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Erlangen Programme at Large 3.2 Ladder Operators in
Hypercomplex Mechanics

V. V. Kisil

Abstract

We revise the construction of creation/annihilation operators in quantum mechanics based on the representation theory
of the Heisenberg and symplectic groups. Besides the standard harmonic oscillator (the elliptic case) we similarly
treat the repulsive oscillator (hyperbolic case) and the free particle (the parabolic case). The respective hypercomplex
numbers turn out to be handy on this occasion. This provides a further illustration to the Similarity and Correspondence
Principle.
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Fock-Segal-Bargmann representation, Schrédinger representation, dynamics equation, harmonic and unharmonic oscil-

lator, contextual probability, symplectic group, metaplectic representation, Shale-Weil representation.

1 Introduction

Harmonic oscillators are treated in most textbooks on
quantum mechanics. This is efficiently done through
creation/annihilation (ladder) operators [9,3]. The
underlying structure is the representation theory of
the Heisenberg and symplectic groups [28, § VI.2],
[34, § 8.2], [12,8]. It is also known that quantum
mechanics and field theory can benefit from the in-
troduction of Clifford algebra-valued group represen-
tations [20,5,4,10].

The dynamics of a harmonic oscillator generates
the symplectic transformation of the phase space of
the elliptic type. The respective parabolic and hyper-
bolic counterparts are also of interest [37, § 3.8], [35].
As we will see, they are naturally connected with the
respective hypercomplex numbers.

To make this correspondence explicit we recall
that the symplectic group Sp(2) [8, § 1.2] consists of
2 x 2 matrices with real entries and the unit determi-
nant. It is isomorphic to the group SLa(R) [28,13,30]
and provides linear symplectomorphisms of the two-
dimensional phase space. It has three types of non-
isomorphic one-dimensional subgroups represented
by:
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We will refer to them as elliptic, parabolic and hy-
perbolic subgroups, respectively.

On the other hand, there are three non-
isomorphic types of commutative, associative two-
dimensional algebras known as complex, dual and
double numbers [38, App. C], [29, § 5]. They are
represented by expressions x + vy, where ¢ stands for
one of the hypercomplex units i, € or j with the prop-
erties:

These units can also be labelled as elliptic, parabolic
and hyperbolic.

In an earlier paper [25], we considered represen-
tations of the Heisenberg group which are induced
by hypercomplex characters of its centre. The ellip-
tic case (complex numbers) describes the traditional
framework of quantum mechanics, of course.

Double-valued representations, with the imagi-
nary unit j> = 1, are a natural source of hyperbolic
quantum mechanics developed for a while [14,15,17,
16,18]. The representation acts on a Krein space
with an indefinite inner product [2]. This aroused
significant recent interest in connection with P7-
symmetric quantum mechanics [10]. However, our
approach is different from the classical treatment of
Krein spaces: we use the hyperbolic unit j and build
the hyperbolic analytic function theory on its own
basis [21,27]. In the traditional approach, the indef-
inite metric is mapped to a definite inner product
through auxiliary operators.
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The representation with values in dual numbers
provides a convenient description of the classical me-
chanics. To this end we do not take any sort of semi-
classical limit, rather the nilpotency of the imaginary
unit (¢2 = 0) performs the task. This removes the vi-
cious necessity to consider the Planck constant tend-
ing to zero. Mixing this with complex numbers we
get a convenient tool for modelling the interaction
between quantum and classical systems [22,24].

Our construction [25] provides three different
types of dynamics and also generates the respec-
tive rules for addition of probabilities. In this pa-
per we analyse the three types of dynamics produced
by transformations (1-3) from the symplectic group
Sp(2) by means of ladder operators. As a result we
obtain further illustrations to the following:

Principle (Similarity and Correspondence)
[23, Principle 29]

1. Subgroups K, N and A play a similar role in the
structure of the group Sp(2) and its representa-
tions.

2. The subgroups shall be swapped simultaneously
with the respective replacement of hypercomplex
unit L.

Here the two parts are interrelated: without a swap
of imaginary units there can be no similarity between
different subgroups.

In this paper we work with the simplest case of a
particle with only one degree of freedom. Higher di-
mensions and the respective group of symplectomor-
phisms Sp(2n) may require consideration of Clifford
algebras [32].

