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Abstract

We construct a Lagrangian formulation of N = 4 supersymmetric mechanics with hyper-Kéhler sigma models in a bosonic

sector in a non-Abelian background gauge field. The resulting action includes a wide class of A" = 4 supersymmetric

mechanics describing the motion of an isospin-carrying particle over spaces with non-trivial geometry. In two examples
that we discuss in details, the background fields are identified with the field of BPST instantons in flat and Taub-NUT

spaces.
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1 Introduction

N = 4 supersymmetric mechanics provides a nice
framework for the study of many interesting features
of higher dimensional theories. At the same time, the
existence of a variety of off-shell A/ = 4 irreducible
linear supermultiplets in d = 1 [1, 2, 3, 4, 5] makes
the situation in one dimension even more interesting,
and this is what prompted us to investigate such su-
persymmetric models themselves, without reference
to higher dimensional counterparts. Being a super-
symmetric invariant theory, N’ = 4 mechanics admits
a natural formulation in terms of superfields living
in a standard and/or in a harmonic superspace [6],
adapted to one dimension [7]. In any case, the pre-
ferred approach for discussing supersymmetric me-
chanics is the Lagrangian one. Being quite useful, the
Lagrangian approach has one subtle point, when we
try to describe the system in an arbitrary gauge back-
ground. While the inclusion of the Abelian gauge
background can be done straightforwardly [7], the
non-Abelian background reqiures new ingredients —
isospin variables — which have to be included in
the description [8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
These isospin variables become purely internal de-
grees of freedom after quantization and form an aux-
iliary N/ = 4 supermultiplet, together with the aux-
iliary fermions.

There are various approaches for introducing such
auxiliary superfields and couplings with them, but
until now all constructed models have been restricted
to have conformally flat sigma models in the bosonic
sector. This restriction has an evident source — it
has been known for a long time that all linear N' = 4
supermultiplets can be obtained through a dualiza-
tion procedure from the A/ = 4 “root” supermulti-
plet — the A/ = 4 hypermultiplet [18, 19, 20, 21, 22,
23], while the bosonic part of the general hypermulti-
plet action is conformal to the flat one. The only way

to escape this flatness situation is to use nonlinear su-
permultiplets [24, 25, 26], instead of linear ones.

The main aim of this paper is to construct the
Lagrangian formulation of N' = 4 supersymmetric
mechanics on conformal to hyper-Kéahler spaces in
non-Abelian background gauge fields. To achieve this
goal we combine two ideas

e We introduce the coupling of matter supermulti-
plets with an auxiliary fermionic supermultiplet
U containing on-shell four physical fermions
and four auxiliary bosons playing the role of
isospin variables. The very specific coupling
results in a component action which contains
only time derivatives of the fermionic compo-
nents present in WY, Then, we dualize these
fermions into auxiliary ones, ending up with the
proper action for matter fields and isospin vari-
ables. This procedure was developed in [11].

e As the next step, starting from the action for
the N/ = 4 tensor supermultiplet [27, 28] cou-
pled with the superfield ¢, following [24], we
dualize the auxiliary component A into a fourth
physical boson, finishing with the action having
a geometry conformal to the hyper-Ké&hler one
in the bosonic sector.

The resulting action contains a wide class of NV = 4
supersymmetric mechanics describing the motion of
an isospin-carrying particle over spaces with non-
trivial geometry and in the presence of a non-Abelian
background gauge field. In two examples that we dis-
cuss in details, these backgrounds correspond to the
field of the BPST instanton in the flat and Taub-
NUT spaces. In order to make our presentation self-
sufficient, we include in Section 2 a sketchy descrip-
tion of our construction applied to the linear tensor
and hypermultiplet. We also discuss the relation be-
tween these supermultiplets in the context of our ap-
proach (Section 3), which immediately leads to the
generalized procedure presented in Section 4.
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2 Isospin particles in
conformally flat spaces

