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Angular Distribution of GRBs
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Abstract

We studied the complete randomness of the angular distribution of BATSE gamma-ray bursts (GRBs). Based on their
durations and peak fluxes, we divided the BATSE sample into 5 subsamples (short1, short2, intermediate, long1, long2)
and studied the angular distributions separately. We used three methods to search for non-randomness in the subsamples:
Voronoi tesselation, minimal spanning tree, and multifractal spectra. To study any non-randomness in the subsamples
we defined 13 test-variables (9 from Voronoi tesselation, 3 from the minimal spanning tree and one from the multifractal
spectrum). We made Monte Carlo simulations taking into account the BATSE’s sky-exposure function. We tested the
randomness by introducing squared Euclidean distances in the parameter space of the test-variables. We recognized that
the short1, short2 groups deviate significantly (99.90%, 99.98%) from the fully random case in the distribution of the
squared Euclidean distances but this is not true for the long samples. In the intermediate group, the squared Euclidean
distances also give significant deviation (98.51%).

1 Introduction
Recently, the cosmological origin of gamma-ray
bursts (hereafter GRBs) has been widely ac-
cepted [24, 49, 75]. Assuming large scale isotropy for
the Universe, one would also expect the same prop-
erty for GRBs.
There is an increasing amount of evidence that

all GRBs do not all form a physically homogeneous
group [5, 27–31, 39, 50]. Hence, it is worth inves-
tigating whether physically different subgroups are
also different in their angular distributions. The au-
thors have carried out several different tests in re-
cent years [3, 4, 45, 46] probing the intrinsic isotropy
in the angular sky-distribution of the GRBs col-
lected in BATSE Catalog [44]. Briefly summariz-
ing the results of these studies, one may conclude:
A. The long subgroup (T90 > 10s) seems to be dis-
tributed isotropically; B. The intermediate subgroup
(2s ≤ T90 ≤ 10s) is distributed anisotropically on
the � (96–97)% significance level; C. For the short
subgroup (T90 < 2s) the assumption of isotropy is re-
jected only on the 92% significance level; D. The long
and short subclasses, respectively, are distributed dif-
ferently on the 99.3% significance level. (For a defi-
nition of the subclasses see [29–33,69].)
Independently and by different tests, [43] con-

firmed results A., B. and C., with one essential differ-
ence: for the intermediate subclass a much higher —
namely 99.89% — significance level of anisotropy is
claimed. Again, the short subgroup is found to be
“suspicious”, but only the � (85–95)% significance
level is reached. The long subclass seems to be dis-
tributed isotropically. [42] found a significant angular
correlation on the 2◦−5◦ scale for GRBs of T90 < 2s
duration. [64] reported a correlation between the lo-

cations of previously observed short bursts and the
positions of galaxies in the local Universe, indicat-
ing that between 10 and 25 per cent of short GRBs
originate at low redshifts (z < 0.025).
It is a reasonable requirement to continue these

tests using more sophisticated procedures in order
to see whether the angular distribution of GRBs is
completely random, or whether it has some sort of
regularity. This is the subject of this paper. New
tests will be presented here. Mainly the clarifica-
tion of the short subgroup’s behaviour is expected
from these tests. In this paper, similarly to the pre-
vious studies, the intrinsic randomness is tested; this
means that the non-uniform sky-exposure function of
BATSE instrument is eliminated.
The paper is organized as follows. The three new

tests are described in Section 2. This Section does
not contain new results, but this minimal survey may
be useful because the methods are not widely famil-
iar. Section 3 contains the statistical tests on the
data. Section 4 summarizes the results of the statis-
tical tests, and Section 5 presents the main conclu-
sions of the paper. The paper is based on the results
published in [68]; some preliminary cosmological im-
plications are also discussed by [47, 48].