2 Heisenberg group and its
automorphisms
Let (s, z,y), where s, z, y € R, be an element of the
one-dimensional Heisenberg group H' [8,12]. Con-
sideration of the general case of H" will be similar,
but is beyond the scope of present paper. The group
law on H' is given as follows:
(87 z, y) . (8/7 xla y/) =

1 4
<S+S’ + §w(:ﬂ,y;x’,y’),x+w’,y+y’> , @)

where the non-commutativity is due to w — the sym-
plectic form on R*" [1, § 37):
w(z,y; ' y') = zy’ —a'y. (5)

The Heisenberg group is a non-commutative Lie
group. The left shifts

Ag): flg")— flg™'9) (6)

act as a representation of H' on a certain linear space
of functions. For example, an action on Lo(H, dg)
with respect to the Haar measure dg = dsdxdy is
the left reqular representation, which is unitary.

The Lie algebra h™ of H' is spanned by left-
(right-)invariant vector fields

SZ(T) = :I:asa
1

XU = 49, — §y38, (7)

1
Yl(r) = :I:3y + 53789

on H' with the Heisenberg commutator relation
(XU yln] = gir) (8)

and all other commutators vanishing. We will some-
time omit the superscript [ for left-invariant field.

The group of outer automorphisms of H*, which
trivially acts on the centre of H', is the symplec-
tic group Sp(2) defined in the previous section. It
is the group of symmetries of the symplectic form
w [8, Thm. 1.22], [11, p. 830]. The symplectic group
is isomorphic to SL2(R) [28], [34, Ch. 8]. The explicit
action of Sp(2) on the Heisenberg group is:

g:h= (S’J;ay) = g(h’) = (valvyl)v (9)

g:(j Z)eSp@),
-

The Shale-Weil theorem [8, § 4.2], [11, p. 830] states
that any representation p; of the Heisenberg groups
generates a unitary oscillator (or metaplectic) rep-
resentation p3" of é?)(?), the two-fold cover of the
symplectic group [8, Thm. 4.58].

We_can consider the semidirect product G =
H* % Sp(2) with the standard group law:

(hyg)x(W,g") = (hxg(h),g%g"),

where

and

where -
hh eH', g,9' € Sp(2),

and the stars denote the respective group opera-
tions while the action g(h’) is defined as the com-
position of the projection map §f>(2) — Sp(2) and
the action (9). This group is sometimes called the
Schrodinger group, and it is known as the maxi-
mal kinematical invariance group of both the free
Schrodinger equation and the quantum harmonic os-
cillator [31]. This group is of interest not only in
quantum mechanics but also in optics [36, 35].
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Consider the Lie algebra sp, of the group Sp(2).
Pick up the following basis in sp, [34, § 8.1]:
-1 0

=101 (1)
Z:(_Ol;).

The commutation relations between the elements are:

01
1 0

[Z,A] = 2B, [7,B]=—24, [A,B] :—%Z. (10)

Vectors Z, B 4+ Z/2 and —A are generators of the
one-parameter subgroups K, N and A (1-3) respec-
tively.

Furthermore, we can consider the basis
{S,X,Y, A, B, Z} of the Lie algebra g of the Lie group
G=Hx %(2) All non-zero commutators besides
those already listed in (8) and (10) are:

(4, X] = %X, (11)
1

[AY]=-3Y, [BY]= —%X, [Z,Y] = —X. (12)

1
B.X]=-3Y. [2.X]=Y;

The Shale-Weil theorem allows us to expand any rep-
resentation py of the Heisenberg group to the repre-
sentation pp = pn @ p3 " of group G.

Example 1 Let pp be the Schridinger representa-
tion [8, § 1.8] of H in Eo(R), that is [25, (8.5)]:

[pX (87 Z, y)f ] (q) = eQWih(s_my/Q)-’rQﬂ'izq .
f(q —hy).

Thus the action of the derived representation on the
Lie algebra by is:

(13)

d

pr(X) = 2mig, pr(Y) = —hd—q,

pr(S) = 2mihl. (14)

Then the associated Shale-Weil representation of
Sp(2) in La(R) has the derived action, cf. [35, (2.2)],

A

Ap

(8, § 4.3]:
d 1

SWigy — 49 2
Ph ( ) 2dq 4a

M d?  wig?
SWpy = -~~~ _ 2% 1
B = qm e 1)

M d?  wig?

Sw _ma 7g

We can verify commutators (8) and (10-12) for op-
erators (14—15). It is also obvious that in this repre-
sentation the following algebraic relations hold:

i

PV(A) = o (n(X)n(Y) — 5n(S)) = (16)
7 (O (Y) + pr(¥)pn (X))

A(B) = oo (on(X) — pn(¥)?), a7)

AV(2) = L (X + n(Y)?). (18)

Thus it is common in quantum optics to name g as a
Lie algebra with quadratic generators, see [9, § 2.2.4].

