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Abstract
This paper deals with a new method for parametric kinematic synthesis of mechanisms. The traditional synthesis
procedure based on collocation, correction and optimization suffers from the local minima of objective functions, usually
due to the local unassembled configurations which must be overcome. The new method uses the time varying values of
the synthesized dimensions of the mechanism as if the mechanism had elastic links and guidances. The time varying
dimensions form the basis for an accompanying nonlinear dynamical dissipative system and the synthesis is transformed
into the time evolution of this accompanying dynamical system. Its dissipativity guarantees the termination of the
synthesis. The synthesis always covers the parametric kinematic synthesis, but it can be advantageously extended into
the optimization of any further criteria. The main advantage of the method described here for dealing with mechanism
synthesis is that it overcomes the unassembled configurations of the synthesized mechanisms and enables any further
synthesis criteria to be introduced, and terminates due to dissipation of the accompanied dynamical system.

Keywords: synthesis of mechanisms; time varying dimensions; evolution of dissipative systems; multi-objective optimiza-
tion; dexterity; workspace; built-up space.

1 Introduction

Like other engineering problems, the parametric kine-
matic synthesis of mechanisms has profited from com-
putational methods, e.g [1]. Traditional methods are
described specifically for a particular type of mech-
anisms [2–5]. General iterative procedures based on
various optimization methods [1, 6–11] have been de-
veloped recently. The currently used methods seem to
be sufficiently powerful and able to find solutions for
most problems in mechanism synthesis. However, all
these methods suffer from two related problems. The
first problem is that the dimensions of the mechanism
that are being optimized do not allow the mechanism
to be assembled in all the positions required for the
desired motion. The second problem is that if some
mechanism synthesis iteration fails for a certain pa-
rameter because of a constraint and/or an assembly
violation, the whole knowledge from this iteration is
lost. A solution to the first problem has been pro-
posed with the use of time-varying dimensions during
the dimension iteration process for the mechanism
[12]. By allowing the dimensions of the system that
are treated as the design variables to vary during the
motion of the mechanism, it is possible to guarantee
that the system can be assembled in all configurations.
This leads to a variation of each dimension during the
cycle of the mechanism. The synthesis problem is then
solved by attempting to minimize the deviation from
the mean value for all the design variables during the
cycle. A solution to the second problem is proposed
in [13], where the non-assembly positions are used for

the synthesis. However, this approach suffers from a
slow iteration process with unclear termination. This
problem is overcome by the new method described in
this paper. This new approach has been described
in [14–17]. Our paper formulates the method in a
specialized way for a very large but restricted class of
synthesis problems of mechanisms. This enables the
description to be made in a more precise, systematic
and algorithmic way. In addition, two interesting
examples are included that have not previously been
fully described [17].

2 General formulation of the
method

2.1 Traditional vector method
The initial assumption is that the mechanism to be
synthesized can be analyzed by the vector method
(for 2D problems e.g. [18], for 3D problems e.g. [19]).
This is the only reduction in generality compared to
the formulation in [14–17]. Let us further describe
the general procedure without loss of generality just
for 2D.
The mechanism to be synthesized is described by

the vector method, which leads to a description of the
mechanism by vector polygons with vector vertices
Vi (i = 1, . . . , n) (a simple case is shown in Fig. 1)
and vectors bi (i = 1, . . . , nV , nV ≥ n) with the
parameters the lengths bi and the angles βi of the
vectors (Fig. 2).
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Figure 1: Simple vector polygon.

These parameters include both the coordinates
(variable parameters from bi and βi) and the dimen-
sions (constant parameters from bi and βi) of the
synthesized mechanism. Parameters bi and βi can
therefore be split into variable coordinates sk and
constant parameters pj (j = 1, · · · ,m). This is the
traditional formulation of the mechanism synthesis
where the dimensions being synthesized are constant
values.