2 Mathematical overview
Strictly from the mathematical point of view, consid-
ering GRBs as a point process on the celestial sphere,
the first property means that for a given Ω area on
the sky the P (Ω) probability of observing a burst de-
pends only on the size of Ω, and not on its location on
the sphere. The second property means that for the
given two disjunct Ω1,Ω2 areas on the sky the joint
probability is given by P (Ω1,Ω2) = P (Ω1)P (Ω2), i.e.
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the probability of observing a burst in Ω1 is fully
independent from the probability of getting one in
Ω2.
If both properties are fulfilled, the distribution is

called completely random (for the astronomical con-
text of spatial point processes, see [55]). There are
several tests for checking the complete randomness of
point patterns, but these procedures do not always
give information for both properties simultaneously.
The simplest test for isotropy is a comparison of

the number counts of GRBs in disjunct areas on the
sky. In the case of isotropy expanding P (Ω) into a se-
ries of spherical harmonics, all the coefficients in the
series, except the 0th order, should equal zero. This
property can also be used for testing the isotropy (for
testing the dipole and quadrupole moments, see [10]).
Before performing the isotropy tests the uneven ex-
posure function of BATSE has to be taken into ac-
count [44].
We used three methods, Voronoi tesselation, min-

imal spanning tree and multifractal spectra to get
statistical variables suitable for testing the fully ran-
domness of the angular distribution of GRBs.

2.1 Voronoi tesselation (VT)

The Voronoi diagram — also known as Dirichlet tes-
selation or Thiessen polygons — is a fundamental
structure in computational geometry and arises nat-
urally in many different applications [70, 62]. Gen-
erally, this diagram provides a partition of a point
pattern (“point field”, also “point process”), accord-
ing to its spatial structure, which can be used for
analyzing the underlying point process.
Let us assume that there are N points (N � 1)

scattered on a sphere surface with a unit radius. We
say that a point field is given on the sphere. The
Voronoi cell [62] of a point is the region of the sphere
surface consisting of points which are closer to this

given point than to any other ones of the sphere. This
cell forms a polygon on this sphere. Each such cell
has its area (A) given in the steradian, perimeter (P )
given by the length of boundary (one great circle of
the boundary curve is also called a “chord”), number
of vertices (Nv) given by an integer positive number,
and by the inner angles (αi; i = 1, . . . , Nv). This
method is completely non-parametric, and therefore
may be sensitive for various point pattern structures
in the different subclasses of GRBs.
The points on a sphere may be distributed com-

pletely randomly or non-randomly; the non-random
distribution may have different characters (cluster-
ing, filaments, etc.; for the survey of these non-
random behaviors, see, e.g., [19]).
The VT method is able both to detect non-

randomness and also to describe its form (see [16,
17,20,34,35,59,62,63,73,74,76] for the astronomical
context).

2.2 Minimal spanning tree (MST)

Unlike VT, this method considers the distances
(edges) among the points (vertices). Clearly, there
are N(N − 1)/2 distances among N points. A span-
ning tree is a system of lines connecting all the
points without any loops. The minimal spanning tree
(MST) is a system of connecting lines, where the sum
of the lengths is minimal among all the possible con-
nections between the points [40, 58]. In this paper,
the spherical version of MST is used following the
original paper by Prim [58].
The N − 1 separate connecting lines (edges) to-

gether define the minimal spanning tree. The statis-
tics of the lengths and the αMST angles between the
edges at the vertices can be used for testing the ran-
domness of the point pattern. The MST is widely
used in cosmology for studying the statistical prop-
erties of galaxy samples [1, 6–8,21, 41].

Fig. 1: Application of Voronoi tesselation to short GRBs (Short1 sample) in the 0.65 < P256 < 2.00 peak flux range in
Galactic coordinates. The peak-flux is given in dimension photon/(cm2s)
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Fig. 2: MST for the sample in Figure 1

Fig. 3: MFR spectra of simulated (dot-dashed), Long1
(dashed), Short1 (dotted) and Short2 (three-dot-dashed)
samples. Boxes represent the error of the spectrum points
derived from Monte Carlo simulations. Note the shift of
the maximum of the spectrum of the Short1 sample to-
wards higher values in comparison to α = 2, correspond-
ing to the completely random 2D Euclidean case

