Some Formulas for Legendre Functions Induced by the Poisson Transform

I. A. Shilin, A. I. Nizhnikov

Abstract

Using the Poisson transform, which maps any homogeneous and infinitely differentiable function on a cone into a corresponding function on a hyperboloid, we derive some integral representations of the Legendre functions.

Keywords: Legendre functions, Lorentz group, Poisson transform.

1 Introduction

Let us assume that the linear space \mathbb{R}^{n+1} is endowed with the quadratic form

$$
q(x):=x_{0}^{2}-x_{1}^{2}-\ldots-x_{n}^{2}
$$

We denote the polar bilinear form for q by \hat{q}. The Lorentz group $S O(n, 1)$ preserves this form and divides \mathbb{R}^{n+1} into orbits. We will deal with two kinds of these orbits. One of them is

$$
C:=\{x \mid q(x)=0\} ;
$$

it is a cone. The second kind of orbits consist of two-sheet hyperboloids

$$
H(r):=\left\{x \mid q(x)=r^{2}\right\}
$$

for any $r>0$.
The group $S O(n, 1)$ has 2 connected components. One of them contains the identity and will be under our consideration further. We denote this subgroup by symbol G. The action $x \longmapsto g^{-1} x$ of the group G is transitive on C. Let $\sigma \in \mathbb{C}$ and D_{σ} be a linear subspace in $C^{\infty}(C)$ consisting of σ-homogeneous functions. It is useful to suppose throughout this paper that $-n+1<$ re $\sigma<0$. We define the representation T_{σ} in D_{σ} by left shifts:

$$
T_{\sigma}(g)[f(x)]:=f\left(g^{-1} x\right)
$$

Suppose that γ is a contour on C intersecting all generatrices (i.e. all lines containing the origin). Every point $x \in \gamma$ depends on $n-1$ parameters, so every point $x \in C$ can be represented as

$$
x_{i}=\left\{t F_{i}\left(\xi_{1}, \ldots, \xi_{n-1}\right), \quad i=1, \ldots, n+1\right.
$$

Denoting by \tilde{G} the subgroup of G which acts transitively on γ, we have

$$
\begin{equation*}
\mathrm{d} x=t^{n-3} \mathrm{~d} t \mathrm{~d} \gamma \tag{1}
\end{equation*}
$$

where $\mathrm{d} \gamma$ is the \tilde{G}-invariant measure on γ.
For any pair $\left(D_{\sigma}, D_{\tilde{\sigma}}\right)$, we define the bilinear functionals $\mathrm{F}_{\gamma}:\left(D_{\sigma}, D_{\tilde{\sigma}}\right) \longrightarrow \mathbb{C}$,

$$
\left(f_{1}, f_{2}\right) \longmapsto \int_{\gamma} f_{1}(x) f_{2}(x) \mathrm{d} \gamma
$$

The functional \boldsymbol{F}_{γ} does not depend on γ if $\tilde{\sigma}=$ $-\sigma-n+1$, because, first, we have formula (1), and, second, f_{1} and f_{2} are both homogeneous functions, and, third, the G-invariant measure on C can be represented in the form

$$
\begin{equation*}
\mathrm{d} x=\frac{\mathrm{d} x_{\zeta(1)} \ldots \mathrm{d} x_{\zeta(n)}}{\left|x_{\zeta(n+1)}\right|}, \tag{2}
\end{equation*}
$$

where $\zeta \in \underset{n}{\mathbf{S}}$ and $\underset{n+1}{\mathbf{S}}$ is the permutation group of the set $\{1, \ldots, n+1\}$.

Let $f \in D_{\sigma}$ and $y \in H(1)$. We refer to the integral transform

$$
\Pi(f)(y):=\mathrm{F}_{\gamma}\left(\hat{q}^{-\sigma-n+1}(y, x), f\right)
$$

as the Poisson transform [1].

2 Formulas related to sphere and paraboloid

Let γ_{1} be the intersection of the cone C and the plane $x_{0}=1$. Each point $x \in \gamma_{1}$ depends on spherical parameters $\phi_{1}, \ldots, \phi_{n-1}$ by the formula

$$
x_{s}=\prod_{i=1}^{n-s} \sin \phi_{i} \cdot \cos \phi_{n-s+1}, \quad s \neq 0
$$

[^0]if angle ϕ_{n-s+1} exists. Here $\phi_{n-1} \in[0 ; 2 \pi)$ and $\phi_{1}, \ldots, \phi_{n-2} \in[0 ; \pi)$.

