Rational Approximation to the Solutions of Two-Point Boundary Value Problems

P. Amore, F. M. Fernández

Abstract

We propose a method for the treatment of two-point boundary value problems given by nonlinear ordinary differential equations. The approach leads to sequences of roots of Hankel determinants that converge rapidly towards the unknown parameter of the problem. We treat several problems of physical interest: the field equation determining the vortex profile in a Ginzburg-Landau effective theory, the fixed-point equation for Wilson's exact renormalization group, a suitably modified Wegner-Houghton fixed point equation in the local potential approximation, and a Riccati equation. We consider two models where the approach does not apply in order to show the limitations of our Padé-Hankel approach.

Keywords: nonlinear differential equations, Ginzburg-Landau, Wilson's renormalization, Wegner-Houghton, Riccati equation, Padé-Hankel method.

1 Introduction

Some time ago Fernández et al $[1-3,5,6,4,7-9]$ developed a method for the accurate calculation of eigenfunctions and eigenvalues for bound states and resonances of the Schrödinger equation. This approach is based on the Taylor expansion of a regularized logarithmic derivative of the eigenfunction. The physical eigenvalue is given by a sequence of roots of Hankel determinants constructed from the coefficients of that series. One merit of this approach, called the RiccatiPadé method, is the great convergence rate in most cases and that the same equation applies to bound states and resonances. Besides, in some cases it yields upper and lower bounds to the eigenvalues [1].

The logarithmic derivative satisfies a Riccati equation, and one may wonder if the method applies to other nonlinear ordinary differential equations. The purpose of this paper is to investigate whether a kind of Padé-Hankel method may be useful for two-point boundary value problems given by nonlinear ordinary differential equations.

In Section 2 we outline the method, in Section 3 we apply it to several problems of physical interest, and in Section 4 we discuss the relative merits of the approach.

2 Method

It is our purpose to propose a method for the treatment of two-point boundary value problems. We suppose that the solution $f(x)$ of a nonlinear ordinary differential equation can be expanded as

$$
\begin{equation*}
f(x)=x^{\alpha} \sum_{j=0}^{\infty} f_{j} x^{\beta j} \tag{1}
\end{equation*}
$$

about $x=0$, where α and β are real numbers, and $\beta>0$. We also assume that we can calculate sufficient coefficients f_{j} in terms of one of them that should be determined by the boundary condition at the other point; for example, at infinity. We show several illustrative examples in section 3.

We try a rational approximation to $x^{-\alpha} f(x)$ of the form

$$
\begin{equation*}
[M, N](z)=\frac{\sum_{j=0}^{M} a_{j} z^{j}}{\sum_{j=0}^{N} b_{j} z^{j}} \tag{2}
\end{equation*}
$$

where $z=x^{\beta}$. The Taylor expansion of the usual Padé approximant yields $M+N+1$ coefficients of the series (1) [11]; but in the present case we require that the rational approximation (2) gives us one more coefficient, that is to say, $M+N+2$. If $M=N+d$, $N=1,2, \ldots, d=0,1, \ldots$, this requirement leads to the equation $[1-3,5,6,4,7-9]$

$$
\begin{equation*}
H_{D}^{d}=\left|f_{i+j+d+1}\right|_{i, j=0,1, \ldots N}=0 \tag{3}
\end{equation*}
$$

where $D=N+1=2,3, \ldots$ is the dimension of the Hankel determinant H_{D}^{d}.

In general, equation (3) exhibits many roots and one expects to find a sequence, for $D=2,3, \ldots$ and fixed d, that converges towards the required value of the unknown coefficient. From now on we call it the Hankel sequence for short. If such a convergent sequence is monotonously increasing or decreasing we assume that it yields a lower or upper bound, respectively. Such bounds have been proved rigorously for some eigenvalue problems [1].