2.3 Multifractal spectrum

Let P (ε) denote the probability for finding a point
in an area of ε radius. If P (ε) scales as εα (i.e.
P (ε) ∝ εα), then α is called the local fractal dimen-
sion (e.g. α = 2 for a completely random process on
the plane). In the case of a monofractal α is inde-
pendent from the position. A multifractal (MFR) on
a point process can be defined as unification of the
subsets of different (fractal) dimensions [52]. One
usually denotes with f(α) the fractal dimension of
the subset of points at which the local fractal dimen-
sion is in the interval of α, α+ dα. The contribution
of these subsets to the whole pattern is not neces-
sarily equally weighted, in practice, it depends on

the relative abundances of subsets. The f(α) func-
tional relationship between the fractal dimension of
subsets and the corresponding local fractal dimension
is called the MFR or Hausdorff spectrum.
In the vicinity of the i-th point (i = 1, 2, . . . , N)

one can measure from the neighbourhood structure a
local dimension αi (“Rényi dimension”). This mea-
sure approximates the dimension of the embedding
subset, giving the possibility to construct the MFR
spectrum which characterizes the whole pattern (for
more details see [52]). If the maximum of this convex
spectrum is equal to the Euclidean dimension of the
space, then in the classical sense the pattern is not
a fractal, but the spectrum remains sensitive to the
non-randomness of the point set.
The concept of a multifractal can be successfully

applied in astronomical problems [2, 9, 11–13, 18, 22,
25, 26, 36, 37, 53, 54, 60, 61, 65–67].

3 Evaluation of statistical
tests

The three procedures outlined in Section 2 enable us
to derive several stochastic quantities well suited for
testing the non-randomness of the underlying point
patterns.

3.1 Input data and sample definition

Until now the most comprehensive all-sky survey of
GRBs was done by the BATSE experiment on board
the CGRO satellite in the period from 1991–2000. In
this period the experiment collected 2704 well jus-
tified burst events, and the data is available in the
Current BATSE Catalog [44].
Since there is increasing evidence ( [31] and ref-

erences therein) that the GRB population is actu-
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ally a mixture of astrophysically different phenom-
ena, we divided the GRBs into three groups: short
(T90 < 2s), intermediate (2s ≤ T90 ≤ 10s) and long
(T90 > 10s). To avoid problems with a changing de-
tection threshold, we omitted GRBs having a peak
flux P256 ≤ 0.65 photons cm−2 s−1. This truncation
was proposed in [56]. The bursts may emerge at very
different distances in the line of sight and it may hap-
pen that the stochastic structure of the angular dis-
tribution depends on it. Therefore, we also made
tests on the bursts with P256 < 2 photons cm−2 s−1

in the short and long population, separately. Table 1
defines the 5 samples to be studied here. (Due to the
small number of intermediate bursts, this subsample
was not divided into faint and bright parts).

Table 1: Tested samples of BATSE GRBs

Sample Duration Peak flux Number
[s] [photons cm−2s−1] of GRBs

Short1 T90 < 2 s 0.65 < P256 < 2 261

Short2 T90 < 2 s 0.65 < P256 406

Intermediate 2 s ≤ T90 ≤ 10 s 0.65 < P256 253

Long1 T90 > 2 s 0.65 < P256 < 2 676

Long2 T90 > 10 s 0.65 < P256 966

3.2 Definition of the test-variables

The randomness of the point field on the sphere can
be tested with respect to various criteria. Since dif-
ferent non-random behaviors are sensitive to different
types of criteria of non-randomness, it is not neces-
sary that all possible tests using different measures
reject the assumption of randomness. In the follow-
ing, we define several test-variables which are sensi-
tive to different stochastic properties of the underly-
ing point pattern, as proposed by [72].
Any of the quantities characterizing the Voronoi

cell, i.e. area A, perimeter P , number of vertices
Nv, cell chord length C, and inner angles αi can be
used as test-variables, and even some combinations
of these quantities. We defined the following test-
variables:
– Cell area A;
– Cell vertex (edge) Nv;
– Cell chords length C;
– Inner angle αi;
– Round factor (RF) average RFav = 4πA/P ;

– Round factor (RF) homogeneity 1− σ(RFav)
RFav

;

– Shape factor A/P 2;
– Modal factor σ(αi)/Nv;
– The so-called “AD factor” defined as AD =
1 − (1 − σ(A)/〈A〉)−1, where σ(A) is the dis-
persion and 〈A〉 is the average of A.

