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Abstract
Distributed computing may be looked at from many points of view. Task scheduling is the viewpoint, where a distributed
application can be described as a Directed Acyclic Graph and every node of the graph is executed independently. There
are, however, data dependencies and the nodes have to be executed in a specified order. Hence the parallelism of the
execution is limited. The scheduling problem is difficult and therefore heuristics are used. However, many inaccuracies
are caused by the model used for the system, in which the heuristics are being tested. In this paper we present a tool for
simulating the execution of the distributed application on a “real” computer network, and try to tell how the execution
is influenced compared to the model.
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1 Introduction
Heterogeneous computation platforms have become
very popular in the past decade. They are cheap and
easy to construct and offer good computation power.
Compared to parallel computers, distributed systems
offer better price-to-power ratio. However, the prop-
erties of distributed systems are different. Communi-
cation is provided by a high-speed network which is
still slow in comparison with the specialized networks
used in parallel systems [15]. Mainly, communication
leads to the need to modify traditional parallel algo-
rithms into distributed algorithms [25, 14, 19].
Task scheduling is one of many approaches used

for distributed algorithms. The idea is simple.
Let us take an application: this application con-
sists of several parts that may be executed indepen-
dently. These part can then be computed on different
computers concurrently and the application can be
speeded up. Task scheduling tries to answer which
parts should be computed on which computers and
when, so that the computation time is minimized.

The structure of the paper is as follows. In the
next section we describe the problem of task schedul-
ing itself, and show several approaches that are wide
used for solving the problem. At the end of the next
section we show the network-related problem of the
simplified models that are used. Section 3 then de-
scribes the simulation tool that we used for making
measurements, and in section 4 we show some inter-
esting results obtained from the simulations.

2 Task scheduling
The application that is to be scheduled can be de-
scribed as a Directed Acyclic Graph (DAG), i.e.
AM = (V,E,B,C), where:

V = {v1, v2, . . . , vv}, |V| = v is the set of tasks, task
vi ∈ V represents the piece of code that has to
be executed sequentially on the same machine;

E = {e1, e2, . . . , ee}, |E| = e is the set of edges, edge
ej = (vk, vl) represents data dependencies, i.e.
task vl cannot start computation until the data
from task vk have been received, task vk is called
the parent of vl, vl is called the child of vk;

B = {b1, b2, . . . , bv}, |B| = v is the set of computa-
tion costs (e.g. number of instructions), where
bi ∈ B is the computation cost for task vi;

C = {c1, c2, . . . , ce}, |C| = e is the set of data depen-
dency costs, where cj = ck,l is the data depen-
dency cost (e.g. amount of data) corresponding
to edge ej = (vk, vl).

A task which has no parents or children is called an
entry task or an exit task, respectively. If there is
more than one entry/exit task in the graph a new
virtual entry/exit task can be added to the graph.
Such a task would have zero weight and would be
connected by zero weight edges to the real entry/exit
tasks.
The application has to be scheduled on a hetero-

geneous computation system (CS) which can be de-
scribed as a general graph, but there is one very im-
portant restriction. The graph represents a connec-
tion structure, and even though there may be no di-
rect connection of two computation nodes there must
be an edge between all of the nodes that are able
to communicate. This restriction leads to the ob-
servation that the CS is always a complete graph.
The computation system can then be described as
CS = (P,Q,R,S), where:

P = {p1, p2, . . . , pp}, |P| = p is a set of the compu-
tation nodes;
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Figure 1: Application model described as a DAG.

Q = {q1, q2, . . . , qp}, |Q| = p is the set of speeds
of computation nodes, where qi is the speed of
node pi;

R is a matrix describing the communication costs,
the size of R is p× p;

S is a matrix used to describe the communication
startup costs; it is usually one-dimensional, i.e.
its size is p× 1.

Scheduling is connected to the specific application
and the specific CS . The computation time ti,j of
task vi on a node pj can be calculated using equation

ti,j = bi
qi
. (1)

When thinking of static scheduling, matrix W can be
used. W contains information on the computation
times for all of the tasks on every node, i.e. the size
of W is v × p.
The scheduling algorithm has to take into account

the communication delay. The duration of transfer
of the edge ei from node p to node q is then defined
as

t(i)p,q = S[p] + ci · R[p][q]. (2)

2.1 Scheduling algorithms
The problem of task scheduling is claimed to be NP-
complete [21, 7] and therefore intensive research in
heuristics has been done. The heuristics can be di-
vided into several categories, the common criterion
being knowledge of when the schedule is created. If
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Figure 2: The computation system described as a
complete graph.

