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Effect Algebras of Positive Self-adjoint Operators Densely Defined on
Hilbert Spaces
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Abstract

We show that (generalized) effect algebras may be suitable very simple and natural algebraic structures for sets of
(unbounded) positive self-adjoint linear operators densely defined on an infinite-dimensional complex Hilbert space. In
these cases the effect algebraic operation, as a total or partially defined binary operation, coincides with the usual
addition of operators in Hilbert spaces.
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1 Introduction
For any linear operator A densely defined on a Hilbert
space H one can define its adjoint operator A∗. If
A∗ coincides with A then operator A is called self-
adjoint. Self-adjoint (unbounded) linear operators on
infinite-dimensional complex Hilbert spaces have im-
portance in quantum mechanics, since they represent
physical observables, e.g. the position or momentum
of an elementary particle. Differential operators form
a class of unbounded operators. The Laplace oper-
ator is an example of an unbounded positive linear
operator.

The algebraic structures of sets of such operators
distinguish from classical boolean logics. This fol-
lows from the fact that e.g., the distributive law fails
due to the noncompatibility of some pairs of opera-
tors. For instance, position x and momentum p of
an elementary particle cannot be measurable simul-
taneously with arbitrarily prescribed accuracy, hence
x and p are noncompatible. Non-classical logic for
calculus of propositions of quantum mechanical sys-
tem started in 1936 by Birkhoff and von Neuman,
(see [2]). Effect algebras were introduced in 1994
in [5]. A survey of algebras of unbounded operators
can be found in [1].

The aim of this paper is to show that (generalized)
effect algebras may be suitable, very simple and nat-
ural algebraic structures for sets of linear operators
(including unbounded ones) densely defined on an
infinite-dimensional complex Hilbert space, at which
the effect algebraic operation coincides with the usual
sum of operators.

More details on linear operators on Hilbert spaces
can be found, e.g., in [3] and about effect algebras
in [4].

2 Basic definitions and some
known facts

In the paper we assume that H is an infinite-
dimensional complex Hilbert space, i.e., a linear
space with inner product (· , ·) which is complete in
the induced metric. Conventions differ as to which
argument sesquilinear form (· , ·) should be linear.
Recall that here for any x, y ∈ H we have (x, y) ∈ C

(the set of complex numbers) such that (x, αy+βz) =
α(x, y) + β(x, z) for all α, β ∈ C and x, y, z ∈ H.
Moreover, (x, y) = (y, x) and finally (x, x) ≥ 0 at
which (x, x) = 0 iff x = 0. The term dimension of H
in the following always means the Hilbertian dimen-
sion defined as the cardinality of any orthonormal
basis of H (see [3, p. 44]).

Moreover, we will assume that all considered lin-
ear operators A (i.e., linear maps A : D(A) → H)
have a domain D(A) a linear subspace dense in H
with respect to metric topology induced by inner
product, so D(A) = H. Moreover, our next results
will be for positive linear operators A (denoted by
A ≥ 0), meaning that (Ax, x) ≥ 0 for all x ∈ D(A),
therefore operators A are also symmetric, (for more
details see [3]). We will denote the set of all such
operators by V(H).

Recall that A : D(A) → H is called a bounded
operator if there exists a real constant C ≥ 0 such
that ‖Ax‖ ≤ C‖x‖ for all x ∈ D(A) and hence A
is an unbounded operator if to every C there exists
xC ∈ D(A) with ‖AxC‖ > C‖xC‖. To every linear
operator with D(A) = H there exists the adjoint lin-
ear operator A∗ of A such that D(A∗) = {y ∈ H |
there exists y∗ ∈ H such that (y∗, x) = (y, Ax) for
all x ∈ D(A)} and A∗y = y∗ for every y ∈ D(A∗).
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If A∗ = A then A is called self-adjoint. The set
of all positive self-adjoint linear operators densely
defined in H will be denoted by Sp(H). Hence
Sp(H) = {A ∈ V(H) | A = A∗}.

A densely defined linear operator A on H is called
symmetric, if A ⊂ A∗. Here we write A ⊂ B iff
D(A) ⊆ D(B) and Ax = Bx for every x ∈ D(A).
The condition A ⊂ A∗ is equivalent to (y, Ax) =
(Ay, x) for all x, y ∈ D(A).

An operator A : D(A) → H is called closed if
for every sequence (xn)n∈N, xn ∈ D(A), such that
xn → x ∈ H and Axn → y ∈ H as n → ∞ one
has x ∈ D(A) and Ax = y. Since A ∈ V(H) is
positive and hence also symmetric (see [3], p. 142)
there exists a closed operator A such that A ⊂ A and
A ⊂ B for every closed operator B ⊃ A. Moreover
A is symmetric and it is called the closure of A. A
symmetric operator is called essentially self-adjoint
if (A)∗ = A and then A is a unique self-adjoint ex-
tension of A [3, p. 96].