3 Examples

In order to test the performance of the Padé-Hankel method, in this section we consider the examples treated by Boisseau et al [10] by means of a most interesting algebraic approach. We first consider the field equation determining the vortex profile in a Ginzburg-Landau effective theory (and references therein)

$$
\begin{align*}
f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)+\left(1-\frac{n^{2}}{r^{2}}\right) f(r)-f(r)^{3} & =0 \tag{4}\\
r & >0
\end{align*}
$$

The solution $f(r)$ satisfies the expansion (1) with $x=r, \alpha=n=1,2, \ldots$, and $\beta=2$. If we substitute this series into the differential equation and solve for the coefficients f_{j}, we obtain them in terms of the only unknown f_{0} that is determined by the boundary condition at infinity: $f(r \rightarrow \infty)=1$ [10] (and references therein). The coefficients f_{j}, and therefore the Hankel determinant H_{D}^{d}, are polynomial functions of f_{0}. For example, for $n=1$ we have

Table 1: Convergence of the Hankel series for the connection parameters of the global vortex for $n=1$

D	$d=0$	$d=1$
2	0.595	0.578
3	0.584	0.5829
4	0.58324	0.58315
5	0.58320	0.583183
6	0.583192	0.583187
7	0.583190	0.5831890
8	0.5831897	0.5831893
9	0.58318954	0.58318946
10	0.58318952	0.58318948
11	0.58318951	0.583189491
12	0.583189498	0.583189494
13	0.5831894964	0.5831894953
14	0.5831894961	0.5831894956
15	0.5831894960	0.5831894957
16	0.58318949590	0.58318949583
17	0.58318949588	0.58318949584
18	0.583189495867	0.583189495854
19	0.583189495864	0.583189495857
20	0.583189495862	0.5831894958591
21	0.5831894958609	0.5831894958598
22	0.5831894958607	0.5831894958601

$$
\begin{align*}
& f_{1}=-\frac{f_{0}}{8}, f_{2}=\frac{f_{0}}{192}+\frac{f_{0}^{3}}{24} \tag{5}\\
& f_{3}=-\frac{f_{0}}{9216}-\frac{5 f_{0}^{3}}{576}, \ldots
\end{align*}
$$

Tables 1 and 2 show two Hankel sequences with $d=0$ and $d=1$ that converge rapidly towards the result of the accurate shooting method [10] for $n=1$ and $n=2$, respectively. We appreciate that in the case $n=1$ the sequences with $d=0$ and $d=1$ give upper and lower bounds, respectively, that tightly bracket the exact value of the unknown parameter of the theory: $0.58318949586060<f_{0}<$ 0.58318949586061.

On the other hand, the appropriate Hankel sequences are oscillatory when $n \geq 2$ and their rate of convergence decreases with n. Table 3 shows the best estimates of f_{0} for $n=2,3,4$.

Table 2: Convergence of the Hankel series for the connection parameters of the global vortex for $n=2$

D	$d=0$	$d=1$
3	0.156	0.151
4	0.1528	0.154
5	0.15310	0.1530
6	0.15309	0.15311
7	0.153098	0.15310
8	0.1530997	0.15310
9	0.1530991	0.153099
10	0.15309914	0.1530989
11	0.15309912	0.153099095
12	0.15309917	0.153099091
13	0.153099105	0.153099097
14	0.1530991021	0.15309911
15	0.15309910272	0.153099102
16	0.153099102697	0.153099103
17	0.153099102782	0.15309910292
18	0.153099103124	0.15309910293
19	0.153099102857	0.15309910289
20	0.153099102864	0.15309910278
21	0.15309910286136	0.153099102860
22	0.15309910286142	0.153099102858

Table 3: Best estimates of the connection parameters of the global vortex for $n=2,3,4$ by means of Hankel sequences with $D \leq D_{\max }$

n	$D_{\max }$	f_{0}
2	21	0.15309910286
3	21	0.0261834207
4	26	0.0033271734

Our second example is the fixed-point equation for Wilson's exact renormalization group [10] (and references therein)

$$
\begin{align*}
2 f^{\prime \prime}(x)-4 f(x) f^{\prime}(x)-5 x f^{\prime}(x)+f(x) & =0 \tag{6}\\
x & >0
\end{align*}
$$