the schedule is computed before computation of the
application begins, i.e. if the schedule is known a pri-
ori, the heuristic is called static or offline. In con-
trast, when the schedule is computed as a part of the
computation of the application, the heuristic is called
dynamic or online.
Both static and dynamic algorithms have been pro-

posed in the literature. For a heterogeneous com-
putation platform, an example of a very well-known
static algorithm is HEFT [20]. The main idea of
HEFT is to order the tasks in a list and to assign the
tasks which are ready to the computer which mini-
mizes the execution time for the task. Another algo-
rithm proposed in [20] is CPOP. This algorithm finds
a critical path and minimizes the execution of tasks
which are in the path. The quality of the schedule
is then very dependent on how the critical path was
created. CPOP has slightly worse computation com-
plexity than HEFT, but scheduling quality results are
close.
The idea of creating a list of tasks ordered in a spe-

cific manner is common for a whole group of schedul-
ing heuristics. They are called list scheduling algo-
rithms. Modifying HEFT in such a way that some
tasks can be duplicated, we obtain the algorithm pre-
sented in [8]. This algorithm can then be applied to
a specific context of cluster-based computation sys-
tems, and the results that it achieves are very good
[11]. Many other algorithms have been published.
Some were summarized in [2], and many other, which
are focused on homogeneous computation system, are
compared in [13].
Unlike static algorithms, dynamic algorithms are

usually used to schedule more than one application at
a time. However, there are some exceptions. For ex-
ample, [24] schedules several applications in a static
way and compares several attitudes that are permis-
sible for this problem. A semi-dynamic attitude is
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Figure 3: A real network (left), its parameters, and the false representation from matrix R (right).

described in [1], where the tasks are scheduled stati-
cally, but there is a global application structure which
contains all of the applications, and this global struc-
ture changes when a new application arrives in the
system. A completely different attitude to the dy-
namic algorithm is presented in [17], where there is
one central scheduling node and each computation
node collects statistics of its own usage. These data
are then sent to the central node, and the scheduling
algorithm adds the tasks from the queue to the queue
of tasks of specific nodes according to the predic-
tion of node utilization computed from the statistics.
A system in which there is more than one schedul-
ing node, is described in [10]. The scheduling nodes
are independent machines and therefore have no in-
formation about schedules of others, so a statistical
approach to node utilization is used. A two-level
scheduling algorithm is described in [9]. The first
level schedules the task to the specific “server”, which
is the leader of a set of close nodes. The “server” then
schedules the task to a specific node. A very simple
dynamic algorithm was also proposed in [23]. The
idea is that the nodes are not differentiated, i.e. a
node can be both a “worker” and a “server”. The
schedule is created in steps, and in each step several
messages are sent that try to get information on the
utilization of the neighbours of the node.

2.2 Weaknesses of the model
The model of the application (AM ) describes the ap-
plication in a very good way. However, this descrip-
tion is limited and does not reflect reality in all terms
that we could imagine. There is, for example, a hid-
den prerequisite that all of the nodes know the code
of the application and all the data that are needed
as input for the application are available before the
application is computed. Similarly, the output of the
application is not targeted to a specific node, and the
computation can finish on any node, which may be
confusing in reality.
The computation system CS is also simplified. All

of the properties of the network are merged in the
two matrices R and S. The values of the matrices do

not take into account all of the possible properties
of the network. In figure 3 the network contains one
bottleneck. However, the properties of the network
gained from independent measurements of the prop-
erties of the link do not indicate this, and communi-
cation may therefore be delayed against the plan of
the schedule. However, this delay may or may not be
critical for the subsequent computation and it is pur-
pose of this paper to show how the communication
delay may change the execution order of the schedule.

2.3 Related work
The problem of evaluating the correctness of the
generated schedules has been studied extensively.
Several tools have been presented, all of which try to
help researchers to validate their algorithms. There
are two main attitudes to the problem. Testing the
algorithms on real platforms, and simulating the ex-
periments. The problem with using real systems for
testing is that there are very limited possible system
architectures due to the limited hardware resources.
There are, however, some systems that are focused
on this type of testing. Grid’5000 [4] and PlanetLab
[6] are two examples of platforms available for appli-
cation testing. The results provided by these tools
are very reliable, but the scalability of the network
is limited. Another very important problem tightly
coupled with task scheduling is that the number of
existing applications is limited. Since only generated
structures of non-existing applications are tested, real
systems cannot be used. The same problem emerges
when we talk about emulation tools.
Simulating experiments suits the task scheduling

problem much better. This method is very widely
used, though not all authors mention the system
and the simulation method that they have used [16].
However, several systems became well known. Grid-
Sim [3] is a simulation tool focused on modeling the
resources of the nodes of CS . The network layer is
modeled using a simple discrete event simulation, and
starts at the level of the third layer of ISO/OSI. The
ALEA framework [12], an extension of GridSim, pro-
vides a tool for various GRID scheduling problems.

114



Acta Polytechnica Vol. 52 No. 5/2012

Figure 4: Topologies of four testing networks.

Another well-known simulator is SimGrid [5]. Sim-
Grid has transformed from a tool for scheduling ap-
plications with a DAG structure to a system that is
able to both simulate and emulate distributed algo-
rithms. SimGrid uses a math model of the network,
but the version 3 also introduces a hybrid system
that allows the use of GTNetS [18] as a transport
simulation tool.

