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Root Asymptotics for the Eigenfunctions
of Univariate Differential Operators

B. Shapiro

Abstract

This paper is a brief survey of the research conducted by the author and his collaborators in the field of root asymptotics
of (mostly polynomial) eigenfunctions of linear univariate differential operators with polynomial coefficients.
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1 Objective

Study asymptotic properties of sequences {pn(z)}, of
polynomials/entire functions in z which either
1. are polynomial/entire eigenfunctions of a uni-
variate linear ordinary differential operator with
polynomial coefficients;
or

2. are polynomial solutions of more general pen-
cils of such operators, e.g. homogenized spectral
problems and Heine-Stieltjes spectral problems;
or

3. satisfy a finite recurrence relation with (in gen-
eral) varying coefficients.

2 Basic notions and examples

Definition 1 An operator T =
k∑

i=1

Qi(z)
di

dzi
is

called exactly solvable if degQi(z) ≤ i and there
exists at least one value i such that degQi(z) = i.

Obviously, T (zj) = ajz
j + lower order terms, i.e.

T acts by an (infinite) triangular matrix in the mono-
mial basis {1, z, , z2, . . .} of C[z].

Lemma 1 For any exactly solvable T and suffi-
ciently large n there exists a unique (up to a scalar)
eigenpolynomial pn(z) of degree n.

Typical problem. Given an exactly solvable T de-
scribe the root asymptotics for the sequence of poly-
nomials {pn(z)}.

2.1 Two asymptotic measures

Given a polynomial family {pn(z)} where
deg pn(z) = n we define two basic measures: (i)
asymptotic root-counting measure μ; (ii) asymptotic
ratio measure ν.

Definition 2 Associate to each pn(x) a finite prob-

ability measure μn by placing the mass
1
n
at every

root of pn(x). (If some root is multiple we place at
this point the mass equal to its multiplicity divided
by n.) The limit μ = lim

n
μn (if it exists in the sense

of weak convergence) will be called the asymptotic
root-counting measure of {pn(z)}.

Definition 3 Consider the ratio qn(z) =
pn−1(z)
pn(z)

.

(Assume for simplicity that pn(z) has no multiple

roots and expand qn(z) =
n∑

i=1

κi,n

z − zi,n
.) Associate to

qn(z) the finite complex-valued measure by placing
κi,n at zi,n. Define the asymptotic ratio measure
of the sequence {pn(z)} as

ν = lim
n→∞

νn.

Observation. Supports of μ and ν coincide but ν is
often complex-valued.

2.2 Examples

Below we show the root distribution for p55(z) for 4
different exactly solvable operators

T1 = z(z − 1)(z − I)
d3

dz3
;

T2 = (z − I)(z + I)(z − 2 + 3I)(z − 3− 2I) d4

dz4
;

T3 = (z − I)(z + I)(z − 2 + 3I)(z − 3− 2I)

(z + 3)
d5

dz5
;

T4 = (z2 + 1)(z − 2 + 3I)(z − 3− 2I)(z + 3)

(z + 1 + I)
d6

dz6

of the form Q(z)
dk

dzk
where Q(z) is a monic polyno-

mial of degree k + 1.
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Fig. 1: Roots of p55(z) for the above T ’s

Explanations to Fig. 1. The larger dots show the
roots of the corresponding Q(z) and the smaller dots
are the fifty five roots of the corresponding p55(z).

2.3 Classical prototypes

Theorem 1 (G. Szegö) If {pn(z)} is a family of
polynomials orthogonal w.r.t a positive weight w(z)

supported on [−1, 1] such that
∫ 1
−1
lnw(z) dz < ∞

then the asymptotic root-counting measure has the

density
1

π
√
1− z2

, x ∈ [−1, 1].

Theorem 2 (G. Szegö) If {pn(z)} is a family of
polynomials orthogonal w.r.t a weight w(z) sup-

ported on [−1, 1] such that
∫ 1
−1

lnw(z) dz√
1− z2

> −∞
then the asymptotic ratio measure has the density
2
√
1− z2

π
, z ∈ [−1, 1].