Note that pP"V(Z) is the Hamiltonian of the har-
monic oscillator (up to a factor). Then we can con-
sider p$V(B) as the Hamiltonian of a repulsive (hy-
perbolic) oscillator. The operator pf%V (B — Z/2) =
hi d?
47 dg?
sentation of all three transformations is given in Fi-
gure 1, and a further discussion of these Hamiltoni-
ans can be found in [37, § 3.8]. An important obser-
vation, which is often missed, is that the three lin-
ear symplectic transformations are unitary rotations
in the corresponding hypercomplex algebra. This
means that the symplectomorphisms generated by
operators Z, B — Z/2, B within time ¢ coincide with
the multiplication of hypercomplex number ¢ + ¢p by
e'* [23, § 3], which is just another illustration of the
Similarity and Correspondence Principle.

is the parabolic analog. A graphical repre-
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N
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Fig. 1: Three types (elliptic, parabolic and hyperbolic) of linear symplectic transformations on the plane
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Example 2 There are many advantages of consid-
ering representations of the Heisenberg group on the
phase space [12, § 1.7], [8, § 1.6], [6]. A convenient
expression for Fock-Segal-Bargmann (FSB) represen-
tation on the phase space is [25, (3.2)]:

lor (s, 2. y)f](q,p) = e 2mtstartr). (19)

f _E _|_E
q 23/717 2$-

Then the derived representation of b is:

.k
pr(X) = —27ig+ 58,,,
. h
pr(Y) = —2r7ip — 5&1, (20)

pF(S) = —2rihl.

This produces the derived form of the Shale- Weil rep-
resentation:

1
PE(A) = 3 (405 = pdy),

1
p%W(B) = D) (paq + qap) s (21)

p%W(Z) = pdy — q0p.

Note that this representation does not contain the pa-
rameter T, unlike the equivalent representation (15).
Thus the FSB model explicitly shows the equivalence
of p;si\lN and p%ﬁv if hiha > 0 [8, Thm. 4.57].

As we will also see below, the FSB-type represen-
tations in hypercomplex numbers produce almost the
same Shale- Weil representations.

3 Ladder operators in
quantum mechanics

Let p be a representation of the group G =
H' % Sp(2) in a space V. Consider the derived rep-
resentation of the Lie algebra g [28, § VI.1] and de-
note X = p(X) for X € g. To see the structure of
the representation p we can decompose the space V'
into eigenspaces of the operator X for some X € g.
The canonical example is the Taylor series in complex
analysis.

We are going to consider three cases correspond-
ing to three non-isomorphic subgroups (1-3) of Sp(2)
starting from the compact case. Let H = Z be
a generator of the compact subgroup K. Cor-
responding symplectomorphisms (9) of the phase
space are given by orthogonal rotations with matri-

cost sint .
ces . . The Shale-Weil representa-
—sint cost
tion (15) coincides with the Hamiltonian of the har-
monic oscillator.
Since this is a double cover of a compact group,

the corresponding eigenspaces Zv, = ikv, are

parametrised by a half-integer k € Z/2. Explicitly
for a half-integer k:

™

vk<q>=Hk+%< ;q> L (22)

where Hj is the Hermite polynomial [8, § 1.7],
[7, 8.2(9)].

From the point of view of quantum mechanics and
representation theory (which may be the same), it
is beneficial to introduce the ladder operators L*,
known as creation/annihilation in quantum mechan-
ics [8, p. 49] or raising/lowering in representation the-
ory [28, § VI.2], [34, § 8.2], [3]. They are defined by
the following commutation relations:

(Z,L%] = AL L*. (23)

In other words, L™ are eigenvectors for operators
ad Z of the adjoint representation of g [28, § VI.2].
Remark 1 The existence of such ladder operators
follows from the general properties of Lie algebras
if the Hamiltonian belongs to a Cartan subalgebra.
This is the case for vectors Z and B, which are the
only two non-isomorphic types of Cartan subalgebras
in sly. However, the third case considered in this pa-
per, the parabolic vector B+ Z/2, does not belong to
a Cartan subalgebra, yet a sort of ladder operators
is still possible with dual number coefficients. More-
over, for the hyperbolic vector B, besides the stan-
dard ladder operators an additional pair with double
number coefficients will also be described.