We shall show in Section 3 that, under a partially
defined usual sum of linear operators, sets V(H) and
Sp(H) form quantum structures called (generalized)
effect algebras (see also [9]). Now we recall their def-
initions.
Definition 2.1 (Foulis and Bennett, 1994) A par-
tial algebra (E;⊕, 0, 1) is called an effect algebra if
0,1 are two distinguished elements and ⊕ is a par-
tially defined binary operation on E which satisfies
the following conditions for any x, y, z ∈ E:

(E1) x ⊕ y = y ⊕ x if x ⊕ y is defined,
(E2) (x⊕y)⊕z = x⊕(y⊕z) if one side is defined,
(E3) for every x ∈ E there exists a unique y ∈ E

such that x ⊕ y = 1 (we put x′ = y),
(E4) If 1 ⊕ x is defined then x = 0.

We often denote the effect algebra (E;⊕, 0, 1)
briefly by E. On every effect algebra E the par-
tial order ≤ and partial binary operation � can be
introduced as follows:

x ≤ y and y�x = z iff x⊕z is defined and x⊕z = y.

If E with the defined partial order is a lattice (a com-
plete lattice) then (E;⊕, 0, 1) is called a lattice effect
algebra (a complete lattice effect algebra).

Generalizations of effect algebras (i.e., without
a top element 1) have been studied by Kôpka and
Chovanec (1994) (difference posets), Foulis and Ben-
nett (1994) (cones), Kalmbach and Riečanová (1994)
(abelian RI-posets and abelian RI semigroups) and
Hedĺıková and Pulmannová (1996) (generalized D-
posets and cancellative positive partial abelian semi-
groups). It can be shown that all of the above men-
tioned generalizations of effect algebras are mutu-
ally equivalent and extend similar previous results
for generalized Boolean algebras and orthomodular
lattices and posets.

Definition 2.2
(1) A generalized effect algebra (E, ⊕, 0) is a set E

with element 0 ∈ E and partial binary operation
⊕ satisfying for any x, y, z ∈ E conditions
(GE1) x ⊕ y = y ⊕ x if one side is defined,
(GE2) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) if one side is

defined,
(GE3) if x ⊕ y = x ⊕ z then y = z,
(GE4) if x ⊕ y = 0 then x = y = 0,
(GE5) x ⊕ 0 = x for all x ∈ E.

(2) A binary relation ≤ (being a partial order) on E
can be defined by

x ≤ y iff for some z ∈ E , x ⊕ z = y .

(3) Q ⊆ E is called a sub-generalized effect algebra
(sub-effect algebra) of the generalized effect alge-
bra E (effect algebra E) iff it has the following
property. If at least two of elements x, y, z ∈ E
with x⊕ y = z are in Q then all x, y, z are in Q.

Note that a sub-generalized effect algebra (sub-effect
algebra) Q ⊂ E is a (generalized) effect algebra in its
own right.

3 Generalized effect algebras
of positive operators on a
Hilbert space and their
sub-generalized effect
algebras

In [9] the following theorem on positive linear opera-
tors with common domain was proved:
Theorem 3.1 [9, Theorem 3.1] Let H be a complex
Hilbert space and let D ⊆ H be a linear subspace
dense in H (i.e., D̄ = H). Let

GD(H) = {A : D → H | A is a positive

linear operator defined on D}.

Then (GD(H);⊕, 0) is a generalized effect algebra
where 0 is the null operator and ⊕ is the usual sum
of operators defined on D. In this case ⊕ is a total
operation.

If D = H in Theorem 3.1 then GD(H) is a gen-
eralized effect algebra of all bounded positive linear
operators acting in H with usual addition as effect
algebraic operation ⊕. Hence in the case D = H all
operators in GD(H) are self-adjoint.

On the other hand, if D �= H then every bounded
operator in GD(H) is a restriction A|D of a bounded
operator A with D(A) = H. Thus, in this case,
A = A∗ = (A|D)∗ �= A|D. It follows that every
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self-adjoint operator in GD(H) for D �= H is nec-
essarily unbounded. Nevertheless, it is well known
(see, e.g. [10]) that every densely defined positive
operator A has a positive self-adjoint extension Â
called Friedrichs’ extension. Moreover, Â extends
all symmetric extension A′ of A. Thus if A′ is self-
adjoint then A′ = Â. But in general D(A) �= D(Â),
hence Â /∈ GD(H). Clearly, for domains D1 �= D2,
GD1 (H)∩GD2 (H) = ∅. However it is well-known that
bounded linear operators have unique extensions to
the whole space H. Theorem 3.1 remains true if we
substitute GD(H) by

G̃D(H) = {A : D(A) → H | A is positive

linear operator with

D(A) = D if A is unbounded,

D(A) = H if it is bounded}.