One way to incorporate the isospin-like variables in
the Lagrangian of supersymmetric mechanics is to
couple the basic superfields with auxiliary fermionic
superfields %, U4, which contain these isospin vari-
ables [11]. Such a coupling, being written in a stan-
dard N' = 4 superspace, has to be rather special, in
order to provide a kinetic term of the first order in
time derivatives for the isospin variables and to de-
scribe the auxiliary fermionic components present in
U% W,. Following [11], we introduce the coupling of
auxiliary ¥ superfields with some arbitrary, for the
time being, N' = 4 supermultiplet X as

1 -
S.=—— [ dtd*0 (X TP,
32/ (X+9) (2.1)

g = const.

The ¥ supermultiplet is subjected to the irreducible
conditions [5]
DUl =0, D'W?+ DU =0, D,T?=0, (2.2)

and thus it contains four fermionic and four bosonic
components

Y& =09, i =-DW?|, a; =D;¥, (2.3)

where the symbol | denotes the § = # = 0 limit and
N = 4 covariant derivatives obey standard relations

{D",D;} =2i5}0;. (2.4)

It has been demonstrated in [11] that if the N' = 4
superfield X is subjected to the constraints [29, 5]

D'D;X =0, D;D'X =0, [D',D;] X =0, (2.5)

then the component action which follows from (2.1)
can be written as

Se = /dt [—(z+9) (p'0* = p?p") -
%(33 +g) (@' — u'ig) + %Aijulﬂj + (26)

1 , 1

i (a'p® +u'p?) + 577z (wip' +u;ip") |,

where the new fermionic components p®, ps are de-
fined as

p* =% pa = va. (2.7)
The components of the superfield X entering the ac-
tion (2.6) have been introduced as

x:X\, AijZA(ij):
77i = _ZDZX‘v

[Divbj] X‘v
X,

(2.8)

b|l\3|>—l

M = —1
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What makes the action (2.6) interesting is that, de-
spite the non-local definition of the spinors p%, pa
(2.7), the action is invariant under the following
N = 4 supersymmetry transformations:

(5p1 = —Ei’L._Li, (5p2 = Giﬁi,
dul = —2ie'pt + 2Ep?,  Su; = —2ieip + 2igp?,
dx = —ien' — i, On' = —&d — iéjAé,

(5772 = —Qi’ + ’iEjAg, 5A2J = _G(iﬁj) + E(i’ﬁj). (29)
In the action (2.6) the fermionic fields p%, 54 are aux-
iliary ones, and thus they can be eliminated by their
equations of motion

1 1 2 1

= _nat, -
P = 2wt g) p 20z + g)

7' (2.10)
Finally, the action describing the interaction of ¥ and
X supermultiplets acquires a very simple form

S, = i/dt {—z(ﬂc +9) (ulal — uzal) +

o 1 o o
Ajju'? + mniﬁj (v +u/a)| . (2.11)

Thus, in the fermionic superfields ¥ only the bosonic
components u’, @;, entering the action with a kinetic
term linear in time-derivatives, survive. After quan-
tization, these variables become purely internal de-
grees of freedom.

In order to be meaningful, action (2.1) has to be
extended by the action for the supermultiplet X it-
self. If the superfield X obeying (2.5) is considered
as an independent superfield, then the most general
action reads

1

§=5,+ 5=

dtd*0F(X) +S., (2.12)

where F(X) is an arbitrary function of X. In this
case the components A;; (2.8) are auxiliary ones, and
they have to be eliminated by their equations of mo-
tion. The resulting action describes AN/ = 4 super-
symmetric mechanics with one physical boson = and
four physical fermions 7°, 7; interacting with isospin
variables u’, @;. This is the system that has been
considered in [8, 10, 11].