3 Simulation tool
The purpose of this paper is to show the influence of
network parameters on schedule execution. Hence
the simulation tool has to offer a realistic simu-
lation of the network, and we decided to use the
OMNeT++ simulation tool [22]. OMNeT++ aims
primarily at network simulations and is used as a
core for many projects. There are also many ex-
tensions to OMNeT++, e.g. INet Framework is a
set of OMNeT modules that simulate Internet de-
vices. INet contains modules for both physical de-
vices (routers, switches, hubs or access points for
wireless networks) and protocols (TCP/IP protocol
family, SCTP, OSPF or MPLS). Since we want to
make the simulation of the network as realistic as
possible, we chose OMNeT++ with INet Framework
as a simulation core.
OMNeT++ itself offers no support for scheduling.

As mentioned above, the applications that we use for
testing the scheduling algorithms are randomly gen-
erated and have no real representation (i.e. code).
The simulation of the execution of the schedule then
consists only of sequences when the data is sent or re-
ceived and when the nodes pretend to be working. In
terms of simulation, they sleep for a specified amount

R2
R1 10GBit, 1000m
R3 100MBit, 100m
R4 1GBit, 10000m

Table 1: Speeds and distances used in network 3.

R2
R1 100MBit, 100ms
R3 10MBit, 100m

Table 2: Speeds and distances in network 4.

of time. This behavior is executed in the TaskExecu-
tor module, which may be connected to two modules,
the first for TCP communication and the second for
UDP communication. The communication itself is
then simulated by standard INet Framework. This
involves packet collisions, routing, queuing of pack-
ets, etc.

4 Simulation results
We created four network topologies that were used
for simulation. The topologies of the networks are
shown in Figure 4, and the main properties of each
of the networks are as follows.

Network 1 contains 10 nodes connected by a
1GBit ethernet link to the central switch; the
cable length is 10meters.

Network 2 contains 2 groups of 10 nodes. The
nodes are connected by 1GBit ethernet to the
router; the routers are connected by a 10GBit
point-to-point line with the delay corresponding
to a distance of 10 km.

Network 3 contains 4 groups of 5 nodes. The nodes
are connected by a 1GBit ethernet to the router,
and the routers are connected as shown in the
Table 1.

Network 4 contains 1 group of 10 nodes and two
groups of 5 nodes. The nodes are connected by
1GBit ethernet to the router, and the routers
are connected as shown in Table 2.

The communication delays are specified in time
units (ms) or in distance units (m) – the real delay
is then computed by the following equation:

delay = distance
0.64c

. (3)

Networks 1 to 4 were the computation systems for
a set of 300 randomly generated applications. The
method for generating them was copied from [20].
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Figure 5: Differences between the expected and real start of tasks of one application. Network 1 as an execution
platform.

A schedule for each network was created for each ap-
plication. We used HEFT and CPOP as scheduling
algorithms and TCP and UDP as the transport layer.
In the end, we had a set of 4800 schedules. All of the
schedules were simulated and the differences between
the execution time of the scheduled task and the sim-
ulated task were recorded.
The results of the simulations showed that the dif-

ferences between real execution time and expected
execution time are not large. We had expected that
these small differences would cumulate and grow, but
the difference seems to be almost constant, see Fig-
ures 5, 6 and 7.

The structure of the network influences the exe-
cution of the schedule. It may not be a coincidence
that the time differences are usually in the order of
the startup delay. For example, the time differences
in Network 1 were very slow, the maximum being
about 10−6 s, which is the same order as the startup
delay for Network 1 stored in S. The differences in
Network 4 were higher, 10−1 s, which is higher than
the order of values in the startup delay matrix S.
Nevertheless, the value is much smaller than the to-
tal execution time of the computation.
We have also shown that the average length of the

schedule was 103 s and the average difference caused
by the network transport was −10−6 to −10−1 s. The

difference is really small compared to the schedule
length.

5 Conclusion
In this paper we have presented the problem of task
scheduling. Since the problem is difficult, heuristics
are used, and great progress has been achieved in
this area. However, the models that are used as a
standard input for most of the algorithms are only
models, and may suffer from many simplifications.
We have focused here on the computation system,

especially the networking subsection. We have shown
that there are several points that may lead to misun-
derstandings about how the network may work. In
order to show whether these points affect real world
applications, we created a simulation tool which is
able to simulate the execution of the schedule and the
corresponding networking activity. The tool is based
on OMNeT++, which is often used for network-based
simulations.
We created a set of randomly generated applica-

tions, and schedules for them. We ran the simulations
on four network topologies, and our results show that
the communication caused some differences against
the expected execution time. However, the differ-
ences were very small. For this specific set of appli-
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Figure 6: Differences between the expected and real start of applications with more than 50 tasks across all
platforms.

cations and networks we may say that the differences
are insignificant.

We also mentioned the idea that the time differ-
ences caused by the network, are in the order of
startup delay. To make this idea bullet-proof we
need to make more simulations on various types of
networks and with various types of applications. Of
course, the best way would be to execute real ap-
plications on real networks. Real networks have
more problems than only collisions or delays. There
may be some other traffic, and the bandwidth may
therefore change during the computation. These and
many other problems are still to be solved.
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