The subgroup $H_{1} \simeq S O(n)$ acts transitively on γ_{1}, and any permutate $\zeta \in \underset{n+1}{\mathbf{S}}$ defines the $H_{1^{-}}$ invariant measure

$$
\mathrm{d} \gamma_{1}=\frac{\mathrm{d} \gamma_{\zeta(2)} \ldots \mathrm{d} \gamma_{\zeta(n)}}{\left|x_{\zeta(n+1)}\right|}
$$

The invariant measure in spherical coordinates is given by 9.1.1.(9) [2]

Let γ_{2} be the intersection of cone C and the hyperplane $x_{0}+x_{n}=1$. We describe every point $x \in \gamma_{2}$ by the coordinates $r, \phi_{1}, \ldots, \phi_{n-2}$ according to the formulas

$$
\begin{aligned}
& x_{0}=\frac{1+r^{2}}{2}, \quad x_{n}=\frac{1-r^{2}}{2}, \\
& x_{s}=r \prod_{i=1}^{n-s-1} \sin \phi_{i} \cos \phi_{n-s}, \quad s \notin\{0, n\}
\end{aligned}
$$

(if angle ϕ_{n-s} exists), where $r \geq 0, \phi_{n-2} \in[0 ; 2 \pi)$ and $\phi_{1}, \ldots, \phi_{n-3} \in[0 ; \pi)$.

We denote as H_{2} the subgroup of G acting transitively on γ_{2}. H_{2} consists of the matrices

$$
n(b)=\left(\begin{array}{rrr}
\operatorname{diag}(\underbrace{1, \ldots, 1}_{n-1}) & b^{\mathrm{T}} & b^{\mathrm{T}} \\
-b & 1-b^{*} & -b^{*} \\
b & b^{*} & b^{*}
\end{array}\right)
$$

where $b=\left(b_{1}, \ldots, b_{n-1}\right)$ and $b^{*}=\frac{1}{2}\left(b_{1}^{2}+\ldots+b_{n-1}^{2}\right)$.
It is not too hard to derive the H_{2}-invariant measure

$$
d \gamma=r^{n-2} \mathrm{~d} r \prod_{i=1}^{n-2} \sin ^{n-i-2} \phi_{i} \mathrm{~d} \phi_{i}
$$

on γ_{2}.
Let $\lambda>0, \mu \in \mathbb{R}, k_{0} \geq k_{1} \geq \ldots \geq k_{n-2} \geq 0$, $l_{1} \geq \ldots \geq l_{n-2} \geq 0, m_{1} \geq \ldots \geq m_{n-2} \geq 0, K=$ $\left(k_{0}, k_{1}, \ldots, k_{n-3}, \pm k_{n-2}\right), L=\left(l_{1}, \ldots, l_{n-3}, \pm l_{n-2}\right)$, $M=\left(m_{1}, \ldots, m_{n-3}, \pm m_{n-2}\right)$.

We will now deal with two bases in D_{σ}. One of them consists of the functions

$$
f_{K}^{\sigma 1}(x)=x_{0}^{\sigma-k_{0}} \Xi_{K}^{n}(x)
$$

where $K=\left(k_{0}, k_{1}, \ldots, k_{n-3}, \pm k_{n-2}\right) \in \mathbb{Z}^{n-1}, k_{i} \geq$ $k_{i+1} \geq 0$ and

$$
\begin{aligned}
\Xi_{T}^{n}(x)= & \prod_{i=1}^{n-3} r_{n-i}^{t_{i}-t_{i+1}} \\
& C_{t_{i}-t_{i+1}}^{\frac{n-i}{2}-1}\left(\frac{x_{n-i}}{r_{n-i}}\right)\left(x_{2} \pm \mathbf{i} x_{1}\right)^{t_{n-2}}
\end{aligned}
$$