Then for D1 �= D2 we obtain G̃D1 (H) ∩ G̃D2(H) =
B+(H) where B+(H) is the set of all bounded posi-
tive linear operators A with D(A) = H.

Theorem 3.2 [9, Theorem 3.5] Let H be an
infinite-dimensional complex Hilbert space. Let

V(H) = {A : D(A) → H | A ≥ 0 with

D(A) = H and

D(A) = H if A is bounded}.

Let ⊕ be a partial binary operation on V(H) defined
by A⊕B = A+B with D(A⊕B) = H for any bounded
A, B ∈ V(H) and A ⊕ B = B ⊕ A = A + B|D(A)
with D(A ⊕ B) = D(A) if A is unbounded and B is
bounded.

Then (V(H);⊕, 0) is a generalized effect algebra.
Moreover, B+(H) is a sub-generalized effect algebra
of V(H) with respect to inherited ⊕-operation, which
is defined for every pair A, B ∈ B+(H).

Now we are going to show that

Sp(H) = {A ∈ V(H) | A = A∗}

is a sub-generalized effect algebra of V(H), hence it is
a generalized effect algebra. Moreover, we show that

Sp(H) = F(H) = {Â | A ∈ V(H) , Â

is a Friedrichs positive

self-adjoint extension of A} .

Lemma 3.3 Under the assumptions of Theorem 3.2,
for every A ∈ V(H):
(i) A and A∗ exist, Â is closed and A ⊂ A ⊂ Â =

(Â)∗ ⊂ (A)∗ = A∗,
(ii) Â = A iff A is essentially self-adjoint,
(iii) Sp(H) = F(H).

Proof. (i) Let A ∈ V(H). Since D(A) = H,
the adjoint A∗ of A exists [3, p. 93]. Further the

assumption that A ≥ 0 implies that A is symmet-
ric (see [3, p. 142]) and there exists the so-called
Friedrichs positive self-adjoint extension Â of A (see,
e.g. [3] or [10]), hence A ⊂ Â = (Â)∗ ⊂ A∗. It follows

that H = D(A) = D(Â) = D(A∗), which gives that
A∗ and (Â)∗ are closed (see [3, p. 95]). As Â = (Â)∗,
we obtain that Â is closed. Moreover, since A is sym-
metric, its closure A is also symmetric (see [3, p. 96]).
Thus we obtain A ⊂ A ⊂ Â = (Â)∗ ⊂ (A)∗ ⊂ A∗.
Further A∗∗ = A and (A)∗ = A∗ (see [3, p. 96]).

(ii) If A is essentially self-adjoint then (A)∗ = A
implies Â = A. Conversely, if A = Â then A = Â =
(Â)∗ = (A)∗.

(iii) If A ∈ Sp(H) then A = A∗, hence, by (i),
A = Â ∈ V(H). Conversely, if A ∈ V(H) then A is
self-adjoint, hence A ∈ Sp(H).

Theorem 3.4 Under the assumption of Theorem
3.2 let Sp(H) = {A ∈ V(H) | A = A∗} and let
⊕S = ⊕/Sp(H) be the restriction of ⊕-operation de-
fined on V(H) to the set Sp(H). Then (Sp(H);⊕S, 0)
is a sub-generalized effect algebra of (V(H);⊕, 0).

Proof. We have to show that if A, B, C ∈ V(H)
with A ⊕ B = C and out of A, B, C at least two are
in Sp(H) then A, B, C ∈ Sp(H).

(i) Assume first that A, B ∈ Sp(H). If A, B are
bounded then C = A ⊕ B is again bounded and
D(A) = D(B) = D(C) = H, hence C ∈ Sp(H).
Further, if A is unbounded and B is bounded then
C = A + B|D(A) and D(C) = D(A). Moreover,
A, B ∈ Sp(H) implies that A = A∗, hence D(A) =
D(A∗) and B = B∗ ⊂ (B|D(A))∗, which gives B =
(B|D(A))∗ on H. It follows, as B|D(A) is bounded,
that (A⊕B)∗ = (A+B|D(A))∗ = A∗+(B|D(A))∗ =
A∗ + B = A∗ + B|D(A∗) = A + B|D(A) = A ⊕ B.
Again C ∈ Sp(H).

(ii) Assume now that A, C ∈ Sp(H). Then if
C is bounded then D(C) = H and then A, B are
bounded, hence A, B ∈ Sp(H). If C and A are un-
bounded then B is bounded (since otherwise A ⊕ B
is not defined) and again B ∈ Sp(H). Finally, if C is
unbounded and A is bounded then B is unbounded
and C = A|D(B)+B. It follows that D(C) = D(B).
Moreover, C∗ = (A|D(B))∗ + B∗ = A + B∗, hence
D(C∗) = D(B∗). Now, the assumption that C
is self-adjoint implies D(C) = D(C∗) which gives
D(B∗) = D(B), hence B ∈ Sp(H).