It is clear that treating the scalar bosonic super-
field X as an independent one is too restrictive, be-
cause the constraints (2.5) leave in this supermulti-
plet only one physical bosonic component x, which
is not enough to describe the isospin particle. In
the present approach, a way to overcome this limi-
tation was proposed in [14, 17]. The key point is to
treat superfield X as a composite one, constructed
from A = 4 supermultiplets with a larger number
of physical bosons. The two reasonable superfields
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from which it is possible to construct superfield X are
N = 4 tensor supermultiplet V* [27, 28] and a one-
dimensional hypermultiplet @** [18, 19, 20, 21, 7].

Tensor supermultiplet

The N = 4 tensor supermultiplet is described by the
triplet of bosonic A/ = 4 superfields V¥ = V¥ sub-
jected to the constraints
DYk — Dlipik) — g (Vij)T =V, (2.13)
which leave in V¥ the following independent compo-
nents:
@ = _1(em, Vi, X = 1DV, (214
v __5(0)1' j|7 _g j‘v ( )
_ 1— . i
M= DV, A= %DlDJVijL

Thus, its off-shell component field content is (3,4, 1),
i.e. three physical v* and one auxiliary A bosons and

four fermions A, \; [27, 28]. Under N = 4 supersym-
metry these components transform as follows:

Sv® = i€ (6N — iN (o) g,

0A = éz/\z — €ij\i,

N = iefA+ € (a“)§1§“, (2.15)
o\, = —igA+ (O’a)géj’(}a.
Now one may check that the composite superfield

1 1

X=—-= , (2.16)
VI Vyepa
where V¢ = —%(a“)ijV;, obeys (2.5) in virtue of

(2.13). Clearly, now all components of the X super-
field, i.e. the physical boson z, fermions 7*,7; and
auxiliary fields A% (2.8) are expressed through the
components of the V¥ supermultiplet (2.14) as

1 ’ v . v® -
- P~ (\o®)? 0 = — ay 6
x |'U|7 ’r} "U‘?)( o ) ) ’r} |U|3 (U )
a,b a(~a\i
i v® anis b v ()]
1 abc, a c\t 1 7 N Y
OB bevib (o)t + B (SENF X = A7)

In what follows, we will also need the expression
for A} components (2.17) in terms of 7', 7; fermions
(2.8), which reads

i va(aa); 1 abc,.a br __c\i

)

7= —1 1 a a=
ol (n'm; +ny7") — ol (non) v*(a®)i.

Finally, one should note that, while dealing with the
tensor supermultiplet V" one may generalize the S,
action (2.12) to have the full action in the form

S =8, + 5. = —31—2/dt POFV) + S, (2.19)

where F(V) is now an arbitrary function of V. After
eliminating the auxiliary component A in the compo-
nent form of (2.19) we will obtain the action describ-
ing the N' = 4 supersymmetric three-dimensional
isospin particle moving in the magnetic field of a
Wu-Yang monopole and in some specific scalar po-
tential [14]'.

Hypermultiplet

Similarly to the tensor supermultiplet one may con-
struct the superfield X starting from the A" = 4 hy-
permultiplet. The N' = 4 , d = 1 hypermultiplet is
described in A = 4 superspace by the quartet of real
N = 4 superfields Q' subjected to the constraints

D(in)Oé =0, ﬁ(in)Oé =0,
@) = Q. (2.20)

This supermultiplet describes four physical bosonic
and four physical fermionic variables

, . , , )
1 — Qla , 1 — _ZD’L ( i ) ,
q l, n IeITYaPN \

— 2
i = —iD; (T’ag ) (2.21)
Jou

and it does not contain any auxiliary components [7,
18, 19, 20, 21].