The fundamental objective functions are typically
constructed on the network of mechanism positions
within the desired workspace. Let index r denote the
general position of the mechanism, r = 1, 2, . . . , N ,
where N is the number of such representative po-
sitions, and the corresponding coordinates are sj,r.
Some of the coordinates sj,r are prescribed for par-
ticular positions r = 1, 2, . . . , N . The traditional
synthesis method is a search for constant parameters
pj (j = 1, . . . ,m) such that the closure conditions of
the vector polygons in all r (r = 1, 2, . . . , N) positions
are fulfilled [18–19].

2.2 New method
The new method is based on variation of the mecha-
nism dimensions. They are no longer constant, and
the time varying parameters pj,r can vary between
the positions r (r = 1, 2, . . . , N) of the mechanism.
During the synthesis process it is therefore admitted

p1,1 6= p1,2 6= · · · 6= p1,N ,

p2,1 6= p2,2 6= · · · 6= p2,N ,

...
pm,1 6= pm,2 6= · · · 6= pm,N

(1)

and the synthesis goal is to reach equality of all
parameters at the end of the synthesis

p1,1 ∼= p1,2 ∼= . . . ∼= p1,N ,

p2,1 ∼= p2,2 ∼= . . . ∼= p2,N ,

...
pm,1 ∼= pm,2 ∼= . . . ∼= pm,N

(2)

However, new coordinates are used by the new
method. They are the Cartesian coordinates

Figure 2: Vector parameters.

xVi,r , yVi,r of the polygon vector vertices Vi (i =
1, . . . , n), which are variable.

The varying values of parameters pj,r that corre-
spond to the dimensions being synthesized and that
are constant in the traditional vector method can be
determined from the positions of the vertices Vi in
each position r. If the distance ViVi+1 corresponds
to the constant length dimension of the synthesized
mechanism, then its time varying value is computed
in each position r and each time

pi,r = bi,r =
√

(xVi+1,r − xVi,r )2 + (yVi+1,r − yVi,r )2

(3)
and if angle ViVi+1 with respect to the frame cor-
responds to the constant length dimension of the
synthesized mechanism then its time varying value is
computed in each position r and each time

pi,r = βi,r = atan
yVi+1,r − yVi,r
xVi+1,r − xVi,r

. (4)

The new coordinates xVi,r , yVi,r and the parame-
ters pj,r are time varying and then constant at the
synthesized mechanism after synthesis with the time
varying values. The new coordinates xVi,r , yVi,r are
the coordinates of the accompanying nonlinear dy-
namical dissipative system, which is described by the
Lagrange equations. Its kinetic energy is

Ek = 1
2

n∑
k=1

N∑
r=1

mk(ẋ2
k,r + ẏ2

k,r), (5)

where mk are artificially introduced masses, and its
potential energy is

Ep = 1
2

n∑
k=1

N∑
r=1

kk

N∑
i=1

(pk,r − pk,i)2, (6)

where kk are artificially introduced stiffnesses. The
potential energy describes the excitation of the new dy-
namic system whenever parameters pk,r are not equal
to each other between the positions r = 1, . . . , N . The
dissipation is introduced by the Raleigh function

D = 1
2

n∑
k=1

N∑
r=1

Bk(ẋ2
k,r + ẏ2

k,r), (7)

83



Acta Polytechnica Vol. 52 No. 6/2012

222

222

222

222

222

)()(e

)()(d

)()(c

)()(b

)()(a

CiMiCiMi

DiMiDiMi

DiCiDiCi

CiBiCiBi

AiDiAiDi

yyxx

yyxx

yyxx

yyxx

yyxx











 (14).                                           

The optimization task is defined as follows 

 

  min

2

1

2

2

1

1













n

i

MiMi

n

i

MiMi

y'yq

x'xqCF

      (15)                     

 

 

A[xA,yA] B[xB,yB] 

D 
C 

M 

a 

c b 
d 

e 

β1 

β2 

β3 

k 

β4 

β5 

 
Fig. 3: Four-bar mechanism 

 

and the set of constraints of the optimization task is 

0; 1,1   i1i1i1i            (16),                                                  

where the optimization parameters are: a, b, c, d, e, xA, yA, xB, yB and 1i, (i=1,2,…,n). The 
parameters qi again denote the penalization coefficients. 