To characterize the stochastic properties of a point
pattern, we use three quantities obtained from MST:
– Variance of the MST edge-length σ(LMST );

– Mean MST edge-length LMST ;
– Mean angle between edges αMST .
As to the multifractals, the only variable used

here is the f(α) spectrum, which is a sensitive tool
for testing the non-randomness of a point pattern.
Throughout defining these variables mean (average)
and variance refer to the mean and variance of the
respective elements of the Voronoi foam and MST,
respectively.
An important problem is to study the sensitivity

(discriminant power) of the different parameters to
the different kind of regularity inherent in the point
pattern. In the case of a fully regular mesh, e.g., A
is constant and so AD = 0, σ(αi) = 0 and both in-
crease towards a fully random distribution. In the
case of a patchy pattern the distribution of the area
of the Voronoi cells and the edge distribution of MST
become bimodal, reflecting the average area and the
edge length within and between the clusters, in com-
parison to the fully random case. In a filamentary
distribution, the shape of the areas becomes strongly
distorted, reflecting in an increase of the modal factor
in comparison to the case of patches.
[71] investigated the power of Voronoi tessela-

tion and the minimal spanning tree in discriminat-
ing between distributions having big and small clus-
ters, full randomness and hard cores (random distri-
butions, but the mutual distances of the points are
constrained by the size of the hard core), respectively.
They concluded that the Voronoi roundness factor
did not separate small clusters and hardcore distri-
butions, and the roundness factor homogeneity did
not distinguish between small clusters and random
distributions, nor between random and hardcore dis-
tributions. MST has a very good discriminant power
even in the case of hardcore distributions with close
minimal interpoint distances.
Since the sensitivity of the variables differs on

changing the regularity properties of the underlying
point patterns one may measure significant differ-
ences in one parameter but not in another, even in
cases when these are correlated otherwise. This is
not a trivial issue. In most cases, one needs extended
numerical simulations to study the statistical signifi-
cance of the different parameters.

3.3 Estimation of significance

To obtain the empirical distributions of the test-
variables we made 200 simulations for each of the
five samples. The number of simulated points was
identical to the number for the samples defined in
Section 3.1.
We generated the fully random catalogs by Monte

Carlo (MC) simulations of fully random GRB celes-
tial positions and taking into account the BATSE
sky-exposure function [23, 44].

20



Acta Polytechnica Vol. 52 No. 2/2012

Table 2: Calculated significance levels for the 13 test-variables and the five samples. A calculated numerical signifi-
cance greater than 95% is put in bold face

Name var short1 short2 interm. long1 long2

Cell area A 36.82 29.85 94.53 79.60 82.59

Cell vertex (edge) Nv 36.82 87.06 2.99 26.87 7.96

Cell chords C 47.26 52.24 18.91 84.58 54.23

Inner angle αi 96.52 21.39 87.56 37.81 63.18

RF average 4πA/P 65.17 99.98 33.83 10.95 86.07

RF homogeneity 1− σ(RFav)
RFav

19.90 24.38 58.71 55.72 32.84

Shape factor A/P 2 91.04 94.03 90.05 55.22 63.68

Modal factor σ(αi)/Nv 97.51 1.99 7.46 56.22 8.96

AD factor 1−
(
1− σ(A)

〈A〉
)−1

32.84 25.37 11.44 95.52 52.74

MST variance σ(LMST ) 52.74 38.31 22.39 13.93 59.70

MST average LMST 97.51 7.46 89.05 56.72 8.96

MST angle αMST 85.07 14.43 36.82 73.63 60.70

MFR spectra f(α) 95.52 96.02 98.01 73.63 36.32

Squared Euclidean distance 99.90 99.98 98.51 93.03 36.81

Assuming that the point patterns obtained from
the five samples defined in Table 2 are fully random,
we calculated the probabilities for all the 13 test-
variables selected in Section 3.2. Based on the sim-
ulated distributions, we computed the level of signif-
icance for all the 13 test-variables and in all defined
samples.