3 First results

3.1 Non-degenerate exactly solvable
operators

The next subsection is based on [10, 2].
Definition 4 The Cauchy transform of a (com-

plex-valued) measure ρ satisfying
∫
C
dρ(ξ) < ∞ is

given by

Cρ(z) =
∫
C

dρ(ξ)
z − ξ

.

Example. If ρ(z) =
1

π
√
1− z2

, z ∈ [−1, 1] then

Cμ =
1√

z2 − 1
in C \ [−1, 1] and Cν =

2

z +
√

z2 − 1
in C \ [−1, 1].

Definition 5 An exactly solvable operator

T =
k∑

i=1

Qi(z)
di

dzi
is called non-degenerate if

degQk(z) = k.

Proposition 1 Assuming that Ψ(z) = lim
n→∞

p′n(z)
npn(z)

exists in some open neighborhood Ω of C one gets
that Ψ(z) satisfies in Ω the algebraic equation

Qk(z)Ψk(z) = 1.

Theorem 3 (H. Rullg̊ard) Let Qk(z) be a monic
degree k polynomial. Then there exists a unique prob-
ability measure μQ such that
1) suppμQ is compact;
2) its Cauchy transform Cμ satisfies the equation

Qk(z)Ck
μ(z) = 1 almost everywhere in C.
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Fig. 2: The measure μQ before and after the straightening transformation in the case Q(z) = (z − 1)(z − 3)(z − I)

Theorem 4 (Main result, see Fig. 2) In the
above notation
1) suppμQ is a curvilinear tree which is straight-

ened out by the analytic mapping

ξ(z) =
∫ z

a

dz
k
√

Qk(z)
.

2) suppμQ contains all the zeros of Qk(z) and is
contained in the convex hull of those.
3) There is a natural formula for the angles be-

tween the branches, and the masses of the branches
satisfy Kirchhoff law.

Below we show an example of such a measure in a
proper scale and with all angles between its vertices
marked, see Fig. 3.
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Fig. 3: Example of μQ with angles

Problem 1 Is it true that the support of the measure
μQ is a subset of the Stokes lines of the corresponding

operator Q
dk

dzk
?

Some partial results in this direction can be found
in [12].

3.2 Degenerate exactly solvable
operators

This subsection is based on [1].
Definition 6 An exactly solvable T of order k is
called degenerate iff degQk < k.

Classical examples: T = z
d2

dz2
+ (az + b)

d

dz
, T =

d2

dz2
+ (az + b)

d

dz
leading to Laguerre resp. Hermite

polynomials.

Proposition 2 The union of all roots of all polyno-
mial eigenfunctions of an exactly solvable T is un-
bounded if and only if T is degenerate.

Problem 2 Given a degenerate T with the family
of eigenpolynomials {pn(z)} how fast does the maxi-
mum rn of the modulus of roots of pn(z) grow?

Conjecture 1 Given a degenerate T =
k∑

j=1

Qj(z)
dj

dzj
denote by j0 the largest j for which

degQj(z) = j. Then

lim
n→∞

rn

nd
= cT

where cT > 0 is a positive constant and

d := max
j∈[j0+1,k]

(
j − j0

j − degQj

)
.

Corollary 1 (of the latter Conjecture)
The Cauchy transform C(z) of the asymptotic root
measure μ of the scaled eigenpolynomial qn(z) =
pn(n

dz) of a degenerate T satisfies the following al-
gebraic equation for almost all complex z:

zj0Cj0(z) +
∑
j∈A

αj,degQj z
degQj Cj(z) = 1,

where A is the set consisting of all j for which the

maximum d := max
j∈[j0+1,k]

( j − j0
j − degQj

)
is attained,

i.e. A = {j : (j − j0)/(j − degQj) = d}.
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Fig. 4: Examples of the root distributions of scaled eigenpolynomials to degenerate exactly solvable operators

The latter equation for the Cauchy transform (if
true) leads to very detailed information about the
support of the asymptotic root-counting measure for
the sequence of scaled eigenpolynomials. We illus-
trate this in Fig. 4.