The second basis consists of the functions

$$
f_{(L, \lambda)}^{\sigma 2}(x)=\left(x_{0}+x_{n}\right)^{\sigma+\frac{n-3}{2}}
$$

$$
\begin{aligned}
& \left(\frac{\lambda}{2}\right)^{l_{1}}\left(\frac{\lambda r_{n-1}}{2}\right)^{\frac{3-n}{2}-l_{1}} \\
& J_{l_{1}+\frac{n-3}{2}}\left(\frac{\lambda r_{n-1}}{x_{0}+x_{n}}\right) \Xi_{L}^{n-1}(x)
\end{aligned}
$$

where $r_{j}^{2}=x_{1}^{2}+\ldots+x_{j}^{2}, L=\left(l_{1}, \ldots, l_{n-3}, \pm l_{n-2}\right) \in$ $\mathbb{Z}^{n-2}, \lambda \geq 0$ and $l_{i} \geq l_{i+1} \geq 0$. Suppose, in addition, that the functions of the above bases are equipped with the normalizing factors defined by formulas [2, 9.4.1.7, 10.3.4.9].

Let us consider the distribution

$$
\begin{equation*}
f_{K}^{\sigma 1}(x)=\sum_{L} \int_{0}^{+\infty} c_{K,(L, \lambda)}^{\sigma 12} f_{(L, \lambda)}^{\sigma 2} \mathrm{~d} \lambda \tag{3}
\end{equation*}
$$

From the orthogonality of the functions Ξ_{T}^{n}, we obtain the property

$$
\mathrm{F}_{\gamma}\left(f_{K}^{\sigma 1}, f_{-\tilde{K}}^{-\sigma-n-1,1}\right)=\delta_{K \tilde{K}}
$$

From this property, it immediately follows that

$$
c_{K,(L, \lambda)}^{\sigma 12}=\mathrm{F}_{\gamma}\left(f_{K}^{\sigma 1}, f_{(L, \lambda)}^{-\sigma-n-1,2}\right)
$$

Let $\gamma=\gamma_{1}$. Then from the formula

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} C_{m}^{\nu}(x) C_{n}^{\nu}(x) \mathrm{d} x=0
$$

where $m \neq n$, re $\nu>-\frac{1}{2}$, we derive
Lemma 1. If $\sum_{i=1}^{n-2}\left(k_{i}-l_{i}\right)^{2} \neq 0$, then $c_{K,(L, \lambda)}^{\sigma 12}=0$.
Let us assume another situation.
Lemma 2. If $\sum_{i=1}^{n-2}\left(k_{i}-l_{i}\right)^{2}=0$, then

$$
\begin{gathered}
c_{K,(L, \lambda)}^{\sigma 12}=2^{-\sigma+n+3 k_{1}-3} \pi^{-1} \mathbf{i}^{k_{1}}\left(n+2 k_{0}-2\right)^{\frac{1}{2}} . \\
\sqrt{\left(k_{0}-k_{1}\right)!} \lambda^{k_{1}} \Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{n-1}{2}+k_{1}\right) . \\
\Gamma\left(\frac{n}{2}+k_{1}-1\right) \Gamma^{\frac{1}{2}}\left(\frac{n-1}{2}\right) \Gamma^{-1}\left(n+2 k_{1}-2\right) . \\
\Gamma^{-\frac{1}{2}}\left(n+k_{0}+k_{1}-2\right) \sum_{m=0}^{k_{0}-k_{1}}(-1)^{m}(m!)^{-1} . \\
\Gamma\left(n+k_{0}+k_{1}+m-2\right) \Gamma^{-1}\left(\frac{n-1}{2}+k_{1}+m\right) . \\
\Gamma^{-1}\left(k_{0}-k_{1}-m-1\right) \Gamma^{-1}\left(-\sigma+k_{1}+m\right) . \\
G_{13}^{21}\left(\left.\frac{\lambda^{2}}{4} \right\rvert\,-m\right. \\
\left.-\sigma+k_{1}-1, \frac{n-3}{2}+k_{1}\right) .
\end{gathered}
$$

Proof. Suppose $\gamma=\gamma_{2}$. Then we obtain the integral

$$
\begin{aligned}
& \int_{0}^{+\infty} r^{\frac{n-1}{2}+l_{1}}\left(r^{2}+1\right)^{\sigma-k_{1}} \\
& C_{k_{0}-k_{1}}^{\frac{n}{2}-k_{1}-1}\left(\frac{1-r^{2}}{1+r^{2}}\right) J_{\frac{n-3}{2}+l_{1}}(\lambda r) \mathrm{d} r
\end{aligned}
$$

which can be solved explicitly after replacing

$$
r^{k} J_{k}(\lambda r)=2^{k} \lambda^{-k} G_{02}^{10}\left(\left(\frac{\lambda r}{2}\right)^{2} \left\lvert\, \begin{array}{l}
0 \\
k, 0
\end{array}\right.\right)
$$

according to formulas $[3,8.932 .1,8.932 .2$] and [4, 20.5.4].»