Figure 3: Four-bar mechanism.

where Bk are artificially introduced damping coef-
ficients. Dissipation guarantees the removal of the
energy from the new dynamic system, and thus brings
the system into equilibrium.
The synthesis process is now transformed into the

evolution of the accompanying nonlinear dissipative
dynamical system. The system has the coordinates
xVi,r , yVi,r , the kinetic energy (5), the potential en-
ergy (6) where the variables are described by formu-
las (3)–(4) as functions of the coordinates xVi,r , yVi,r ,
the Raleigh function (7) and the initial conditions
xVi,r (0), yVi,r (0) as estimations of the positions of the
mechanism described by the vector polygon vertices
i = 1, . . . , n in particular positions r = 1, . . . , N . It is
supposed that this new accompanying system reaches
its equilibrium given by

Ek = 0, Ep = 0 (8)

and Ek = 0 results from (5) into

ẋk,r = 0, ẏk,r = 0 (9)

and Ep = 0 results from (6) into

pk,r = pk,i. (10)

These final values pk = pk,r are the synthesized param-
eters (dimensions) describing the synthesized mecha-
nism [14–17].

3 Extension of the method
The method described here deals just with the para-
metric positional synthesis of a mechanism. The syn-
thesis is usually more complicated, and it can gener-
ally be described as the minimization/ maximization
of the set of further objective functions{

min CF `(s1, s2, . . . , sn, p1, p2, . . . , pm),
` = 1, 2, . . . , nCF .

(11)

These objective functions are taken into consideration
by extending the potential energy (6) by new terms

Ep = · · ·+ 1
2

nCF∑
`=1

q`(CF ` − CFD,`), (12)

The associated dynamical dissipative system consists of n subsystems for the individual 
positions of point M (Fig. 4). The masses mA, mB, mD, mE are introduced in the points Ai, Bi, 
Di, Ei. The interactions between the subsystems are ensured by forces of a linear spring 
nature. A nonzero force acts into the relevant masses whenever the corresponding 
dimension differs between subsystems i and j (i,j = 1,2,….n). The stabilization of the whole 
system is ensured by damper elements between the masses and the inertial frame. The 
constraints of the associated system were changed into the form 
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Fig. 4: Associated dissipative system of the four-bar 
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where q` are chosen positive constants and CFD,` are
desired values of the objective function CF `.

Then the equilibrium (8) of the new accompanying
dynamic system also optimizes the objective functions
(11) [15–17]. The artificially introduced parameters
mk, kk, Bk and q` can be chosen as arbitrarily positive
numbers, but their values influence the dynamics of
the synthesis.

4 Planar example

The main disadvantages of general optimization meth-
ods combined with traditional kinematical synthesis
are a high computational cost, extreme growth of the
computational complexity with the number of opti-
mized parameters, together with inability to find the
solution even though it exists. The following example
shows the main advantage of the evolution of the as-
sociated dissipative system over general optimization
methods, e.g. genetic algorithms.
The comparison of the methods is focused on the

synthesis of the kinematical system (a four-bar mecha-
nism) from [12]. This mechanism was chosen because
it is relatively simple and it simultaneously consists of
9 dimensional parameters. Moreover, the example can
easily be extended with other optimized parameters,
e.g. angles of the crank.
The original classical optimization formulation of

the example (Fig. 3) is as follows. The kinematical
system has 9 +n dimensions to be synthesized, where
n denotes the number of desired positions of the end
effector. These dimensions are the length of the crank
a, the length of the coupler c, the length of the follower
b, and the lengths of the two rods d and e that are
connected with the end effector. The other set of
optimized dimensions are the x and y positions of
the fixed part of the crank (xA, yA) and the follower
(xB , yB). The last set of parameters to be optimized
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Figure 5: Evolution of the coordinates of a four-bar mechanism.

