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Abstract

The wave functions and the energy spectrum of PT-/non-PT-Symmetric and non-Hermitian Hulthen potential are of

an exponential type and are obtained via the path integral. The path integral is constructed using parametric time and

point transformation.
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1 Introduction

A suggestion by Bender and Boetcher on PT-
symmetric quantum mechanics has put forward a dif-
ferent point of view from standard quantum mechan-
ics. For a quantum mechanical system have to a real
energy spectrum, the Hamiltonian must be Hermi-
tian. Bender and his co-workers showed that even
if a Hamiltonian is not Hermitian, it has a real en-
ergy spectrum [1]. PT-symmetric and non Hermitian
potentials have been studied to prove they have a
real energy spectrum, using numerical and analytical
techniques. The energy spectrum corresponding to
the wave functions is also calculated [2-9].

In this work, we have used Feynman’s path inte-
gral method to get the energy spectrum and the wave
functions of the PT-/Non-PT-Symmetric and non-
Hermitian exponential potential. The Feynman Path
Integral is a given kernel which has transition ampli-
tudes between the initial and final positions of the
energy dependent Green function. A Feynman Path
Integral formalism for deriving the kernel of various
potentials was developed in [10-16]. Duru derived
the wave functions and the energy spectrum of the
Wood-Saxon potential for s-waves via the radial path
integral. Inomata obtained the energy spectrum and
the normalized s-state eigenfunctions for the Hulthen
Potential using the Green function [11]. The kernel
of the Hulthen potential can be exactly solved given
the path integral for the particle motion on the SU(2)
manifold S% [10-12]. In Sec. IT and III, we derive
the energy dependent Green’s function of the PT-
/Non-PT-Symmetric and non-Hermitian g-deformed
Hulthen Potential. We obtained the energy eigenval-
ues and the corresponding wave functions.
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2 PT-Symmetric and
Non-Hermitian Hulthen
Potential

The kernel of a point particle moving in the V(z)
potential in one dimension is represented by the fol-
lowing path integral

DxD
K (2, th; Za, ta) = %p : (1)

expli / atlpi — V(@)

where i = 1. The kernel expresses the probability
amplitude of a particle moving to position x; at time
tp from position x, at time t,. The time interval can

be divided into n equal parts
ti—tii=ty—ta =T i=1,23...,N (2)

and taking initial position is z, and final position xy,
the kernel [11] can be performed as

K (24, T; 24, 0) :/_ dei [I C;]: (3)
n+1 - p2 -
exp{i Z[pz(ﬂﬁz — Ti—1) — 27% = V(xi)]}-

i=1
The PT- symmetric and non-Hermitian potential
is
%e—im/a

V(z) = 1= qela (4)

1 )
which is determined by taking — — : in the
g-deformed Hulthen potential [5].

We will start by applying point transformation

to get a solvable path integral form for the Hulthen
potential

1

T=ge e o0

p= 2Z_a sinf cosfpy  (5)
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Because of this transformation, there is a contribu-
tion to the Jacobi performed kernel

K(xp,T;24,0) = %sin&b cos@b/DHng X

sin® § cos® 6 p?

. A 2
exp[z/dt(p99+ 1o o Vocos®0)]. (6)

Here, the kinetic energy term becomes positive. We

define a new time parameter s [12] to eliminate the

sin? 6 cos? 0
402

dt 4a? ds’

—:—27 ort:—4a2/27 (7)

ds sin® 6 cos? sin” 6 cos?

If we use the Fourier transform of the d— function,

we can write

a2
v fas [
27 sin 9{, COS2 9{,

4a*FE
—i | BT — | ds—5— 8
exp{ Z( / ssin29c0329>] ®)

where S = s, — 34.