Theorem 1.

$$
\begin{aligned}
& P_{-\sigma-\frac{n}{2}}^{-\frac{n}{2}+1}(\cosh \alpha)=2^{2 n-\frac{9}{2}} \pi^{-\frac{3}{2}} \sqrt{n-1} \\
& \sinh ^{\frac{n}{2}-1} \alpha e^{(\sigma+n-1) \alpha} \Gamma\left(\frac{n}{2}-1\right) \Gamma\left(\frac{n+1}{2}\right) \\
& \Gamma^{-1}(-\sigma) \Gamma^{-\frac{1}{2}}(n-1) \int_{0}^{+\infty} \lambda^{-n+3} \\
& G_{13}^{21}\left(\begin{array}{l|l}
\frac{\lambda^{2}}{4} & 0 \\
-\sigma-1,0, \frac{n-3}{2}
\end{array}\right) \\
& G_{13}^{21}\left(\frac{\left(\lambda e^{-\alpha}\right)^{2}}{4} \left\lvert\, \begin{array}{l}
0 \\
\sigma-\frac{n-1}{2}, 0, \frac{n-3}{2}
\end{array}\right.\right) \mathrm{d} \lambda
\end{aligned}
$$

Proof. Suppose that the condition $k_{1}=$ $l_{1}, \ldots, k_{n-2}=l_{n-2}$ holds. From the distribution (3), we obtain

$$
\Pi\left(f_{K}^{\sigma 1}\right)=\int_{0}^{+\infty} c_{K,(L, \lambda)}^{\sigma 12} \Pi\left(f_{(L, \lambda)}^{\sigma 2}\right) \mathrm{d} \lambda
$$

Further we assume $\Pi\left(f_{K}^{\sigma 1}\right)=\mathrm{F}_{\gamma_{1}}\left(\hat{q}^{-\sigma-n+1}(y, x), f_{K}^{\sigma 1}\right)$ and $\Pi\left(f_{(L, \lambda)}^{\sigma 2}\right)=\mathrm{F}_{\gamma_{2}}\left(\hat{q}^{-\sigma-n+1}(y, x), f_{(L, \lambda)}^{\sigma 2}\right)$, then for the case $y=(\cosh \alpha, 0, \ldots, 0, \sinh \alpha)$ and put $K=$ $(0, \ldots, 0) . \diamond$

Consider the case $S O(2,1)$ of the group $S O(n, 1)$. In this case, $K \equiv k$ and $(L, \lambda) \equiv \lambda$. The following theorem is related to this case.

Theorem 2. If $-1<$ re $\sigma<0$ and $\alpha \neq 0$, then

$$
\begin{align*}
& P_{\sigma+\frac{1}{2}}^{-l+\frac{1}{2}}(\cosh \alpha)=(-1)^{l-1} 2^{-\sigma-\frac{l}{2}-\frac{9}{4}} \pi^{-\frac{1}{2}} \times \\
& e^{-\alpha} \sin (-\pi \sigma) \sinh ^{l+\frac{1}{2}} \alpha \\
& \left(\frac{\cosh \alpha+1}{\cosh \alpha-1}\right)^{\frac{l}{2}+\frac{1}{4}} \Gamma(\sigma-l+1) \Gamma\left(l-\frac{3}{2}\right) \\
& \Gamma^{-1}\left(l+\frac{1}{2}\right) \int_{0}^{\infty} \rho^{-\sigma-1} K_{\sigma+1}\left(\rho e^{-\alpha}\right) \tag{4}\\
& \sum_{s=0}^{\infty}(-1)^{n} \Gamma^{-2}(s+1) \Gamma^{-1}(s-\sigma)
\end{align*}
$$

where $\left(x_{n}\right)_{ \pm}^{\sigma+\frac{n-3}{2}}$ is the generalized function defined as

$$
\left(x_{n}\right)_{ \pm}^{\sigma+\frac{n-3}{2}}=\left\{\begin{array}{l}
\left|x_{n}\right|^{\sigma+\frac{n-3}{2}}, \text { if } \operatorname{sign} x_{n}= \pm 1 \\
0, \text { if } \operatorname{sign} x \neq \pm 1
\end{array}\right.
$$