is the positive increments of the angles β1i of the
crank

β1i = β11 +
i∑
j=2

β1j . (13)

The pointM of the mechanism should pass through
the given positions Mi (i = 1, 2, . . . , n) on the given
trajectory.
The coordinates of the mechanism are β1, β2 and

β3. The system constraints are then

a2 = (xDi − xAi)2 + (yDi − yAi)2,

b2 = (xBi − xCi)2 + (yBi − yCi)2,

c2 = (xCi − xDi)2 + (yCi − yDi)2,

d2 = (xMi − xDi)2 + (yMi − yDi)2,

e2 = (xMi − xCi)2 + (yMi − yCi)2.

(14)

The optimization task is defined as follows

CF = q1

n∑
i=1

(xMi − x′Mi)2

+ q2

n∑
i=1

(yMi − y′Mi)2 → min
(15)

and the set of constraints of the optimization task is

β1(i+1) > β1i (16)

where the optimization parameters are: a, b, c, d, e,
xA, yA, xB , yB and β1i, (i = 1, 2, . . . , n). The param-
eters qi again denote the penalization coefficients.
The associated dynamical dissipative system con-

sists of n subsystems for the individual positions of
point M (Fig. 4). The masses mA, mB, mD, mE
are introduced in the points Ai, Bi, Di, Ei. The
interactions between the subsystems are ensured by
forces of a linear spring nature. A nonzero force acts
into the relevant masses whenever the correspond-
ing dimension differs between subsystems i and j
(i, j = 1, 2, . . . , n). The stabilization of the whole
system is ensured by damper elements between the
masses and the inertial frame. The constraints of the
associated system were changed into the form

a2
i = (xDi − xAi)2 + (yDi − yAi)2,

b2
i = (xBi − xCi)2 + (yBi − yCi)2,

c2
i = (xCi − xDi)2 + (yCi − yDi)2,

d2
i = (xMi − xDi)2 + (yMi − yDi)2, (17)
e2
i = (xMi − xCi)2 + (yMi − yCi)2,

xMi = const. (prescribed),
yMi = const. (prescribed).

The forces that act in the dynamical system are as
follows

FAxi =
n∑
j=1

kxA(xAi − xAj),
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Figure 6: Evolution of the dimensions of a four-bar mechanism.

FAyi =
n∑
j=1

kyA(yAi − yAj),

FBxi =
n∑
j=1

kxB(xBi − xBj),

FByi =
n∑
j=1

kyB(yBi − yBj),

Fai =
n∑
j=1

ka(ai − aj), (18)

Fbi =
n∑
j=1

kb(bi − bj),

Fci =
n∑
j=1

kc(ci − cj),

Fdi =
n∑
j=1

kd(di − dj),

Fei =
n∑
j=1

ke(ei − ej),

Mai = kMi(βi−1 − βi),

where for each mechanism position i the equations
take into account all the other forces connecting with
the other positions j of the mechanism. Therefore
the system forms altogether 2n equations. The coef-
ficient kMi takes the nonzero constant value only if
β1(i+1) < β1i. The final dynamical equations for the
mass particles in points B and the algebraic equations
that must be fulfilled are as follows

mAẍAi =−
n∑
j=1

kxA(xAi − xAj)

+
n∑
j=1

ka(ai − aj) cosβ1i − bxAẋAi,

mAÿAi =−
n∑
j=1

kyA(yAi − yAj)

+
n∑
j=1

ka(ai − aj) sin β1i − byAẏAi,

mBẍBi =−
n∑
j=1

kxB(xBi − xBj)

−
n∑
j=1

kb(bi − bj) cosβ3i − bxBẋBi,
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Figure 7: Evolution of the trajectories of a four-bar mechanism by the dissipative system.

mB ÿBi =−
n∑
j=1

kyB(yBi − yBj)