The solution to this equation can be expanded as in equation (1) with $\alpha=1$ and $\beta=2$. The first coefficients are

$$
\begin{equation*}
f_{1}=\frac{f_{0}}{3}+\frac{f_{0}^{2}}{3}, f_{2}=\frac{7 f_{0}}{60}+\frac{f_{0}^{2}}{4}+\frac{2 f_{0}^{3}}{15}, \ldots \tag{7}
\end{equation*}
$$

For large values of x the physical solution should behave as $f(x)=a x^{1 / 5}+a^{2} /\left(5 x^{3 / 5}\right)+\ldots$ The Hankel sequences with $d=0$ and $d=1$ converge towards the numerical result [10] (and references therein) from above and below, respectively. Figure 1 displays the great rate of convergence of these sequences as $\Delta=\left|f_{0}(D, d=0)-f_{0}(D, d=1)\right|$, $D=2,3, \ldots$, from which we obtain the accurate bounds $-1.22859820243702192438<f_{0}<$ -1.22859820243702192437 .

Fig. 1: $\Delta=\left|f_{0}(D, d=0)-f_{0}(D, d=1)\right|$ for Wilson's renormalization

The third example comes from a suitably modified Wegner-Houghton's fixed point equation in the local potential approximation [10] (and references therein)

$$
\begin{equation*}
2 f^{\prime \prime}(x)+\left[1+f^{\prime}(x)\right]\left[5 f(x)-x f^{\prime}(x)\right]=0, \quad x>0 \tag{8}
\end{equation*}
$$

The solution satisfies the series (1) with $\alpha=1$ and $\beta=2$, and the first coefficients are

$$
\begin{equation*}
f_{1}=-\frac{f_{0}}{3}-\frac{f_{0}^{2}}{3}, f_{2}=\frac{f_{0}}{60}+\frac{2 f_{0}^{2}}{15}+\frac{7 f_{0}^{3}}{60}, \ldots \tag{9}
\end{equation*}
$$

On the other hand, the acceptable solution should behave as $f(x)=a x^{5}-4 /(3 x)+\ldots$ when $x \gg 1$.

Table 4 shows Hankel sequences with $d=0$ and $d=1$ that clearly converge towards the numerical value of $f_{0}[10]$ (and references therein).

Table 4: Convergence of the Hankel sequences for the Wegner-Houghton connection parameter

D	$d=0$	$d=1$
3	-0.3013652092	-0.4190129312
4	-0.5405112824	-0.4696457170
5	-0.4552012493	-0.4604796926
6	-0.4624525979	-0.4616935821
7	-0.4613759926	-0.4615091717
8	-0.4615571129	-0.4615373393
9	-0.4615303767	-0.4615331535
10	-0.4615342975	-0.4615338165
11	-0.4615336147	-0.4615337043
12	-0.4615337357	-0.4615337227
13	-0.4615337173	-0.4615337196
14	-0.4615337207	-0.4615337202
15	-0.4615337200	-0.4615337201
16	-0.46153372013	-0.461533720119
17	-0.461533720113	-0.4615337201157
18	-0.4615337201168	-0.4615337201163
19	-0.4615337201161	-0.4615337201162
20	-0.4615337201162	

We have also applied our approach to the ordinary differential equation for the spherically symmetric skyrmion field [10] (and references therein) but we could not obtain convergent Hankel sequences. We do not yet know the reason for the failure of the method in this case.