One may easily check that if we define the com-
posite superfield X as

_ 2
N Qia Qia ’

then it will obey (2.5) in virtue of (2.20) [5]. For the
hypermultiplet Q* we defined the fermionic compo-
nents to coincide with those present in the X super-
field (2.8), while the former auxiliary components A;;
are now expressed via the components of Q' as

X (2.22)

4i . .
Aij = - (quqkﬂ)g (q?qjoc + (I?Qia) -

(4" qrp) (

5 niT; + n7i) - (2.23)

As in the case of the tensor supermultiplet, one may

write the full action with the hypermultiplet self-
interacting part S, added as

S=5,+8. = —31—2/dt d6F(Q) + 5., (2.24)

LAn alternative description of the same system has recently been constructed in [16]
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where now F(Q) is an arbitrary function of Q™. The
action (2.24) describes the motion of an isospin par-
ticle on a conformally flat four-manifold carrying the
non-Abelian field of a BPST instanton [17]. This
system has recently been obtained in different frame-
works in [13, 15].

To close this Section one should mention that,
while dealing with the tensor supermultiplet V% and
the hypermultiplet Q. the structure of the action
Se (2.1) can be generalized to be [17]

1 -
S, = ~3 /dt d*0 Yo, (2.25)

with Y obeying

A3Y =0
AY =0

in case of the tensor supermultiplet

in case of the hypermultiplet. (2.26)

Here /\,, denotes the Laplace operator in a flat Eu-
clidean n-dimensional space. Clearly, our choice
Y = X + g with X defined in (2.16), (2.22) corre-
sponds to spherically-symmetric solutions of (2.26).

3 From the hypermultiplet to
the tensor supermultiplet
and back

One of the most attractive features of our approach is
the unified structure of the action S, (2.1) which has
the same form for any type of supermultiplets that
we are using to construct a composite superfield X.
This is what opens the way to relate the different sys-
tems via duality transformations. Indeed, it has been
known for a long time [1, 2, 3, 4, 22, 23] that in one
dimension one may switch between supermultiplets
with a different number of physical bosons, by ex-
pressing the auxiliary components through the time
derivative of physical bosons, and vice versa. Here
we will use this mechanism to obtain the action of
the tensor multiplet (2.19) from the hypermultiplet
(2.24) action and then, alternatively, action (2.24)
(with some restrictions) from (2.19). In what follows,
to make some expressions more transparent, we will
use, sometimes, the following stereographic coordi-
nates for the bosonic components of hypermultiplet
(2.21) and tensor supermultiplet (2.14):

e%(u7i¢) e%(u7i¢)
¢\ = _ 21 _ _
V1+AA V1+AA
P2 = (qn)T, = (qlz)T7 (3.1)
vl — 9 A v2— _9i % _7},
1+ AA 1+AA
1—AA
V2 = e — . (3.2)
1+ AA

One may easily check that these definitions are com-
patible with (2.16) and (2.22).

16

From hypermultiplet to tensor
supermultiplet

The main ingredient for getting the tensor supermul-
tiplet action from the hypermultiplet one is provided
by the expression for “auxiliary” components A% in
terms of the components of superfields V¥ and Q' in
(2.18) and (2.23), respectively. Identifying the right
hand sides of (2.18) and (2.23), one may find the ex-
pression of the auxiliary component A present in the
superfield V¥ in terms of components of Q%°:

A =i(q"q +d%q) +

1 « il _j = =

16" wa)® @ (0l + i) - (3.3)
Another way, and probably the easiest one, to check
the validity of (3.3) is to use the following superfield
representation for the tensor supermultiplet [7]:

This “composite” superfield V¥ automatically obeys
(2.13) as a consequence of (2.20).

Being partially rewritten in terms of components
(3.1), expression (3.3) reads

AR — AA

.: _uA_i_— 3.5
o= "TTAR (3:5)

ie’“(q’“‘qm)2 g ¢’ (nim; +n;7;) -
Thus, we see that, in order to get the action for the
tensor supermultiplet, one has to replace, in the com-
ponent action for the hypermultiplet, the time deriva-
tive of field ¢ by the combination on the r.h.s. of
(3.5), which includes the new auxiliary field A. An
additional restriction comes from the S, part of the
action (2.24), which now has to depend only on the
“composite” superfield V¥ (3.4). If it is so, then in
the full action (2.24) component ¢ will enter only
through ¢, and the discussed replacement will be
valid.