−
n∑
j=1

kb(bi − bj) sin β3i − byB ẏBi,

mC ẍCi =
n∑
j=1

kb(bi − bj) cosβ3i

−
n∑
j=1

kc(ci − cj) cosβ2i

+
n∑
j=1

ke(ei − ej) cosβ5i − bxC ẋCi,

(19)

mC ÿCi =
n∑
j=1

kb(bi − bj) sin β3i

−
n∑
j=1

kc(ci − cj) sin β2i

+
n∑
j=1

ke(ei − ej) sin β5i − bxC ẋCi,

mDẍDi =−
n∑
j=1

ka(ai − aj) cosβ1i

+
n∑
j=1

kc(ci − cj) cosβ2i

+
n∑
j=1

kd(di − dj) cosβ4i − bxDẋDi,

mDÿDi =−
n∑
j=1

ka(ai − aj) sin β1i

+
n∑
j=1

kc(ci − cj) sin β2i

+
n∑
j=1

kd(di − dj) sin β4i − byDẏDi

where the mechanism dimensions ai, bi, ci, di and ei
are evaluated from the coordinates with the help of
the constraint equations formulated in (17).
The simulation started from some selected initial

positions xA, yA, xB , yB , xC , yC , xD and yD, as was
in general described in Section 2, above. The initial
positions also determine the initial dimensions a, b, c,
d and e of the mechanism.
The results of the simulation are presented in the

following figures. Fig. 5 and Fig. 6 show the history
of the system coordinates. Fig. 7 presents the desired
trajectories and the resulting trajectories. The system
coordinates (xAi, yAi, xBi, yBi, ai, bi, ci, di, ei, i =
1, 2, . . . , n) for all the subsystems (for all the positions)
come to rest at the equilibrium values.

The desired trajectory was reached using one reacti-
vation of the dynamic process. All the coordinates for
all the subsystems also come to rest at the equilibrium
values. These equilibrium values can be interpreted
as the searched parameters of the mechanism.

The example was also simulated using genetic algo-
rithms. The boundary conditions for each optimized
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Figure 8: Evolution of the trajectories of a four-bar mechanism using a genetic algorithm.

dimensional parameter were set according to the inter-
val 〈desired, resulting〉 value of the simulation, which
was done by the dissipative system. This interval
was extended by 50% on both sides, and was used as
the boundary condition for the particular optimized
parameter.
The simulation result is presented in Fig. 8. It is

shown that the desired trajectory was not found using
this method.

5 Spatial example
A further example is the synthesis of a 3D (RSSR)
four-bar mechanism [17].
The original classical optimization formulation is

presented in Fig. 9. It consists of two skew mechanism
axes. The first mechanism axis is identical with the
coordinate y axis. The second mechanism is shifted
to level zA and rotated by angle βA round the z axis.
This means that the vector of the axis of the second
mechanisms still lies on the plane xy. There is a sleeve
on the axis of each mechanism. There is a lever on
each sleeve. There are spherical linkages on the other
side of the levers. At the end, the spherical linkages
are connected together by a pitman.
The overall mechanism is naturally described by

the height zA of point A, the length of the `A axis,
the angle of rotation βA, the length of lever `AB , the
length of pitman `BD, the length of lever `CD and
the length of the axis yC = yD. Let us reformulate
the description of the mechanism for conciseness, and

in order to avoid the complicated equations in the
following formulation.