The present approach has earlier proved suitable for the treatment of the Riccati equation derived from the Schrödinger equation $[1-3,5,6,4,7-9]$. Consider, for example, the following Riccati equation

$$
\begin{equation*}
f^{\prime}(x)-f(x)^{2}+x^{2}=0, \quad x>0 \tag{10}
\end{equation*}
$$

The solution can be expanded as in equation (1) with $\alpha=\beta=1$; the first coefficients are

$$
f_{1}=f_{0}^{2}, f_{2}=f_{0}^{3}, f_{3}=-\frac{1}{3}+f_{0}^{4}, \ldots
$$

There is a critical value $f_{0 c}$ of $f(0)=f_{0}$ such that $f(x) \sim-x$ at large x if $f(0)<f_{0 c}, f(x)$ develops a singular point if $f(0)>f_{0 c}$, and $f(x) \sim x$ at large x if $f(0)=f_{0 c}$. The present Padé-Hankel method yields the value of $f_{0 c}$ with remarkable accuracy, as shown in Table 5. The rate of convergence of the Hankel sequence for this problem is considerably greater than for the preceding ones.

If we substitute $f(x)=-y^{\prime}(x) / y(x)$ into equation (10), then the function $y(x)$ satisfies the Schrödinger equation for a harmonic oscillator with zero energy

Table 5: Convergence of the Hankel sequences with $d=0$ for the Riccati equation

D	f_{0}
4	0.6762
5	0.675970
6	0.6759785
7	0.67597823
8	0.6759782403
9	0.675978240059
10	0.6759782400675
11	0.675978240067277
12	0.6759782400672850
13	0.675978240067284722
14	0.675978240067284729
15	0.67597824006728472899
16	0.67597824006728472900
17	0.67597824006728472900

Table 6: Convergence of the Hankel sequences with $d=4$ for the Thomas-Fermi equation

D	$2 f_{2}$
10	-1.5880709
11	-1.5880706
12	-1.58807103
13	-1.588071024
14	-1.5880710227
15	-1.58807102264
16	-1.588071022609
17	-1.588071022609
18	-1.5880710226116
19	-1.5880710226115
20	-1.58807102261139
21	-1.58807102261138
22	-1.58807102261137
23	-1.58807102261137
24	-1.5880710226113756
25	-1.58807102261137537
26	-1.58807102261137532
27	-1.5880710226113753154
28	-1.5880710226113753152
29	-1.5880710226113753154
30	-1.5880710226113753137

on the half line: $y^{\prime \prime}(x)-x^{2} y(x)=0$, and the problem solved above is equivalent to finding the logarithmic derivative at origin $y^{\prime}(0) / y(0)$ so that $y(x)$ behaves as $\exp \left(-x^{2} / 2\right)$ at infinity. Obviously, any approach for linear differential equations is suitable for this problem.

Finally, we consider two examples discussed by Bender et al [12]; the first of them is the instanton equation

$$
\begin{equation*}
f^{\prime \prime}(x)+f(x)-f(x)^{3}=0 \tag{11}
\end{equation*}
$$

with the boundary conditions $f(0)=0, f(\infty)=1$. The solution to this equation is $f(x)=\tanh (x / \sqrt{2})$. The expansion of $f(x)$ is a particular case of equation (1) with $\alpha=1$ and $\beta=2$; its first coefficients being

$$
\begin{align*}
& f_{1}=-\frac{f_{0}}{6}, \frac{f_{0}\left(6 f_{0}^{2}+1\right)}{120} \\
& f_{3}=-\frac{f_{0}\left(66 f_{0}^{2}+1\right)}{5040}, \ldots \tag{12}
\end{align*}
$$

where $f_{0}=f^{\prime}(0)$ is the unknown. The Hankel series with $d=0$ and $d=1$ converge rapidly giving upper and lower bounds, respectively, to the exact result $f_{0}=1 / \sqrt{2}$.