4 Homogenized spectral
problem for
non-degenerate T

This section is based on [6]. An observant reader
has noticed that so far only the leading coefficient
of an exactly solvable operator effected the asymp-
totic root-counting measure, which makes the situa-
tion somewhat unsatisfactory.
To make the whole symbol of an operator impor-

tant we consider (following the classical pattern of
e.g. W. Wasow, M. Fedoryuk) the homogenized spec-
tral problem of the form

Tλ =
k∑

i=0

Qi(z)λ
k−i di

dzi
,

where each Qi(x) = aiiz
i+ ai,i−1z

i−1+ . . . is a poly-
nomial of degree i.
Definition 7 A non-degenerate T is called of gen-

eral type iff degQk(z) = k and
k∑

i=0

aiiλ
k−i = 0 has

k distinct zeros.

Proposition 3 If T is of general type then
1) for all sufficiently large n there exist exactly k

distinct values λn,j , j = 1, . . . , k of the spectral pa-
rameter λ such that the operator Tλ has a polynomial
eigenfunction pn,j(z) of degree n.
2) Asymptotically λn,j ∼ nλj where λ1, . . . , λk

is the set of roots of the algebraic equation
k∑

i=0

ai,ix
k−i = 0.

Conjecture 2 If T is of general type and all
λ1, . . . , λk have distinct arguments then for each j =
1, . . . , k ∃! probability measure μj with compact sup-
port whose Cauchy transform Cj(z) satisfies almost
everywhere in C

k∑
i=1

Qi(z)(λjCj(z))
i = 0.

Conjecture 3 Cj(z) = lim
n→∞

p′n,j(z)

λn,jpn,j(z)
outside the

support of μj which is the union of finitely many seg-
ments of analytic curves forming a curvilinear tree.

Observation. Near ∞ ∈ CP1 the Cauchy transforms
λ1C1(z), . . . , λkCk(z) are independent sections of the
symbol equation of Tλ considered as a branched cover
over CP

1.

Problem 3 Find an explicit description of (the sup-
port) of the measures μi. Is there any relation of
these measures to the periods of the plane curve

k∑
i=1

Qi(z)y
i = 0?

5 Heine-Stieltjes theory

This section is based on [11]. Take an arbitrary uni-

variate linear differential operator T =
k∑

i=0

Qi(z)
di

dzi

with polynomial coefficients and set

r = max
i
(degQi(z)− i).

Definition 8 If r ≥ 0, degQk(z) = k+ r and Qk(z)
has at least two distinct roots we call T a general
Lame-type operator.

80



Acta Polytechnica Vol. 50 No. 5/2010

0 1 2 3 4 5 6

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

-1

0

1

2

3

4

0 1 2 3 4 5 6

-1

0

1

2

3

4

Fig. 5: Three root-counting measures and their union for a homogenized spectral problem with an operator of order 3
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Fig. 6: Examples of μQ’s for T = (z2 + 1)(z + 2I − 3)(z − 3I − 2) d3

dz3

Consider the following multi-parameter spectral
problem. For a given non-negative integer n find all
polynomials V (z) of degree at most r such that the
equation

T (p(z)) + V (z)p(z) = 0,

has a polynomial solution p(z) of degree n. (Classi-
cally, p(z) is called a Stieltjes polynomial and V (z)
is called a Van Vleck polynomial.)

Proposition 4 Under the above assumptions for

any sufficiently large n there exist exactly

(
n+ r

r

)
degree n Stieltjes polynomials pn,j(z) and corre-
sponding Van Vleck polynomials Vn,j(z).

