Luiza or other modules. It is therefore
possible for users to develop “private” Luiza modules
and libraries, adapted for their particular analysis,
which can later be included in Luiza as a separate
package after proper testing.

 [min]0t - t
0 10 20 30 40 50 60

M
ag

ni
tu

do 10.5

11

11.5

12

12.5

13

Figure 5. Lightcurve of flare star RXJ0413.4-0139
reconstructed with Luiza. Data from followup obser-
vation by Bootes-1 of the outburst observed by Pi of
the Sky on Nov. 24, 2011. The secondary outburst of
the star was measured.

3.5. Documentation
We decided to use the Doxygen [7] package to manage
framework documentation. Web page and/or LaTeX
documentation is created automatically from class
header files, based on simple tags used in the com-
ments included in the code. The additional work
needed to keep the documentation up to date is mini-
mal, assuming that developers put comments in the
code. This solution also makes it straightforward to
add the code submitted by users to the documenta-
tion. Documentation for the public Luiza release is
available on the dedicated web page [9].

4. Results
On November 24, 2011, just before midnight, the Pi
of the Sky telescope located at INTA near Huleva,
Spain, automatically recognized a new object in the
sky. Unfortunately, it was visible to our detector only
for about one minute, fading fast below our limiting
magnitudo. We asked the Bootes group operating a

61



A. F. Żarnecki, L. W. Piotrowski, L. Mankiewicz, S. Małek Acta Polytechnica

bigger telescope at the same site to make a follow up
observation. Figure 5 shows the light curve of the
object, later identified as flare star RXJ0413.4-0139,
as observed by the Bootes-1 telescope [8]. We clearly
see a secondary outburst, more than one magnitudo
brighter than the first one (11.8m at maximum) and
much, much longer. The data analysis resulting in
this light curve was performed with Luiza.

5. Conclusions
An efficient and flexible analysis framework for GLO-
RIA has been developed based on a concept taken
from High Energy Physics. The basic data classes,
framework structure and data processing functionality
are implemented, as well as selected data processing
algorithms. The framework will be further developed
as a part of work on GLORIA off-line experiments.
The first public version of the framework has been
released via GLORIA project SVN [10].

Acknowledgements
The research leading to these results received funding from
the European Commission Seventh Framework Programme
(FP7/2007–2013) under grant agreement no. 283783. The
research work is also being funded the Polish Ministry
of Science and Higher Education from 2011–2014, as a
co-funded international project.

References
[1] http://www.gloria-project.eu/

[2] Gaede, F.: Marlin and LCCD: Software tools for the
ILC, Nucl Instrum Meth A559, 2006, 177-180.
http://ilcsoft.desy.de/portal/software_
packages/marlin/

[3] Rubinskiy, I.: EUTelescope final status, presented at
EUDET Annual Meeting 2010,
http://ilcagenda.linearcollider.org/
conferenceDisplay.py?confId=4649

[4] http://fits.gsfc.nasa.gov/

[5] http://heasarc.gsfc.nasa.gov/docs/software/
fitsio/fitsio.html

[6] http://root.cern.ch/

[7] http://www.doxygen.org/

[8] Martin Jelinek and Petr Kubanek, private
communication.

[9] http://hep.fuw.edu.pl/u/zarnecki/gloria/luiza/
doc/html/index.html

[10]
http://sourceforge.net/projects/gloriaproject/

62

http://www.gloria-project.eu/
http://ilcsoft.desy.de/portal/software_packages/marlin/
http://ilcsoft.desy.de/portal/software_packages/marlin/
http://ilcagenda.linearcollider.org/conferenceDisplay.py?confId=4649
http://ilcagenda.linearcollider.org/conferenceDisplay.py?confId=4649
http://fits.gsfc.nasa.gov/
http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html
http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html
http://root.cern.ch/
http://www.doxygen.org/
http://hep.fuw.edu.pl/u/zarnecki/gloria/luiza/doc/html/index.html
http://hep.fuw.edu.pl/u/zarnecki/gloria/luiza/doc/html/index.html
http://sourceforge.net/projects/gloriaproject/

	Acta Polytechnica 53(1):58--62, 2013
	1 Introduction
	2 Basic concept
	3 Luiza framework
	3.1 Data structures
	3.2 Data processing
	3.3 Analysis tools
	3.4 Development plans
	3.5 Documentation

	4 Results
	5 Conclusions
	Acknowledgements
	References