From the tensor supermultiplet to the
hypermultiplet

It is clear that the backward procedure also exists.
Indeed, from (2.17) and (2.23) one may get the fol-
lowing expression for A:

1 0

A== |d+ —F(Ao\) — Byog .
7 o+ aUaf(/\a A) Val (3.6)
where
1 va(vz + |v])
f = T and 9 B = T T3 _oN
o] T )]
By =l tl) g (3.7)

(vf +v3)[o]”
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It is easy to check that in the coordinates (2.14), (3.2)
we have
AR — AR
B,vy = -i———— and

lv| = e (3.8)
1+AA

in full agreement with (3.5). Thus, to get the hy-
permultiplet action (2.24) from that for the tensor
supermultiplet (2.19), one has to dualize the auxil-
iary component A into a new physical boson ¢ using
(3.6). Of course, we do not expect to get the most
general action for the hypermultiplet interacting with
the isospin-containing supermultiplet ¥, because the
S, part in (2.19) depends only on the Vi supermul-
tiplet. But we will surely get a particular class of
hypermultiplet actions with one isometry, with the
Killing vector 0.

4 Hyper-Kahler sigma model
with isospin variables

The consideration we carried out in the previous Sec-
tion has one subtle point. Indeed, if we rewrite (3.7)
as

. - 0
¢ - Bai]a - f,a()\o-aA) + an f,a = anv (41)

a

then the r.h.s. of (4.1) has to transform as a full
time derivative under supersymmetry transforma-
tions (2.15). Omne may check that it is so, if f and
B, are chosen as in (3.7). However, this choice is
not unique. It has been proved in [24] that the r.h.s.
of (4.1) transforms as a full time derivative, if the
functions f and B, satisfy the equations

A?)f = f,aa =0, f,a = 6achc,b~ (42)
Thus, one may construct a more general action for
four-dimensional A/ = 4 supersymmetric mechanics
using the component action for the tensor supermul-
tiplet and substituting there the new dualized version
of the auxiliary component A (4.1).

Integrating over theta’s in (2.19) and eliminating
the auxiliary fermions p® (2.10), (2.17), we will get
the following component action for the tensor super-
multiplet:

g = %/dt [F (bata +A%) +1 (618 - €'6,) +

. F, F, 1 AsF
1€abe—= Ia ’sz —i—= Ia E A— GWEQEG —
21 (v'w; — w'w;) +

1+ 3g|v|
S - bt NPT o )
P T glo])2foft ele) ()

g

4— ([0
P+ glo)o] (eTe) =

T el A+
dﬁeabcva@ﬂc} , (4.3)
where
F = A3 F(V),
I = %(waaw), (4.4)
£ = —i(0%€),

and the re-scaled fermions and isospin variables are
chosen to be

. . 1
=VF )\, w'=,/g+ ol u'. (4.5)
v
Substituting (4.1) into (4.3), we obtain the resulting
action

S = %/dt {F(baija = (¢ B Ua)2>+
i (f & — ) — 2i (w'w; — w'w;) —

|:f6 ¢ B 'Up) + €abc’l.1c:| .

F

7(1

4
=Y+ 5, b>+
F (1 + glv)|v]?

1+ 3g]v|

T+ gl el (03)
4g

CETRETAS

1 (Ff  Ffufa

3F?2 f f?
Action (4.6) is our main result. It describes the mo-
tion of a N' = 4 supersymmetric four-dimensional
isospin carrying particle in a non-Abelian field of
some monopole. The metric of this four-dimensional
space is defined in terms of two functions: the bosonic
part of our pre-potential F' (4.4) and the harmonic
function f (4.2). The supersymmetric version of the
coupling with the monopole (second line in action
(4.6)) is defined by the same harmonic function f
and the coupling constant g. In the more general
case (2.25), we will have two harmonic functions —
f and Y, besides the pre-potential F'.

Among all possible systems with action (4.6)
there is a very interesting sub-class which corre-
sponds to hyper-Kéhler sigma models in the bosonic
sector. This case is distinguished by the condition

/—\

RIS

o) + (4.6)

— %AgF) EbEb] .

F=f. (4.7)

Clearly, in this case the bosonic kinetic term of ac-
tion (4.6) acquires the familiar form of the one dimen-
sional version of the general Hawking-Gibbons solu-
tion for four-dimensional hyper-Ké&hler metrics with

17
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one triholomorphic isometry [30]:

Sun = 5 [t | Fiutu + 3 (6= Bu)]

Asf =0, rot B=V}/. (4.8)

It is worth noting that the bosonic part of N' = 4 su-
persymmetric four dimensional sigma models in one
dimension does not necessarily have to be a hyper-
Kéhler one. This fact is reflected in the arbitrariness
of the pre-potential F' in action (4.6). Only under
the choice F' = f is the bosonic kinetic term reduced
to the Gibbons-Hawking form (4.8). Let us note that
for hyper-Kéhler cases the four-fermionic term in ac-
tion (4.6) disappears. This fact has been previously
established in [24]. Now we can see that the addi-
tional interaction with the background non-Abelian
gauge field does not destroy these nice properties.

Among all possible bosonic metrics one may eas-
ily find the following interesting ones.

Conformally flat spaces

There are two choices for the function f which corre-
spond to the conformally flat metrics in the bosonic
sector.

The first choice is realized by

1
f=—. (4.9)
|v]
This is just the case we have considered in Section 2.
The gauge field in this case is the field of BPST in-
stanton [17].

Next, an almost trivial solution, also correspond-
ing to the flat metrics in the bosonic sector, is selected
by the condition

f = const., B, =0. (4.10)
Note that the relation with the tensor supermulti-
plet, in this case, is achieved through the following
“composite” construction of V¥ [31]

Vi = glie), (4.11)

One may check that the constraints on V% (2.13) fol-
low directly from (4.11) and (2.20).

Let us recall that in both these cases we have not
specified the pre-potential F' yet. Therefore, the full
metrics in the bosonic sector is defined up to this
function.

Taub-NUT space

One should stress that the previous two cases are
unique, because only for these choices of f can the
resulting action (4.6) be obtained directly from the
hypermultiplet action (2.24). With other solutions

18

for f we come to the theory with the nonlinear ' = 4
hypermultiplet [24, 25]. Among the possible solu-
tions for f which belong to this new situation, the
simplest one corresponds to one center Taub-NUT
metrics with

D2

o] P1,p2 = const. (4.12)
v

f=p+

In order to achieve the maximally symmetric case,
we will choose these constants as

f=g+|11}—|. (4.13)

With such a definition, f coincides with the function

pr=g9, p2=1

1
Y =g+ ol (2.25) entering in our basic action S,
v

in (2.1), (2.16). To get the Taub-NUT metrics, one
has also to fix the pre-potential F' to be equal to f.
The resulting action which describes the NV = 4 su-
persymmetric isospin carrying particle moving in a
Taub-NUT space reads

1 1
STaubeUT =3 /dt g+ VqUq +
8 |v]

1 : 2 S
< | ¢ — Bata) +1i é‘lgi_gzgi -
(g + ﬁ) ( ) ( )
21 (’uﬂ?ﬂl - w’?ﬂl) + W .
v .
———~ (¢ — B ) — €apetvtec | (Zq —41,) +
A
4(1 + 3gJv])
@+ gl [P (vals) (03) —
49
(1+glv])? (I“E“)] ' (4.14)

The bosonic term in the second line of this action can
be rewritten as

w4528 (i) -

dlog f .
eabca—vbvc] Ia7 (415)

where f is defined in (4.13). In this form the vec-
tor potential A, coincides with the potential of a
Yang-Mills SU(2) instanton in the Taub-NUT space
[32, 33], if we may view I,, as defined in (4.4), as
proper isospin matrices. The remaining terms in the
second and third lines of (4.14) provide a ' = 4
supersymmetric extension of the instanton.