From the commutators (23) we deduce that if vy
is an eigenvector of Z then LT is an eigenvector as
well:

Z(Ltwy) = (LY Z 4+ M L)y, =
LT (Zv) + A\ Lty =
ikLtv, + Ay Lto, =
(ik + Ay ) LTy (24)

Thus the action of ladder operators on the respective
eigenspaces Vj, can be visualised by the diagram:

L L L L
Vik-a Vi Vik+a ... (25)
- L L- 1~

There are two ways to search for ladder operators:
in (complexified) Lie algebras h; and sp,. We will
consider them in sequence.

3.1 Ladder operators from the
Heisenberg group

Assuming LT = aX + bY we obtain from the re-
lations (11-12) and (23) the linear equations with
unknown a and b:
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a = >\+b, —b= )\+a.

The equations have a solution if and only if )\i +1=
0, and the raising/lowering operators are L* = X T
iy.

Remark 2 Here we have an interesting asymmet-
ric response: due to the structure of the semidirect
product H' > Sp(2) it is the symplectic group which
acts on H', not vise versa. However, the Heisenberg
group has a weak action in the opposite direction: it
shifts eigenfunctions of Sp(2).

In the Schrédinger representation (14) the ladder
operators are

d
pn(LF) = 27iq & ihd—q. (26)

The standard treatment of the harmonic oscillator
in quantum mechanics, which can be found in many
textbooks, e.g. [8, § 1.7], [9, § 2.2.3], is as follows.

The vector v_1/2(q) = e~ /" is an eigenvector of Z

i
with the eigenvalue ——.

nihilated by L*. Thus the chain (25) terminates
to the right and the complete set of eigenvectors of
the harmonic oscillator Hamiltonian is presented by
(L) v_y /o with k£ =0,1,2,...

We can make a wavelet transform generated by
the Heisenberg group with the mother wavelet v_ 3,
and the image will be the Fock-Segal-Bargmann
(FSB) space [12], [8, § 1.6]. Since v_;/; is the null
solution of Lt = X — iV, then by the general re-
sult [26, Cor. 24] the image of the wavelet transform
will be null-solutions of the corresponding linear com-
bination of the Lie derivatives (7):

In addition v_;/; is an-

D=X"—iY" = (8, +10,) — h(x —iy), (27

which turns out to be the Cauchy-Riemann equation
on a weighted FSB-type space.

3.2 Symplectic ladder operators

We can also look for ladder operators within the
Lie algebra sp,, see [23, § 8]. Assuming L =
aA + bB + ¢Z from the relations (10) and defining
condition (23) we obtain the linear equations with
unknown a, b and c:

c=0, 2a = A4 b, —2b= Ata.

The equations have a solution if and only if )\i +

4 = 0, and the raising/lowering operators are L;t =
+iA + B. In the Shale-Weil representation (15) they
turn out to be:

d 1\ hi & 7ig?
LF = ii(%d—q+z>————ﬂz

48

i d\?
—— (2 = . 2
s <:F 7Tq+hdq> (28)

Since this time A\ = 2i the ladder operators Léﬁ pro-
duce a shift on the diagram (25) twice bigger than
the operators L* from the Heisenberg group. After
all, this is not surprising since from the explicit rep-
resentations (26) and (28) we get:

LE— (e

4 Ladder operators for the
hyperbolic subgroup

Consider the case of the Hamiltonian H = 2B,
which is a repulsive (hyperbolic) harmonic oscilla-
tor [37, § 3.8]. The corresponding one-dimensional
subgroup of symplectomorphisms produces hyper-
bolic rotations of the phase space. The eigenvectors
vy, of the operator

(R d? wq? .
P%W@B)Uu =1 (Ed_QQ + T) Uy = Wy,

are Weber-Hermite (or parabolic cylinder) functions

v =D, 1 (ﬁ:?ei% \/gq) see [7, § 8.2], [33] for fun-

damentals of Weber-Hermite functions and [35] for
further illustrations and applications in optics.

The corresponding one-parameter group is not
compact and the eigenvalues of the operator 2B are
not restricted by any integrality condition, but the
raising/lowering operators are still important [13,
§ IL.1], [30, § 1.1]. We again seek solutions in two
subalgebras h; and sp, separately. However, the ad-
ditional options will be provided by a choice of the
number system: either complex or double.

4.1 Complex ladder operators

Assuming L; = aX + bY from the commuta-
tors (11-12), we obtain the linear equations:

—a= )\+b, b= A_A,_Cl. (29)
The equations have a solution if and only if A3 —1 =
0. Taking the real roots A = +1 we obtain that the
raising /lowering operators are Lf =X TY. In the

Schrodinger representation (14) the ladder operators
are

. d
L =2rig + hd—q. (30)

The null solutions vi%(q) = R o operators

pn(L¥) are also eigenvectors of the Hamiltonian
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1
PV (2B) with the eigenvalue +—. However the im-

portant distinction from the elliptic case is that they
are not square-integrable on the real line anymore.