The second example is the well known Blasius equation [12]

$$
\begin{equation*}
2 y^{\prime \prime \prime}(x)+y(x) y^{\prime \prime}(x)=0 \tag{13}
\end{equation*}
$$

with the boundary conditions $y(0)=y^{\prime}(0)=0$, $y^{\prime}(\infty)=1$. The expansion of the solution in a Taylor series about $x=0$ is a particular case of equation (1) with $\alpha=2$ and $\beta=3$; its first coefficients are

$$
\begin{equation*}
f_{1}=-\frac{f_{0}^{2}}{60}, f_{2}=\frac{11 f_{0}^{3}}{20160}, \ldots \tag{14}
\end{equation*}
$$

Since, in general, $f_{j} \propto f_{0}^{j+1}$, then the only root of the Hankel determinants is $f_{0}=0$, which leads to the trivial solution $y(x) \equiv 0$. We thus see another case where the Padé-Hankel method does not apply.

4 Conclusions

We have presented a simple method for the treatment of two-point boundary value problems. If there is a suitable series for the solution about one point, we construct a Hankel matrix with the expansion coefficients and obtain the physical value of the undetermined coefficient from the roots of a sequence of determinants. The value of this coefficient given by a convergent Hankel sequence is exactly the one that produces the correct asymptotic behaviour at the other point. We cannot prove this assumption rigorously, but it seems that if there is a convergent sequence, it yields the correct answer. Moreover, in some cases the Hankel sequences produce upper and lower bounds bracketing the exact result tightly.

The present Padé-Hankel approach is not as general as the one proposed by Boisseau et al [10], as we have already seen that the former does not apparently apply to the skyrmion problem or to the Blasius equation [12]. However, our procedure is much simpler and more straightforward and may be a suitable alternative for treating problems of this kind. Besides, if our approach converges, it yields remarkably accurate results, as shown in the examples above.

References

[1] Fernández, F. M., Ma, Q., Tipping, R. H.: Tight upper and lower bounds for energy eigenvalues of the Schrödinger equation. Phys. Rev. A, 39 (4), 1989, p. 1605-1609.
[2] Fernández, F. M.: Strong Coupling Expansion for Anharmonic Oscillators and Perturbed Coulomb Potentials. Phys. Lett. A, 166 1992, p. 173-176.
[3] Fernández, F. M., Guardiola, R.: Accurate Eigenvalues and Eigenfunctions for QuantumMechanical Anharmonic Oscillators. J. Phys. A, 26 1993, p. 7169-7180.
[4] Fernández, F. M.: Resonances for a Perturbed Coulomb Potential. Phys. Lett. A, 203 1995, p. 275-278.
[5] Fernández, F. M.: Direct Calculation of Accurate Siegert Eigenvalues. J. Phys. A, 28 1995, p. 4043-4051.
[6] Fernández, F. M.: Alternative Treatment of Separable Quantum-mechanical Models: the Hydrogen Molecular Ion. J. Chem. Phys., 103 (15), 1995, p. $6581-6585$.
[7] Fernández, F. M.: Quantization Condition for Bound and Quasibound States. J. Phys. A, 29 1996, p. 3167-3177.
[8] Fernández, F. M.: Direct Calculation of Stark Resonances in Hydrogen. Phys. Rev. A, 54 (2), 1996, p. 1206-1 209.
[9] Fernández, F. M.: Tunnel Resonances for OneDimensional Barriers. Chem. Phys. Lett, 281 1997, p. 337-342.
[10] Boisseau, B., Forgács, P., Giacomini, H.: An analytical approximation scheme to two-point boundary value problems of ordinary differential equations. J. Phys. A, 40 2007, p. F215-F221.
[11] Bender, C. M., Orszag, S. A.: Advanced mathematical methods for scientists and engineers, New York, McGraw-Hill, 1978.
[12] Bender, C. M., Pelster, A., Weissbach, F.: Boundary-layer theory, strong-coupling series, and large-order behavior. J. Math. Phys., 43 (8), 2002, p. 4202-4220.

Paolo Amore
E-mail: paolo@cgic.ucol.mx
Facultad de Ciencias
Universidad de Colima
Bernal Díaz del Castillo 340, Colima, Colima, Mexico
Francisco M. Fernández
E-mail: fernande@quimica.unlp.edu.ar INIFTA (Conicet,UNLP), Diag. 113 y 64 S/N
Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina

