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Abstract

We propose a method for the treatment of two-point boundary value problems given by nonlinear ordinary differential

equations. The approach leads to sequences of roots of Hankel determinants that converge rapidly towards the unknown

parameter of the problem. We treat several problems of physical interest: the field equation determining the vortex

profile in a Ginzburg-Landau effective theory, the fixed-point equation for Wilson’s exact renormalization group, a

suitably modified Wegner-Houghton fixed point equation in the local potential approximation, and a Riccati equation.
We consider two models where the approach does not apply in order to show the limitations of our Padé-Hankel approach.

Keywords: nonlinear differential equations, Ginzburg-Landau, Wilson’s renormalization, Wegner-Houghton, Riccati

equation, Padé-Hankel method.

1 Introduction

Some time ago Ferndndez et al [1-3,5,6,4,7-9] devel-
oped a method for the accurate calculation of eigen-
functions and eigenvalues for bound states and reso-
nances of the Schrédinger equation. This approach is
based on the Taylor expansion of a regularized loga-
rithmic derivative of the eigenfunction. The physical
eigenvalue is given by a sequence of roots of Hankel
determinants constructed from the coeflicients of that
series. One merit of this approach, called the Riccati-
Padé method, is the great convergence rate in most
cases and that the same equation applies to bound
states and resonances. Besides, in some cases it yields
upper and lower bounds to the eigenvalues [1].

The logarithmic derivative satisfies a Riccati
equation, and one may wonder if the method ap-
plies to other nonlinear ordinary differential equa-
tions. The purpose of this paper is to investigate
whether a kind of Padé-Hankel method may be use-
ful for two-point boundary value problems given by
nonlinear ordinary differential equations.

In Section 2 we outline the method, in Section 3
we apply it to several problems of physical interest,
and in Section 4 we discuss the relative merits of the
approach.

2 Method

It is our purpose to propose a method for the treat-
ment of two-point boundary value problems. We sup-
pose that the solution f(z) of a nonlinear ordinary
differential equation can be expanded as

fx)=a*) fia” (1)
§=0

about * = 0, where o and (3 are real numbers,
and 0 > 0. We also assume that we can cal-
culate sufficient coefficients f; in terms of one of
them that should be determined by the boundary
condition at the other point; for example, at infin-
ity. We show several illustrative examples in sec-
tion 3.

We try a rational approximation to x~%f(z) of
the form

M .
Z]:O ajZ']

[MvN](Z) = Z;vzo ijj .

(2)

where z = z”. The Taylor expansion of the usual
Padé approximant yields M + N + 1 coefficients of
the series (1) [11]; but in the present case we require
that the rational approximation (2) gives us one more
coefficient, that is to say, M + N +2. If M = N +d,
N =12 ...,d=0,1,..., this requirement leads to
the equation [1-3,5,6,4, 7-9]

H% = |fi+j+d+1|i7j:071,___N =0, (3)

where D =N+1=23,...
Hankel determinant H,.

In general, equation (3) exhibits many roots and
one expects to find a sequence, for D = 2,3,...
and fixed d, that converges towards the required
value of the unknown coefficient. From now on
we call it the Hankel sequence for short. If such
a convergent sequence is monotonously increasing
or decreasing we assume that it yields a lower
or upper bound, respectively. Such bounds have
been proved rigorously for some eigenvalue prob-
lems [1].

is the dimension of the
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3 Examples

In order to test the performance of the Padé-Hankel
method, in this section we consider the examples
treated by Boisseau et al [10] by means of a most
interesting algebraic approach. We first consider
the field equation determining the vortex profile in
a Ginzburg-Landau effective theory (and references
therein)

2

Po)+ 10+ (12 5) 10 - 10 <o

r> 0.

(4)

The solution f(r) satisfies the expansion (1) with
r=r,a=n=12,..., and 8 = 2. If we substi-
tute this series into the differential equation and solve
for the coefficients f;, we obtain them in terms of the
only unknown fj that is determined by the boundary
condition at infinity: f(r — oo) = 1 [10] (and refer-
ences therein). The coefficients f;, and therefore the
Hankel determinant H fé, are polynomial functions of
fo. For example, for n = 1 we have

Table 1: Convergence of the Hankel series for the connec-
tion parameters of the global vortex for n =1

10

D d=0 d=1

2 0.595 0.578

3 0.584 0.5829

4 0.58324 0.583 15

5 0.58320 0.583183

6 0.583192 0.583 187

7 0.583190 0.5831890

8 0.5831897 0.5831893

9 0.58318954 0.583189 46
10 0.58318952 0.58318948
11 0.58318951 0.583 189491
12 0.583189498 0.583189494
13 0.583189496 4 0.5831894953
14 0.583189496 1 0.5831894956
15 0.583189496 0 0.5831894957
16 0.58318949590 0.583 18949583
17 0.583 189495 88 0.583 189495 84
18 0.583189495867  0.583 189495 854
19 0.583189495864  0.583 189495 857
20 0.583189495862  0.5831894958591
21 0.5831894958609 0.5831894958598
22 0.5831894958607 0.5831894958601

_Jo fo S
f1——§, f2_@+ﬂa -
fo=— fo _%

87 79216 576

Tables 1 and 2 show two Hankel sequences with
d = 0 and d = 1 that converge rapidly towards
the result of the accurate shooting method [10] for
n = 1 and n = 2, respectively. We appreciate that
in the case n = 1 the sequences with d = 0 and
d = 1 give upper and lower bounds, respectively, that
tightly bracket the exact value of the unknown pa-
rameter of the theory: 0.58318949586060 < fi <
0.583 189495860 61.

On the other hand, the appropriate Hankel se-
quences are oscillatory when n > 2 and their rate of
convergence decreases with n. Table 3 shows the best
estimates of fy for n = 2,3, 4.

Table 2: Convergence of the Hankel series for the connec-
tion parameters of the global vortex for n = 2

D d=0 d=1

3 0.156 0.151

4 0.1528 0.154

5 0.15310 0.1530

6 0.15309 0.15311

7 0.153098 0.15310

8 0.1530997 0.15310

9 0.1530991 0.153099
10 0.153099 14 0.1530989

11 0.15309912

12 0.15309917

13 0.153099 105

14 0.1530991021
15 0.153099102 72
16 0.153099102697
17 0.153099102 782
18 0.153099103 124
19 0.153099102 857 0.153099102 89
20 0.153099102 864 0.153099102 78
21 0.15309910286136 0.153099102860
22 0.15309910286142 0.153099102 858

0.153099 095
0.153099 091
0.153099 097
0.15309911
0.153099102
0.153099103
0.153 09910292
0.153099102 93

Table 3: Best estimates of the connection parameters of
the global vortex for n = 2,3,4 by means of Hankel se-
quences with D < Dias

N Dpag Jfo

2 21 0.153 099102 86
3 21 0.026 1834207
4 26 0.0033271734
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Our second example is the fixed-point equation
for Wilson’s exact renormalization group [10] (and
references therein)

2f"(z) — 4f (x)f'(z) — 5z f'(z) + f(z) = 0, (©)
z > 0.
The solution to this equation can be expanded as in
equation (1) with o = 1 and 8 = 2. The first coeffi-
cients are
fo | 1§ T | f5 218
== 4= =44 7
h=5+3 =5+ 55 (7)
For large values of « the physical solution should be-
have as f(z) = az'/® + a?/(52%/°) + ... The Han-
kel sequences with d = 0 and d = 1 converge
towards the numerical result [10] (and references
therein) from above and below, respectively. Fi-
gure 1 displays the great rate of convergence of these
sequences as A = |fo(D,d=0)— fo(D,d=1)|,
D = 2,3,..., from which we obtain the accu-
rate bounds —1.22859820243702192438 < fy <
—1.228 598202 437021 924 37.
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Fig. 1: A = |fo(D,d =0)— fo(D,d =1)| for Wilson’s

renormalization

The third example comes from a suitably modi-
fied Wegner-Houghton’s fixed point equation in the
local potential approximation [10] (and references
therein)

2f"(x)+ 1+ (@)][5f(z)—zf'(x)] =0, = >0. (8)

The solution satisfies the series (1) with « = 1 and
B =2, and the first coefficients are

fo 18 fo  2f8 | Tf3
fl__g_?v f2_@+ﬁ+ﬁv”' (9)
On the other hand, the acceptable solution should
behave as f(z) = ax® —4/(3z) + ... when 2 > 1.
Table 4 shows Hankel sequences with d = 0 and
d = 1 that clearly converge towards the numerical
value of fy [10] (and references therein).

Table 4: Convergence of the Hankel sequences for the
Wegner-Houghton connection parameter

D d=0 d=1

3  —0.3013652092 —0.4190129312

4 —0.5405112824 —0.4696457170

5 —0.4552012493 —0.460479692 6

6 —0.4624525979 —0.461693 5821

7 —0.4613759926 —0.4615091717

8 —0.4615571129 —0.461537339 3

9 —0.4615303767 —0.461533 1535
10 —0.4615342975 —0.461 533 816 5
11 —0.4615336147 —0.461533704 3
12 —-0.4615337357 —0.461533 7227
13 —0.4615337173 —0.4615337196
14 —0.4615337207 —0.461533 7202
15 —0.4615337200 —0.4615337201
16 —0.46153372013 —0.461533 720119
17 —0.461533720113  —0.4615337201157

18 —0.4615337201168 —0.4615337201163
19 —-0.4615337201161 —0.4615337201162
20 —0.4615337201162

We have also applied our approach to the ordi-
nary differential equation for the spherically symmet-
ric skyrmion field [10] (and references therein) but
we could not obtain convergent Hankel sequences.
We do not yet know the reason for the failure of the
method in this case.

The present approach has earlier proved suitable
for the treatment of the Riccati equation derived from
the Schrodinger equation [1-3,5,6,4,7-9]. Consider,
for example, the following Riccati equation

f(@) = fl@)* +22=0, x>0 (10)

The solution can be expanded as in equation (1) with
a = (8 = 1; the first coefficients are

=12 fa= 12 f3=—§+fg,...

There is a critical value fo. of f(0) = fo such that
f(x) ~ —z at large = if f(0) < foc, f(x) develops a
singular point if f(0) > fo., and f(z) ~ x at large z if
f(0) = foe. The present Padé-Hankel method yields
the value of fp. with remarkable accuracy, as shown
in Table 5. The rate of convergence of the Hankel se-
quence for this problem is considerably greater than
for the preceding ones.

If we substitute f(z) = —y'(z)/y(x) into equation
(10), then the function y(z) satisfies the Schrodinger
equation for a harmonic oscillator with zero energy

11
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Table 5: Convergence of the Hankel sequences with d = 0
for the Riccati equation

D Jo

0.676 2

0.675970

0.6759785

0.675978 23

0.6759782403

0.675978 240 059

10 0.6759782400675

11 0.675978240067 277

12 0.675978240067 2850

13 0.675978240067 284 722
14 0.675978240067 284 729
15 0.675978240067 284 728 99
16 0.675978240067 284729 00
17 0.675978240067 284 729 00

© 0 N O Ut

Table 6: Convergence of the Hankel sequences with d = 4
for the Thomas-Fermi equation

D 2fs

10 —1.5880709

11 —1.5880706

12 —1.58807103

13 —1.588071024

14 —1.5880710227

15 —1.58807102264

16 —1.588071 022609

17 —1.588071022 609

18 —1.5880710226116

19 —1.5880710226115

20 —1.58807102261139

21 —1.588071022611 38

22 —1.58807102261137

23 —1.58807102261137

24 —1.5880710226113756

25 —1.58807102261137537
26 —1.588071022611375 32
27 —1.5880710226113753154
28 —1.5880710226113753152
29 —1.5880710226113753154
30 —1.5880710226113753137

12

on the half line: y”(x)—2?y(z) = 0, and the problem
solved above is equivalent to finding the logarithmic
derivative at origin y'(0)/y(0) so that y(x) behaves as
exp(—z?/2) at infinity. Obviously, any approach for
linear differential equations is suitable for this prob-
lem.

Finally, we consider two examples discussed by
Bender et al [12]; the first of them is the instanton
equation

f'(@) + fla) = fx)> =0 (11)
with the boundary conditions f(0) = 0, f(c0) = 1.
The solution to this equation is f(x) = tanh (m / \/5)

The expansion of f(z) is a particular case of equation
(1) with a = 1 and § = 2; its first coeflicients being

fo Jfo(6f3+1)

flz 5 9

6 120 12)
f, = _fo (6655 +1)
3 5040 7

where fo = f/(0) is the unknown. The Hankel series
with d = 0 and d = 1 converge rapidly giving upper
and lower bounds, respectively, to the exact result
fo=1/V2.

The second example is the well known Blasius
equation [12]

2y""(x) + y(x)y" (x) = 0 (13)

with the boundary conditions y(0) = %'(0) = 0,
y'(c0) = 1. The expansion of the solution in a Taylor
series about x = 0 is a particular case of equation (1)
with o = 2 and [ = 3; its first coefficients are

. 1
h==%0" "= 30160

(14)
Since, in general, f; o g“, then the only root of
the Hankel determinants is fo = 0, which leads to
the trivial solution y(x) = 0. We thus see another
case where the Padé-Hankel method does not apply.

4 Conclusions

We have presented a simple method for the treat-
ment of two-point boundary value problems. If there
is a suitable series for the solution about one point,
we construct a Hankel matrix with the expansion co-
efficients and obtain the physical value of the un-
determined coefficient from the roots of a sequence
of determinants. The value of this coeflicient given
by a convergent Hankel sequence is exactly the one
that produces the correct asymptotic behaviour at
the other point. We cannot prove this assumption
rigorously, but it seems that if there is a convergent
sequence, it yields the correct answer. Moreover, in
some cases the Hankel sequences produce upper and
lower bounds bracketing the exact result tightly.
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The present Padé-Hankel approach is not as gen-
eral as the one proposed by Boisseau et al [10], as
we have already seen that the former does not appar-
ently apply to the skyrmion problem or to the Blasius
equation [12]. However, our procedure is much sim-
pler and more straightforward and may be a suitable
alternative for treating problems of this kind. Be-
sides, if our approach converges, it yields remarkably
accurate results, as shown in the examples above.
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