We can also look for ladder operators within the
sp,, that is in the form L, = aA + bB + ¢Z for
the commutator [2B, L] = AL;. We will get the
system:

4c = )a, b=0, a = Ac.

A solution again exists if and only if A\ = 4.
Within complex numbers we get only the values
A = £2 with the ladder operators inh = +244 7/2,
see [13, § I1.1], [30, § 1.1]. Each indecomposable b;-
or spy,-module is formed by a one-dimensional chain
of eigenvalues with a transitive action of ladder op-
erators Lf or Léth respectively. And we again have a
quadratic relation between the ladder operators:

i
Ly, = m(Lf)z-

4.2 Double ladder operators

There are extra possibilities in the context of hyper-
bolic quantum mechanics [17,16,18]. Here we use the
representation of H' induced by a hyperbolic charac-
ter &3 = cosh(ht) + jsinh(ht), see [25, (4.5)], and
obtain the hyperbolic representation of H*, cf. (13):

(s 2 ) flla) = MR

Fla—hy). (31)
The corresponding derived representation is
P(X) = g,
; d
Y) = —-h— 2
pY) = <hg (32)
pp(S) = jhl.

Then the associated Shale-Weil derived representa-
tion of sp, in the Schwartz space S(R) is, cf. (15):

SW _gd 1

swiy _ Jhd®jg?

pp (B) = TaE  ah (33)
swpy _ _dhd®je®

Note that p$V(B) now generates a usual harmonic
oscillator, not the repulsive one like p3 " (B) in (15).
However, the expressions in the quadratic algebra are
still the same (up to a factor), cf. (16-18):

P (A) = (O - 3N = (39)

LG 0R0) + A,
LG - A, (39

—5 LX)+ (1)). (36)

Ph" (B) =

PR (Z)

This is due to the Principle of similarity and corre-
spondence: we can swap operators Z and B with
simultaneous replacement of hypercomplex units i
and j.

The eigenspace of the operator 2p3% (B) with
an eigenvalue jv are spanned by the Weber-Hermite

—v—3

2
functions D_,,_1 (:ﬁ:\/;x , see [7, § 8.2]. Functions

D, are generalisations of the Hermit functions (22).

The compatibility condition for a ladder operator
within the Lie algebra b, will be (29) as before, since
it depends only on the commutators (11-12). Thus
we still have the set of ladder operators correspond-
ing to values A = +1:

L - d
LFf=XTFY =jg+th—.
h dq

Admitting double numbers, we have an extra way to
satisfy A = 1in (29) with values A\ = +j. Then there
is an additional pair of hyperbolic ladder operators,
which are identical (up to factors) to (26):

L :X;jf/:jqijhi
dg

Pairs Lf and Lji shift eigenvectors in the “orthogo-

nal” directions changing their eigenvalues by +1 and

#+j. Therefore an indecomposable sp,-module can be

parametrised by a two-dimensional lattice of eigen-

values in double numbers, see Table 1.

The following functions

2 2
eFid®/(2h) _ osh ;]_h F jsinh a

vi"(e) = o

v:%tj (q) = eFa'/(@h)

are null solutions to the operators Lff and Lji, re-

spectively. They are also eigenvectors of 2p2W(B)
j 1

with eigenvalues :F% and :F§’ respectively. If these

functions are used as mother wavelets for the wavelet
transforms generated by the Heisenberg group, then
the image space will consist of the null-solutions of
the following differential operators, see [26, Cor. 24]:

Dy = X" —Y7 = (0, — 0,) +

Dy = XT—JV7 = (9, +0,)
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Table 1: The action of hyperbolic ladder operators on a 2D lattice of eigenspaces. Operators Lf move the eigenvalues

by 1, making shifts in the horizontal direction. Operators Lji

for 11

change the eigenvalues by j, shown as vertical shifts

- + . + = +

L.i L.i L.i L.i LJ. LJ.
[ L Ly Ly
- v(n. 1) +jlk—1) =—— anj(k 1) =—— V{Tlll]lj(k 1) =—
L]\ L]l Lh Lh

+ + +

L; L; L; L; L; L;

L Li Ly L
-— V(n 1)+jk =——— vnuk -— v[lHl]Hk -—
LI\ h h Lh

+

Ly Ly L |5
L L L, ey
= Vin-1+jk-1) == Vntjik-1) == Vin+)+jk+1) =
Ly Ly Ly h

L3 + +

Lol g Lol Gl g

+h and ’Ul , respectively. This is again in line

with the Classmal result (27). However annihilation
of the eigenvector by a ladder operator does not mean
that the part of the 2D-lattice becomes void, since it

can be reached via alternative routes.

Instead of mul-

tiplication by a zero, as happens in the elliptic case,
a half-plane of eigenvalues will be multiplied by the
divisors of zero 1 £ j.

We can also search ladder operators within the

algebra sp, and admitting double numbers we will
again find two sets of them [23, § 3]

Lf = +A+2Z/2=
a4 l_J_hd_z_Jiz:_J_(Liy
2dg "4  4d¢® 4k 4p "m0

Ly = £jA+ Z/2=
;Jq d i_j_hd_z_jqz :_L(Liy
2 dg 4 dg?  4h 4h

Again these operators L,

and L3, produce double

shifts in the orthogonal directions on the same two-
dimensional lattice in Tabular 1.

5

Ladder operator for the
nilpotent subgroup

Finally, we look for ladder operators for the Hamil-

tonian B + Z /2 or, equivalently,

—B+Z/2. Tt can

be identified with a free particle [37, § 3.8].

We can look for ladder operators in the represen-

tation (14-15) within the Lie algebra h; in the form
Li = aX + bY. This is possible if and only if

The compatibility condition A2

—b=2Xa, 0= (37)

= 0 implies A = 0

within complex numbers. However, such a “ladder”

50

operator produces only the zero shift on the eigen-
vectors, cf. (24).

Another possibility appears if we consider the rep-
resentation of the Heisenberg group induced by dual-
valued characters. On the configurational space such
a representation is [25, (4.11)]:

(05 (5,2, 9) ] (q) = €™+ ((1 —ch (S - %wy» '

@)+ ﬂf’(q)) | (38)

The corresponding derived representation of b, is

pr(X) = 2mig,
p _¢ehd
ph(S) = —ehl.

However the Shale-Weil extension generated by this
representation is inconvenient. It is better to consider
the FSB-type parabolic representation [25, (4.9)] on
the phase space induced by the same dual-valued
character, cf. (19):

—27i(zq+yp) | (40)

p)))-

[pi(svxvy)f](%p) =€
Y o T
(F(a,p) +eh(sf(g:p) + = Fola:p) = 1= 1 (a;

Then the derived representation of b is:

) eh
pr(X) = —2mig — Rapa

) eh
Ph(Y) = —2mip+ Rﬁq, (41)
ph(S) = ehl.



ActA POLYTECHNICA VoL. 51 No. 4/2011

An advantage of the FSB representation is that the
derived form of the parabolic Shale-Weil representa-
tion coincides with the elliptic one (21).
Eigenfunctions with the eigenvalue p of the
parabolic Hamiltonian B 4 Z/2 = q0p have the form

vu(q,p) = e/ £(q), (42)

with an arbitrary function f(q).

The linear equations defining the corresponding
ladder operator Lf = aX + bY in the algebra b,
are (37). The compatibility condition A% = 0 implies
A = 0 within complex numbers again. Admitting
dual numbers, we have additional values A = +eA;
with Ay € C with the corresponding ladder operators

_ _ h
L = X FenY = —27ig — %ap + 2meNip =
1

h
—2miq + €i (:t27r>\1p + —8p> .
4m
For the eigenvalue u = po + cp1 with po, p1 € C the
eigenfunction (42) can be rewritten as:

vu(g,p) = €/ f(q) = eroP/d (1 + €/~L1§> flg) (43)

due to the nilpotency of €. Then the ladder action of
LE is po 4 epq — pio + (1 £ A1) Therefore, these
operators are suitable for building sp,-modules with
a one-dimensional chain of eigenvalues.

Finally, consider the ladder operator for the same
element B+ Z/2 within the Lie algebra sp,. Accord-
ing to the above procedure we get the equations:

“b+2e=Xa,  a=X, =)
which can again be resolved if and only if A = 0.
There is the only complex root A = 0 with the corre-
sponding operators L;,t = B+Z /2, which does not af-
fect the eigenvalues. However the dual number roots
A = teAy with Ay € C lead to the operators

Ao

LE=+eMA+B+7Z/2=4+ :

(q0q — pOp) + qOp.

6 Conclusions: similarity and
correspondence

We wish to summarise our findings. Firstly, the ap-
pearance of hypercomplex numbers in ladder opera-
tors for h; follows exactly the same pattern as was
already noted for sp, [23, Rem. 32]:

e the introduction of complex numbers is a neces-
sity for the existence of ladder operators in the
elliptic case;

e in the parabolic case, we need dual numbers to
make ladder operators useful;

e in the hyperbolic case, double numbers are not
required neither for the existence or for the us-
ability of ladder operators, but they do provide
an enhancement.

In the spirit of the Similarity and Correspondence
Principle we have the following extension of Prop. 33
from [23]:

Proposition Let a vector H € spy generate the
subgroup K, N" or A, that is H = Z, B+ Z/2, or
2B, respectively. Let v be the respective hypercom-
plex unit. Then the ladder operators LT satisfying
the commutation relation:

(H,Lf] = +.L*

are given by:

1. Within the Lie algebra b, : LT =X F.Y.

2. Within the Lie algebra sp,: L;t = +,A+E. Here
E € sp, is a linear combination of B and Z with
the properties:

e F=[A H]|.

e H=[AE].

o Killings form K(H, E) [19, § 6.2] vanishes.
Any of the above properties defines the vector
E € span{B, Z} up to a real constant factor.

It is worth continuing this investigation and describ-
ing in detail hyperbolic and parabolic versions of FSB
spaces.

Acknowledgement

I am grateful to the anonymous referees for their
helpful remarks.

References

[1] Arnol'd, V. L: Mathematical methods of clas-
sical mechanics. Graduate Texts in Mathemat-
ics, vol. 60, New York : Springer-Verlag, 1991.
Translated from the 1974 Russian original by
K. Vogtmann, A. Weinstein, Corrected reprint
of the second (1989) edition.

[2] Azizov, T. Ja., Iohvidov, I. S.: Linear operators
in Hilbert spaces with G-metric, Uspehi Mat.
Nauk 26 (1971), no. 4 (160), 43-92.

[3] Boyer, Ch. P., Miller, W., Jr.: A classification
of second-order raising operators for Hamiltoni-
ans in two variables, J. Mathematical Phys. 15
(1974), 1484-1489.

[4] Cnops, J., Kisil, V. V.: Monogenic functions and
representations of nilpotent Lie groups in quan-
tum mechanics, Math. Methods Appl. Sci. 22
(1999), no. 4, 353-373.

51



ActA POLYTECHNICA VoL. 51 No. 4/2011

[5]

[13]

[14]

[15]

[16]

[17]

[18]

52

Constales, D., Faustino, N., Kraulhar, R.: Fock
spaces, Landau operators and the time-harmo-
nic Maxwell equations, Journal of Physics A:
Mathematical and Theoretical 44 (2011), no. 13,
135303.

de Gosson, Maurice A.: Spectral proper-
ties of a class of generalized Landau opera-
tors, Comm. Partial Differential Equations 33
(2008), no. 10-12, 20962 104.

Erdélyi, A., Magnus, W., Oberhettinger, F., Tri-
comi, F. G.: Higher transcendental functions.
Vol. II. Melbourne : Robert E. Krieger Pub-
lishing Co. Inc., Fla., 1981. Based on notes left
by Harry Bateman, Reprint of the 1953 original.

Folland, G. B.: Harmonic analysis in phase
space. Annals ofMathematics Studies, vol. 122,

Princeton : Princeton University Press, NJ,
1989.
Gazeau, J.-P.: Coherent States in Quantum

Physics. Wiley-VCH Verlag, 2009.

Giinther, U., Kuzhel, S.: P7-symmetry, Car-
tan decompositions, Lie triple systems and
Krein space-related Clifford algebras, Journal
of Physics A: Mathematical and Theoretical 43
(2010), no. 39, 392002.

Howe, R.: Roger Howe, On the role of
the Heisenberg group in harmonic analysis,
Bull. Amer.Math. Soc. (N.S.) 3 (1980), no. 2,
821-843.

Howe, R.: Quantum mechanics and partial dif-
ferential equations, J. Funct. Anal. 38 (1980),
no. 2, 188-254.

Howe, R., Tan, E. Ch.: Non-abelian harmonic
analysis: Applications of SL(2,R). New York :
Universitext, Springer-Verlag, 1992.

Hudson, R.: Generalised translation-invariant
mechanics. D. Phil. thesis, Oxford : Bodleian
Library, 1966.

Hudson, R.: Translation invariant phase space
mechanics, Quantum theory: reconsideration of
foundations — 2, 2004, pp. 301-314.