The mechanism can then be described by the posi-
tions xA, yA, zA of the point A, by the lengths of the
levers `AB and `CD, by the length of the pitman `BD
and the length of the yD axis. Taking the relevant
constraints into account, the representation described
here is the minimal representation of the mechanism.
The constraints that describe the mechanism are

as follows. The first constraint ensures that points
A and B reflect angle ψ for each subsystem. The
following constraint ensures that points C and D
reflect angle ϕ for each configuration of the mecha-
nism. The third constraint describes the given length
of the lever `AB, and ensures that it is constant
across the configurations. The last constraint en-
sures that vector [xA, yA, 0] is perpendicular to vector
BA ([xB , yB , zB ]−[xA, yA, zA]) for each configuration
(subsystem). The constraints are

cosψ = zA − zB√
(xA − xB)2 + (yA − yB)2 + (zA − zB)2

,

cosϕ = xD
x2
D + z2

D

, (20)

`AB =
√

(xA − xB)2 + (yA − yB)2 + (zA − zB)2,

0 = xA(xB − xA) + yA(yB − yA).

Synthesis of the transmission of the RSSR mech-
anism is a very good example in the sense that in
this case the described representation could at the
same time mean the set of synthesized parameters.
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The constraints that describe the mechanism are as follows. The first constraint ensures that 
points A and B reflect angle ψ for each subsystem. The following constraint ensures that 

points C and D reflect angle   for each configuration of the mechanism. The third constraint 
describes the given length of the lever lAB, and ensures that it is constant across the 
configurations. The last constraint ensures that vector [xA,yA,0] is perpendicular to vector BA 
([xB,yB,zB]-[xA,yA,zA]) for each configuration (subsystem). The constraints 
are
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Synthesis of the transmission of the RSSR mechanism is a very good example in the sense 
that in this case the described representation could at the same time mean the set of 
synthesized parameters. Because it is a synthesis of transmission with two levers, a global 
solution of such an example exists and it consists in lengths of the levelers equal to zero. 
However, a solution of this kind is absolutely unimportant for the practical usability of the 
synthesized mechanism. Let us therefore choose the length of the lever lAB equal to a 
nonzero constant. The rest of the parameters can then be synthesized. They are once more: 
xA, yA, zA, lBD, lCD, yD. 

Figure 9: RSSR spatial mechanism.

Because it is a synthesis of transmission with two
levers, a global solution of such an example exists
and it consists in lengths of the levelers equal to zero.
However, a solution of this kind is absolutely unim-
portant for the practical usability of the synthesized
mechanism. Let us therefore choose the length of the
lever `AB equal to a nonzero constant. The rest of
the parameters can then be synthesized. They are
once more: xA, yA, zA, `BD, `CD, yD.

The task of transmission synthesis is to find dimen-
sions of the mechanism that fulfill some transmission
requirements. The requirement for this example is
that the vector of the angles of lever ϕ should corre-
spond with the vector of angles of lever ψ. This means
that for ϕ = ϕ1 is ψ = ψ1, for ϕ = ϕ2 is ψ = ψ2, etc.,
for the constant dimensions of the mechanism.
To sum up, the optimization task is as follows:

F =
n∑
i=1

(ϕi − ϕ′i)2 → min, (21)

where the optimization parameters are: xA, yA, zA,
`BD, `CD and yD and where ψi is given. Parameters
qi again denote the penalization coefficients.
The associated dynamical dissipative system con-

sists of n subsystems for the individual required po-
sitions of the transmission mechanism. The masses
mAi, mBi, mDi are introduced at points Ai, Bi, Di
and act in the coordinates x, y, z. The interactions
between the subsystems are ensured by forces of a
linear spring nature.

A nonzero force acts into the relevant masses when-
ever the corresponding dimension differs between sub-
systems i and j (i, j = 1, 2, . . . , n). Stabilization of
the whole system is ensured by the damper elements
between the masses and the inertial frame, according

to the sky-hook idea [20] or [21]. The idea of the
transformation is presented in Fig. 10.
In spite of the simple formulation of this exam-

ple, only using three mass points, the 3D examples
with difficult constraints drive us to formulate the
dynamical equations by means of Lagrange equations
of mixed type.
The greatest difference that occurs in comparison

with simple planar structures is the difficulty of for-
mulating the dynamical system. With simple planar
mechanisms, the dynamical equation in direct form
can best be formulated using the Newton equations.