Finally, to close this Section, let us note that
more general non-Abelian backgrounds can be ob-
tained from the multi-centered solutions of the equa-
tion for the harmonic function Y (2.26), which de-
fined the coupling of the tensor supermultiplet with
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auxiliary fermionic ones. Thus, the variety models we
constructed are defined through three functions: pre-
potential F (2.19) which is an arbitrary function, 3D
harmonic function Y (2.25), (2.26) defining the cou-
pling with isospin variables and, through the again
3D harmonic function f (4.1), (4.2), which appeared
during the dualization of the auxiliary component of
the tensor supermultiplet. It is clear that we can
always redefine F' to be F = F'f. Thus, all our mod-
els are conformal to hyper-Kéahler sigma models with
N = 4 supersymmetry describing the motion of a
particle in the background non-Abelian field of the
corresponding instantons.

5 Conclusion

In this paper we have constructed the Lagrangian for-
mulation of N' = 4 supersymmetric mechanics with
hyper-Kéhler sigma models in the bosonic sector in
the non-Abelian background gauge field. The result-
ing action includes the wide class of N' = 4 supersym-
metric mechanics describing the motion of an isospin-
carrying particle over spaces with non-trivial geom-
etry. In two examples that we discussed in detail,
the background fields are identified with the field of
BPST instantons in the flat and Taub-NUT spaces.

The approach used in the paper has utilized two
ideas: (i) the coupling of matter supermultiplets with
an auxiliary fermionic supermultiplet ¥¢ contain-
ing on-shell four physical fermions and four auxil-
iary bosons playing the role of isospin variables, and
(ii) the dualization of the auxiliary component A of
the tensor supermultiplet into a fourth physical bo-
son. The final action that we constructed contains
three arbitrary functions: the pre-potential F, a 3D
harmonic function Y which defines the coupling with
isospin variables and, again 3D harmonic, a function
f which appeared during the dualization of the aux-
iliary component of the tensor supermultiplet. The
usefulness of the proposed approach is demonstrated
by the explicit example of the simplest system with
non-trivial geometry — the N' = 4 supersymmetric
action for one-center Taub-NUT metrics. We identi-
fied the background gauge field in this case, which
appears automatically in our framework, with the
field of the BPST instanton in the Taub-NUT space.
Thus, one may hope that the other actions will pos-
sess the same structure.

Of course, the presented results are just prelim-
inary in the quest for full understanding of N’ = 4
supersymmetric hyper-Kéahler sigma models in non-
Abelian backgrounds. Interesting questions that re-
main unanswered include, in particular:

e The full analysis of the general coupling with
an arbitrary harmonic function Y has yet to be
carried out.

e The structure of the background gauge field has
to be further clarified: is this really the field
of some monopole (instanton) for some hyper-
Kahler metrics?

e The Hamiltonian construction is really needed.
Let us note that the Supercharges have to be
very specific, because the four-fermions coupling
is absent in the case of HK metrics!

e It is quite interesting to check the existence of
the conserved Runge-Lenz vector in the fully su-
persymmetric version.

e Explicit examples of other hyper-K&hler metrics
(say, multi-centered Eguchi-Hanson and Taub-
NUT ones) would be very useful.

e Questions of quantization and analysis of the
spectra, at least in the cases of well known, sim-
plest hyper-K&ahler metrics, are doubtless urgent
tasks.

Finally, let us stress that our construction is re-
stricted to the case of hyper-Kéahler metrics with one
translational (triholomorphic) isometry. It will be
very nice to find a similar construction applicable to
the case of geometries with rotational isometry. We
hope this may be done within the approach discussed
in [34].
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