Khrennikov, A. Yu.: Hyperbolic quantum me-
chanics, Dokl. Akad. Nauk 402 (2005), no. 2,
170-172.

Khrennikov, A.: Hyperbolic Quantum Mechan-
ics, Adv. Appl. Clifford Algebr. 13 (2003), no. 1,
1-9 (English).

Khrennikov, A.: Hyperbolic quantization, Adv.
Appl. Clifford Algebr. 18 (2008), no. 34,
843-852.

[19]

[20]

[24]

[25]

[26]

[27]

[30]

[31]

Kirillov, A. A.: Elements of the theory of rep-
resentations. Berlin : Springer-Verlag, 1976.
Translated from the Russian by Edwin He-
witt, Grundlehren der MathematischenWis-
senschaften, Band 220.

Kisil, V. V.: Clifford valued convolution opera-
tor algebras on the Heisenberg group. A quantum
field theory model. Clifford algebras and their
applications in mathematical physics, proceed-
ings of the Third international conference held
in Deinze, 1993, pp. 287-294.

Kisil, V. V.: Analysis in RY! or the princi-
pal function theory, Complex Variables Theory
Appl. 40 (1999), no. 2, 93-118.

Kisil, V. V.: A quantum-classical bracket from
p-mechanics, Furophys. Lett. 72 (2005), no. 6,
873-879.

Kisil, V. V.. FErlangen program at large —
2 1/2: Induced representations and hypercom-
plex numbers, submitted (2009).

Kisil, V. V.: Computation and dynamics: Clas-
sical and quantum, AIP Conference Proceedings
1232 (2010), no. 1, 306-312.

Kisil, V. V.: Erlangen Programme at Large 3.1:
Hypercomplex representations of the Heisenberg
group and mechanics, submitted (2010).

Kisil, V. V.: Covariant transform, Journal of
Physics: Conference Series, 284 (2011), no. 1,

pp- 9.

Kisil, V. V. Erlangen programme at large: an
Overview, Rogosin, S. V., Koroleva, A. A.
(Eds.): Advances in applied analysis. Imperial
College Press, 2011, p. 1-65.

Lang, S.: SLy(R), Graduate Texts in Mathemat-
ics. vol. 105, New York : Springer-Verlag, 1985.

Lavrent’ev, M. A., Shabat, B. V.: IIpobaemun
2U0POOUHAMUKY U UL MAMEMAMULECKUE MOOe-
au. (Russian) [Problems of hydrodynamics and

their mathematical models|, Moscow : Second,
Izdat. “Nauka”, 1977.

Mazorchuk, V.: Lectures on slas-modules. World
Scientific, 2009.

Niederer, U.: The maximal kinematical invari-
ance group of the free Schrodinger equation,
Helv. Phys. Acta, vol. 45, 1972/1973, no. 5,
p. 802-810.



ActA POLYTECHNICA VoL. 51 No. 4/2011

[32]

[33]

[35]

Porteous, I. R.: Clifford algebras and the clas-
sical groups, Cambridge Studies in Advanced
Mathematics, Cambridge : Cambridge Univer-
sity Press, 1995, vol. 50.

Srivastava, H. M., Tuan, V. K., Yakubo-
vich, S. B.: The Cherry transform and its re-
lationship with a singular Sturm-Liouville prob-
lem, Q. J. Math. 51 (2000), no. 3, 371-383.

Taylor, M. E.: Noncommutative harmonic anal-
ysis, Mathematical Surveys and Monographs.
vol. 22, Providence : American Mathematical
Society, RI, 1986.

Torre, A.: A note on the general solution of
the paraxial wave equation: a Lie algebra view,
Journal of Optics A: Pure and Applied Optics
10 (2008), no. 5, 055006 (14 pp).

Torre, A.: Linear and quadratic exponential
modulation of the solutions of the paraxial wave

equation, Journal of Optics A: Pure and Applied
Optics 12 (2010), no. 3, 035701 (11 pp).

Wulfman, C. E.: Dynamical Symmetry. World
Scientific, 2010.

Yaglom, I. M.: A simple non-Euclidean geome-
try and its physical basis. New York : Springer-
Verlag, 1979. An elementary account of Galilean
geometry and the Galilean principle of relativ-
ity, Heidelberg Science Library, Translated from
the Russian by Abe Shenitzer, With the edito-
rial assistance of Basil Gordon.

Vladimir V. Kisil
E-mail: kisilv@maths.leeds.ac.uk

http: //www.maths.leeds.ac.uk/~kisilv/

School of Mathematics
University of Leeds
Leeds LS29JT, UK

53