$M=\left(m_{1}, \ldots, m_{n-3}, \pm m_{n-2}\right) \in \mathbb{Z}^{n-2}, m_{i} \geq m_{i+1} \geq$ 0 and $\mu \in \mathbb{R}$.

By analogy with the previous case, we can obtain the coefficients $c_{K,(M, \mu,+)}$. Let us suppose that $n=3$ and $K=(l, s), M \equiv m$. From the distribution

$$
f_{m, \mu,+}^{\sigma 3}(x)=\sum_{l=0}^{\infty} \sum_{s=-|l|}^{|l|} c_{l, s, m, \mu,+} f_{l, s}^{\sigma 1}(x)
$$

we have

$$
f_{-s, \mu,+}^{\sigma 3}(x)=\sum_{l=0}^{\infty} c_{l, s,-s, \mu,+} f_{l, s}^{\sigma 1}(x)
$$

and, therefore,

$$
\begin{equation*}
\Pi\left(f_{-s, \mu,+}^{\sigma 3}\right)=\sum_{l=0}^{\infty} \sum_{s=-|l|}^{|l|} c_{l, s,-s, \mu,+} \Pi\left(f_{l, s}^{\sigma 1}\right) \tag{5}
\end{equation*}
$$

We choose γ_{3} (in fact, γ_{3+}) on the left side of equality (5) and γ_{1} on the opposite side. In accordance with our choice, we use two parametrizations of a point $y \in H(1):$

$$
y(v)=\left(\frac{v+v^{-1}}{2}, 0, \ldots, 0, \frac{v^{-1}-v}{2}\right)
$$

and $y(t)=(\cosh t, 0, \ldots, 0, \sinh t)$ respectively, so $v=e^{-t}$. After integration we have

$$
\begin{aligned}
& \sin [\pi(\sigma+1)] \cosh ^{-1} t \Gamma\left(\mathbf{i} \mu-\sigma-\frac{1}{2}\right) \\
& \Gamma\left(-\frac{3}{2}-\sigma-\mathbf{i} \mu\right) P_{-\frac{1}{2}+\mathbf{i} \mu}^{\sigma+1}(\tanh t)=
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{2} \pi^{\frac{3}{2}} \sum_{l=0}^{\infty}(-1)^{l}(l!)^{-1} A_{l} \sinh ^{\frac{1}{2}} t \\
& \Gamma(l+1) \Gamma^{-1}(\sigma-l+1) P_{\sigma+\frac{1}{2}}^{-\frac{1}{2}-l}(\cosh t)
\end{aligned}
$$

where A_{l} is the normalizing factor of the function $f_{l, s}^{\sigma 1}(x)$.

References

[1] Vilenkin, N. Ja., Klimyk, A. U.: Representation of Lie groups and special functions, Vol. 2, 1993.
[2] Vilenkin, N. Ja.: Special functions and theory of group representations, 1968.
[3] Erdelyi, A.: Tables of integral transforms, 1954.
[4] Gradstein, I. S., Ryshik, I. M.: Tables of series, products and integrals, 1981.
[5] Prudnikov, A. P., Brychkov, Yu. A., Marichev, O. I.: Integrals and Series, Vol. 3: More Special Functions, 1989.

Ilya Shilin
Dept of Higher Mathematics
M. Scholokhov Moscow State

University for the Humanities
Verhnya Radishevskaya 16-18
Moscow 109240, Russia
Dept 311
Moscow Aviation Institute
Volokolamskoe shosse 4, Moscow 125993, Russia
Aleksandr Nizhnikov
Moscow Pedagogical State University
M. Pirogovskaya 1, Moscow 119991, Russia

[^0]: The research presented in this paper was supported by grant NK 586P-30 from the Ministry of Education and Science of the Russian Federation.