4 Discussion of the statistical
results

4.1 Evaluation of the joint
significance levels

We assigned to each MC simulated sample 13 values
of the test variables and, consequently, a point in the
13D parameter space. Completing 200 simulations in
all of the subsamples we get in this way a 13D sample
representing the joint probability distribution of the
13 test-variables. Using the Euclidean distance of the
points from the sample mean we can get a stochastic
variable characterizing the deviation of the simulated
points from the mean only by chance. An obvious
choice would be the squared Euclidean distance.
In case of a Gaussian distribution with unit vari-

ances and without correlations, this would result in
a χ2 distribution of 13 degrees of freedom. The test-
variables in our case are correlated and have differ-
ent scales. Before computing squared Euclidean dis-

tances we transformed the test-variables into non-
correlated ones with unit variances. Due to the
strong correlation between some of the test-variables
we may assume that the observed quantities can be
represented with non-correlated variables of lower
number. Factor analysis (FA) is a suitable way to
represent the correlated observed variables with non-
correlated variables of lower number.
Since our test-variables are stochastically depen-

dent, following [72] we attempted to represent them
by fewer non-correlated hidden variables, assuming
that

Xi =
k∑

j=1

aijfj + si i = 1, . . . , p k < p . (1)

In the above equation Xi, fj , si mean the test-
variables (p = 13 in our case), the hidden variables
and a noise-term, respectively. Equation (1) repre-
sents the basic model of FA. The covariance matrix

of the Xi variables has
1
2
p(p+ 1) free elements. The

number of free elements on the right side of Eq. (1)
cannot exceed this value [38], yielding for k the fol-
lowing inequality:

k ≤ (2p+ 1−
√
8p+ 1)/2 (2)

which gives k ≤ 8.377 in our case.
Factor analysis is a common ingredient of profes-

sional statistical software packages (BMDP, SAS, S-
plus, SPSS1, etc). The default solution for identifying

1BMDP, SAS, S-plus, SPSS are registered trademarks
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the factor model is to perform principal component
analysis (PCA). We kept as many factors as were
meaningful with respect to Equation (2). Taking into
account the constraint imposed by Equation (2) we
retained 8 factors. In this way we projected the joint
distribution of the test-variables in the 13D parame-
ter space into an 8D parameter space defined by the
non-correlated fi hidden variables.
The fj hidden variables in Equation (1) are non-

correlated and have zero means and unit standard
deviations. Using these variables, we defined the fol-
lowing squared Euclidean distance from the sample
mean:

d2 = f21 + f22 + . . .+ f2k (k = 8 in our case). (3)

If the fj variables had strictly Gaussian distributions,
Equation (3) would define a χ2 variable of k degrees
of freedom.
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Fig. 4: Distribution of the squared Euclidean distances
of the simulated samples from the stochastic mean of the
fi hidden variables (factors) in the 8D parameter space.
There are altogether 1 000 simulated points. The full line
marks a χ2 distribution of 8 degrees of freedom, normal-
ized to the sample size. The distances of the BATSE
samples are also indicated. The departures of samples
“short1” and “short2” exceed all those of the simulated
points. The probabilities that these deviations are non-
random equal 99.9% and 99.98%, respectively

4.2 Interpretations of the statistical
results

Using the distribution of the squared Euclidean dis-
tances, defined by Equation (3), one can get further
information on whether a BATSE sample represented
by a point in the parameter space of the test-variables
deviates only by chance, or whether it differs signifi-
cantly from the fully random case.