In Theorem 3.4 we may substitute Sp(H) by
F(H). Hence F(H) is a generalized effect algebra,
more precisely:

Corollary 3.5 Let H be an infinite-dimensional
complex Hilbert space. Let F(H) be the set of
all Friedrichs positive self-adjoint extensions of all
positive densely defined linear operators in H with
D(A) = H if A is bounded. Let ⊕ be a partial
binary operation defined for A, B ∈ F(H) iff out
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of operators A, B at least one is bounded and then
A ⊕ B = A + B is the usual sum of operators in H.
Then (F(H);⊕, 0) is a generalized effect algebra.

Assume that (E;⊕, 0) is a generalized effect alge-
bra. Then (see, e.g., [11]) for any fixed q ∈ E, q �= 0
the interval

[0, q]E = {x ∈ E | there exists y ∈ E with x⊕y = q}

is an effect algebra ([0, q]E ;⊕q, 0, q) with unit q and
with the partial operation ⊕q defined for x, y ∈ [0, q]E
by

x ⊕q y exists and x ⊕q y = x ⊕ y

iff x ⊕ y ∈ [0, q]E exists in E .

We have shown that V(H) and Sp(H) are generalized
effect algebras under the partial operations ⊕ and
⊕S , respectively. Moreover, A⊕B (for A, B ∈ V(H))
and A ⊕S B (for A, B ∈ Sp(H)) coincide with the
usual sum of operators A, B when at least one of
them is bounded. If both A, B are unbounded then
A⊕B, A⊕SB, respectively, are not defined. Since for
any fixed Q ∈ Sp(H), Q �= 0, it holds [0, Q]Sp(H) =
[0, Q]V(H) ∩ Sp(H), we obtain the following effect al-
gebras of positive self-adjoint operators:

Theorem 3.6 Let Q ∈ Sp(H), Q �= 0 be fixed. Then
([0, Q]Sp(H);⊕Q, 0, Q) is an effect algebra (with unit
Q) of positive self-adjoint operators densely defined
in H under the ⊕Q defined for A, B ∈ [0, Q]Sp(H) by:
A ⊕Q B exists and A ⊕Q B = A + B (the usual sum
of A, B in H) iff at least one out of operators A, B
is bounded and A + B ∈ [0, Q]V(H).

Note that if we substitute Sp(H) in the preceding the-
orem by V(H) then for every fixed Q ∈ V(H) we have
[0, Q]V(H) = {A ∈ V(H) | there exists C ∈ V(H)
such that out of A, C at least one is bounded and
A + C = Q}. Then ([0, Q]V(H);⊕Q, 0, Q) is an effect
algebra with unit Q and a partial binary operation
⊕Q defined in Theorem 3.6.

Remark 3.7 (i) If Q ∈ Sp(H) is a bounded opera-
tor then [0, Q]Sp(H) = [0, Q]V(H) and it is an effect
algebra of all bounded self-adjoint positive operators
between 0 and Q (with domain H). Moreover, ⊕Q

coincides with the usual sum of operators if A ⊕Q B
exists in [0, Q]Sp(H).

(ii) It follows from (i) that if Q = I (the iden-
tity operator with domain H) then [0, Q]Sp(H) =
[0, Q]V(H) = E(H) is the Hilbert space effect alge-
bra of all self-adjoint operators between 0 and the
identity operator I (see [5]).

(iii) If Q ∈ Sp(H) is an unbounded operator with
D(Q) = H then every unbounded operator A ∈
[0, Q]Sp(H) has D(A) = D(Q), since then there exists
a bounded operator C ∈ Sp(H) (hence D(C) = H)
such that A + C = Q.

(iv) If Q ∈ Sp(H) is an unbounded self-adjoint
operator then (2Q)∗ = 2Q∗ = 2Q ∈ Sp(H). In this
case for any operators A, B ∈ [0, Q]Sp(H) one has
A + B ∈ Sp(H) (the usual sum of operators), even if
A, B are unbounded. The last follows from the fact
that there are bounded operators CA, CB ∈ Sp(H)
such that Q = A ⊕CA = B ⊕ CB. Thus (A ⊕ CA) +
(B ⊕ CB) = 2Q, hence (A + B) + (CA + CB) = 2Q.
Here CA+CB ∈ Sp(H) and because Sp(H) is a gener-
alized effect algebra and also 2Q ∈ Sp(H) we obtain
that A + B ∈ Sp(H).

(v) It is worth noting that effect algebras are very
natural structures as carriers of states (or probability
measures) when we handle also noncompatible pairs
or unsharp elements.
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E-mail: zdenka.riecanova@stuba.sk
Department of Mathematics
Faculty of Electrical Engineering
and Information Technology STU
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