The dynamical equations can be defined according
to the formulation of the constraints (20). For the
sake of conciseness, let us define the lengths of the
lever `CD and the pitman `BD, and formulate the x,
y, z projections of vectors [xD, yD, zD]− [xB , yB , zB ]
and [xD, yD, zD]− [0, yC , 0]. The lengths are:

`DC =
√

(xD − 0)2 + (yD − yC)2 + (zD − 0)2, (22)

`BD =
√

(xD − xB)2 + (yD − yB)2 + (zD − zB)2,

The vectors are

vecxDB = xB − xB√
(xD−xB)2 + (yD−yB)2 + (zD−zB)2

,

vecyDB = yB − yB√
(xD−xB)2 + (yD−yB)2 + (zD−zB)2

,

veczDB = zB − zB√
(xD−xB)2 + (yD−yB)2 + (zD−zB)2

,

vecxDC = xD√
(xD − 0)2 + (yD − yC)2 + (zD − 0)2

,

vecyDC = 0, (23)

veczDC = zD√
(xD − 0)2 + (yD − yC)2 + (zD − 0)2

.
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The task of transmission synthesis is to find  dimensions of the mechanism that fulfill some 
transmission requirements. The requirement for this example is that the vector of the angles 

of lever  should correspond with the vector of angles of lever ψ. This means that for  = 1, 

is ψ = ψ1, for  = 2, ψ = ψ2, etc., for the constant dimensions of the mechanism. 

To sum up, the optimization task is as follows: 

  min

2

1




n

i

ii 'F 
,       (21) 

where the optimization parameters are: xA, yA, zA, lBD, lCD and yD and where ψi is given. 
Parameters qi again denote the penalization coefficients.  

The associated dynamical dissipative system consists of n subsystems for the individual 
required positions of the transmission mechanism. The masses mAi, mBi, mDi are introduced 
at points Ai, Bi, Di and act in the coordinates x,y,z. The interactions between the subsystems 
are ensured by forces of a linear spring nature.  

A nonzero force acts into the relevant masses whenever the corresponding dimension differs 
between subsystems i and j (i,j = 1,2,….n). Stabilization of the whole system is ensured by the 
damper elements between the masses and the inertial frame, according to the sky-hook idea 
[20] or [21]. The idea of the transformation is presented in Fig. 10. 

In spite of the simple formulation of this example, only using three mass points, the 3D 
examples with difficult constraints drive us to formulate the dynamical equations by means 
of Lagrange equations of mixed type.  

The greatest difference that occurs in comparison with simple planar structures is the 
difficulty of formulating the dynamical system. With simple planar mechanisms, the 
dynamical equation in direct form can best be formulated using the Newton equations. 
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Fig. 10: Associated system of the RSSR mechanism Figure 10: Associated system of the RSSR mechanism.

The lengths (22) and the vectors (23) help in for-
mulating the forces that act in the dynamical system.
In addition, the constraints (20) have been changed
into the form

cosψ = zB − zA√
(xB − xA)2 + (yB − yA)2 + (zB − zA)2

,

cosϕ = xD√
x2
D + z2

D

, (24)

`AB =
√

(xB − xA)2 + (yB − yA)2 + (zB − zA)2,

0 = xA(xB − xA) + yA(yB − yA),
ϕi = const.,
ψi = const.

In order to describe the general transmission syn-
thesis of this mechanism, let us take i = 1, 2, . . . , n
required transmissions and thus n required subsystems
of the dynamical system. The dynamical equations
and the constraints are identical for each subsystem.
The forces that act in dynamical subsystem i are

FxAi =
n∑
j=1

k(xAi − xAj),

FyAi =
n∑
j=1

k(yAi − yAj),

FzAi =
n∑
j=1

k(zAi − zAj),

F`DBi =
n∑
j=1

k(`DBi − `DBj), (25)

F`DCi =
n∑
j=1

k(`DCi − `DCj),

FyDi =
n∑
j=1

k(yDi − yDj),

BxAi =bẋAi, ByAi = bẏAi, BzAi = bżAi,

BxBi =bẋBi, ByBi = bẏBi, BzBi = bżBi,

BxCi =bẋCi, ByCi = bẏCi, BzCi = bżCi.