In all categories (short1, short2, intermediate,
long1, long2 ) we made 200, altogether 1000, simu-
lations. We calculated the d2 squared distances for
all simulations and compared them with those of the
BATSE samples in Table 1. Figure 4 shows a his-
togram of the simulated squared distances along with
those of the BATSE samples. A full line represents
a χ2 distribution of k = 8 degrees of freedom. Fi-
gure 4 clearly shows that the departures of samples
short1 and short2 exceed all those of the simulated
points. The probabilities, that these deviations are
non-random, equal 99.9% and 99.98%, respectively.
The full randomness of the angular distribution

of the long GRBs, in contrast to the regularity of
the short and to some extent to the intermediate
ones, points towards the differences in the angular
distribution of their progenitors. The recent discov-
ery of the afterglow in some short GRBs indicates
that these events are associated with the old stellar
population [24] accounted probably for the mergers
of compact binaries, in contrast to the long bursts
resulting from the collapse of very massive stellar ob-
jects in young star forming regions. The differences
in progenitors also reflects the differences between
the energy released by the short and long GRBs.
As [33] showed, the redshift distributions of the dif-
ferent GRB classes are different. The average z of the
short bursts is significantly smaller than that of the
long ones (the average redshift of intermediate bursts
is between them). Consequently, the short and long
GRBs experience different sampling volumes. The
sampling volume of the short bursts is much smaller
and the irregularities in the distribution of the host
galaxies plays a more significant role.
Unfortunately, little can be said on the physical

nature of the intermediate class. Statistical studies
([31] and the references therein) suggest the existence
of this subgroup — at least from the purely statisti-
cal point of view. Also a non-random sky distribution
occurs here. However, its physical origin is still fully
open yet [31].

5 Summary and conclusions

We has made additional studies on the degree of
randomness in the angular distribution of samples
selected from the BATSE Catalog. According to
the T90 durations and the P256 peak fluxes of the
GRBs in the Catalog we defined five groups: short1
(T90 < 2s & 0.65 < P256 < 2), short2 (T90 < 2s &
0.65 < P256 ), intermediate (2 s ≤ T90 ≤ 10 s &
0.65 < P256), long1 (T90 > 2s & 0.65 < P256 < 2)
and long2 (T90 > 10s & 0.65 < P256).
To characterize the statistical properties of the

point patterns given by the samples, we defined
13 test-variables based on Voronoi tesselation (VT),
a minimal spanning tree (MST) and a multifrac-
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tal spectra. For all five defined GRB samples we
made 200 numerical simulations, assuming fully ran-
dom angular distribution and taking into account the
BATSE exposure function. The numerical simula-
tions enabled us to define the empirical probabilities
for testing the null hypothesis, i.e. the assumption
that the angular distributions of the BATSE samples
are fully random.
Since we performed 13 single tests simultane-

ously on each subsamples, the significance obtained
by calculating it separately for each test cannot be
treated as a true indication for deviating from the
fully random case. In fact, some of the test-variables
are strongly correlated. To concentrate the infor-
mation on the non-randomness experienced by the
test-variables, we assumed that they can be repre-
sented as a linear combination of non-correlated hid-
den factors of lower number. Actually, we estimated
k = 8 as the number of hidden factors. Making use
of the hidden factors we computed the distribution
of the squared Euclidean distances from the mean
of the simulated variables. Comparing the distribu-
tion of the squared Euclidean distances of the simu-
lated samples with the BATSE samples we concluded
that the short1, short2 groups deviate significantly
(99.90 %, 99.98%) from full randomness, but this is
not the case for the long samples. For the intermedi-
ate group, squared Euclidean distances also give sig-
nificant deviation (98.51 %).
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339, 1, 1998.

[4] Balázs, L. G., Mészáros, A., Horváth, I.,
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[32] Horváth, I., Balázs, L. G., Bagoly, Z., Veres, P.:
A & A, 489L, 1, 2008.
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