The factor in front of the path integral reached
from the Jacobian can be a symmetrization accord-
ing to points a and b, as follows

1 2

~ \/sin 20, sin 26, .

s
. ., cos20 .
exp (z/o ds (—i) <in 20 9) (9)

Thus Eq. (6) happens

part in the kinetic energy term

sin 91, COS 9{,

K(xp,xq,T / dSe Z5/2“/ @
2w
bk (0,,00:8) (10)
v/sin 20, cos 20, b e
where
K(eb,aa;S)z/Deppg.
S . pz
exp i ds{p@——— 11
{ /0 o D
1 (K(E-1) AA-1)\ ipgcos2f
2u sin? 0 cos? 6 21 5in 20

and K and )\ are

K

% [1 + /3204 (Vo + E)]

A = %[H\/m} (12)

if the factor contribution to the Jacobian is sym-
metrized as [11] the contributions to the kernel be-

come cos B
. . icosd;
6 — 0, £ ——— 13
J 77 2usind; (13)

So the problem is transformed into the path in-
tegral for Poschl-Teller potential, for which an exact
solution is known [11]. K (6, 0,;S) can be obtained
as

K (60, 00: ) = / DODpy -
S .
expl 1 ds 9——— 14
p{ [ s - 2 (14)

o (o)

The kernel can be obtained in the form
(9b79a§ S) = (15)

Z exp [ (S/2u) (K + A+ 20)2] i (60) 05 (6)

where

P (0) = V2 (K + X+ 2n)-
\/ T'(n+1)T (K +A+n)

FA+n+ )T (K+n+1) x (16)

(cos 0)* (sin )" piE-1/22-1/2) .
(1 — 2sin? 9)

With integrating over dS, the Green’s function for
the Hulthen potential can be obtained as

8uaq
G(zp, 20 E) = ——rd . 17
(20,2 ) v/sin 26, cos 20, (17)
~ T 4E BT
o n ea :L 6
nzo_/ 2m (K+>\+2n)2—1w (8a) 97 (6)

Therefore, the kernel of the physical system is rewrit-
ten as

K xbvxaa
z{ -
n=0

[(n +1)° + 2,ua2Vo} 2} T} .
On (n) P, (tha)- (18)

8uaq (n+1)°

Integrating over dE, we can get the energy eigenval-
ues

1 Vi 2
Ey=—"—"=-= [2ua2—0 —(n+ 1)2} (19)
8ua? (n+1) q
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and the normalized wave functions in terms of Jacobi
polynomials are

1 2 2
¢($)=m\/4(n+l) — (A — Ky)™

'(n+1)T (K, + A, +n)
P(An+n+ )T (Ky+n+3)
exp [(K, — 1/2) x/2a]

P(K7L71/2,)\71/2) .

(1+ e—z/a)mnﬂn—l/z) n

<_1i_27:zjz> (20)
where we got

An = % + %_‘_1 {(n + 1)2 + 2,ua2%} (21)

Here we see that the PT Symmetric and Non-
Hermitian Hulthen potential has real energy spectra.

3 Non- PT-symmetric and
non-Hermitian Hulthen
Potential

The non PT-symmetric and non Hermitian Hulthen

1 1
potential is determined by taking — — —, Vj —

a a
A+iB and g — iq as

iVye e/

V(.’E) = —71 — ,L'qefi:c/a

(22)

We will follow the same steps for getting the wave
function and the energy spectrum. A suitable coor-
dinate transformation kernel is obtained as

K(xp,T;24,0) = 2(]_a sin 6y cos@b/Derg - (23)

102 2 2
. . sin” 6 cos® 6§ pj 9
exp |:Z/dt(p09— Tﬂ —V()COS 9) .

If we follow the steps in sec. (2), we will obtain
energy eigenvalues

1

B, = ——.
8ua? (n+1)

(iAq—B) 2 (24)

{(n +1)% + 2ua?

and the normalized wave functions in terms of Jacobi
polynomials are

o(z) = (Ao — Kn)? -

1 2
m\/z;(nﬂ) _
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F'n+ )T (K, + M\ +n)
\/F (M +n+3H T (K, +n+3)
exp (K, —1/2)x/2a]
R +ez/a)(K7,+>\n71/2)

3 B 1— efz/a
PU—1/20-1/2) (r e_x/a> (25)

K, and \,, are the same in Eq. (21). It is clear that
the energy spectra are real only if Re(Vp) = 0.

4 Conclusion

We have calculated the energy eigenvalues and the
corresponding wave functions for the PT-/non-PT
Symmetric and non-Hermitian Deformed Hulthen
Potential. We obtained that PT-/non-PT Symmet-
ric and non-Hermitian forms of potentials have real
energy spectra by restricting the potential parame-
ters.
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