This means that for each mechanism position i the
equations take into account all the other forces con-
necting with the other positions j of the mechanism.
Therefore the system forms altogether 2n equations.

The mechanism dimensions are evaluated from the
coordinates as follows

`DBi =
√

(xDi−xBi)2 + (yDi−yBi)2 + (zDi−zBi)2,

`Di =
√
x2
Di + z2

Di. (26)

The final dynamical equations for the mass particles
in points A, B and D for dynamical subsystem i,
together with the algebraic equations, are as follows

mAẍAi = −FxAi −BxAi,
mAÿAi = −FyAi −ByAi,
mAz̈Ai = −FzAi −BzAi,
mBẍBi = F`DBivecxDB −BxBi,
mB ÿBi = F`DBivecyDB −ByBi,
mB z̈Bi = F`DBiveczDB −BzBi, (27)
mDẍDi = −F`DBivecxDB − F`DCivecxDC −BxBi,
mDÿDi = −F`DBivecyDB − FyDi −ByBi,
mD z̈Di = −F`DBiveczDB − F`DCiveczDC −BzBi,

ϕi = const.,
ψi = const.,

where the integrated coordinates are ẍAi, ÿAi, z̈Ai,
ẍBi, ÿBi, z̈Bi, ẍCi, ÿCi, z̈Ci.
The simulation started from some randomly gen-

erated initial positions xA, yA, zA, xB, yB, zB, xD,
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Figure 11: Dynamical response of the dimensions of the RSSR mechanism.

yD, zD. The initial positions also determine the ini-
tial dimensions xA, yA, zA, `BD, `DC , yD, of the
mechanism. It is necessary to make a short note on
the implementation. All the systems that have been
simulated are easy in the context of the formulation.
All the previous dynamical systems were thus for-

mulated by Newton equations. Because this system is
already quite complex, Lagrange equations of mixed
type were chosen, instead of the Newton equations, as
the optimal formulation tool. Thus the formulation
was really simplified. However, the great disadvantage
of this tool is the instability of the constraints.

The results of the simulation are presented in the fol-
lowing figures. The system coordinates xAi, yAi, zAi,
`BDi, `DCi, yDi, (i = 1, 2, . . . , 8) for all the subsys-
tems come to rest at the equilibrium values (Fig. 11).
These equilibrium values can be interpreted as the
searched parameters of the mechanism.
The evolution of the constraints is presented in

Fig. 12. The red lines show fulfilled constraints. The
other lines represent the simulated values of the mech-
anism. The upper part is dedicated to the given
angles ψ and ϕ. The simulated values of the angles
come to rest at the given equilibrium very soon after
the system starts. The lower left picture shows the
constraint that ensures the length of the lever `AB . It
can be seen that the given value had been set equal
to one. Here, too, the simulated value came to rest at

the required value immediately after the system starts.
The fourth history presents the perpendicularity of
vectors [xA, yA, 0] and BA. This graph, too, shows
how soon after the start the constraint condition is
fulfilled. It is absolutely clear from all the pictures
showing the evolution of the constraint conditions
that the required constraints are perfectly fulfilled.
The evolution of the whole structure of the space

four-bar mechanism is presented in Fig. 13. The simu-
lation started from the random positions of the struc-
ture marked as the initial structure. The simulation
finished in the final structure of the mechanism. The
final image shows that the corresponding dimensions
are equal.

6 Conclusion
This paper has described a new method for solving the
parametric kinematical synthesis of mechanisms. The
robustness and the rapid synthesis procedure of the
method have been proven. Especially the robustness
is very valuable.
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Figure 12: Fulfilling the constraints of the RSSR mechanism.

Figure 13: Evolution of the structure of the RSSR mechanism.
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