Proposition 5 If a sequence {Ṽn,jn(z)}, n = 1, . . . ,
of scaled Van Vleck polynomials converges to some

polynomial Ṽ (z) then the sequence of finite measures
μn,j of the corresponding family of eigenpolynomials
{pn,jn(z)} converges to a measure μ

Ṽ
satisfying the

properties:
a) suppμ

Ṽ
is a forest of curvilinear trees;

b) the union of the leaves of suppμ
Ṽ
coincides

with the union of all zeros of Qk(z) and those of Ṽ (z).
c) suppμ

Ṽ
is straightened out by the transforma-

tion given by ∫ z

a

Ṽ (z)dz
Qk(z)

.

Explanations to Fig. 6 and 7. In Fig. 6 we give two
examples of different Van Vleck polynomials V (z)
and the corresponding Stieltjes polynomials p(z).
The average size dots are the 4 roots of the poly-
nomial Q(z) = (z2 + 1)(z + 2I − 3)(z − 3I − 2), the
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unique large dot is the only root of V (z) (which is lin-
ear in this case). Small dots show the roots of p(z).
In Fig. 7 we show the union of all roots of p(z) of
degree 25 for the same problem.
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Fig. 7: Union of μQ’s for the above T

6 Schrödinger operator with
polynomial potential

This section is based on [7, 8]. Consider the opera-

tor H = − d2

dz2
+ P (z) where P (z) = z2l +

2l−1∑
i=0

aiz
i

is a monic polynomial of even degree with real coef-
ficients. It is well-known that the classical spectral
problem

H(y) = λy (1)

where y belongs to L2(R) has a discrete and simple
spectrum 0 < λ0 < λ1 < λ2 < . . . < λn < . . . Denote
by φ0(z), φ1(z), . . . , φn(z), . . . the sequence of the cor-
responding eigenfunctions. These eigenfunctions are
real entire functions of order l+ 1 and φn(z) has ex-
actly n real zeros. Set ψn(z) = φn(

2l
√

λnz) which we
call the scaled n-th eigenfunction.
The Stokes graph of any complex polynomial P (z)

is the following object. Each root of P (z) is called a
turning point. A (local) Stokes line of P (z) is a max-
imal segment of the real analytic curve containing

at most two turning points (finite or infinite) which
solves the equation:

� ξz0(z) = 0 where (2)

ξz0(z) =
∫ z

z0

√
P (u) du = 0,

with respect to z, where z0 is one of the turning
points of P (z). The Stokes graph STP of the polyno-
mial P (z) is the union of all its local Stokes curves. A
local Stokes line connecting two finite turning points,
i.e. two roots of P (z) is called short. (The Stokes
graph ST (P ) of a generic P (z) has no short Stokes
lines.)
Proposition 6 For a given positive integer l the
Stokes graph ST (z2l − 1) consists of
1) l short Stokes lines for l odd and l − 1 short

Stokes lines for l even connecting all pairs of the roots
of z2l − 1 which are symmetric w.r.t the imaginary
axis;
2) for l odd each root of z2l − 1 is connected by

2 infinite Stokes lines to ∞. More exactly, the 2
infinite Stokes lines passing through the root e

πik
l ,

k = 0, . . . , 2l − 1 are tangent at ∞ to the Stokes rays

having the nearest slope to
πik

l
;

3) for l even each root of z2l − 1 except for ±i
is connected to ∞ by 2 infinite Stokes lines with the
same property as above. The roots ±i have 3 infinite
Stokes lines each.

Theorem 5 For any monic polynomial PC(z) of
even degree the sequence of meromorphic func-

tions {Cn(z)} =
{

ψ′
n(z)

nψn(z)

}
converges to C(z) =

−Kl

√
z2l − 1 uniformly on any compact set lying in

the domain C \UCl, where Kl =

√
πΓ
(
3l+1
2l

)
Γ
(
2l+1
2l

) . (Here
by −

√
z2l − 1 we mean the branch which is negative

for positive z > 1. Also UCl is a certain subset of
local Stokes lines marked by bold on Fig. 8.)

�� �� ��

Fig. 8: Stokes lines of z2l − 1 for l = 1, 2, 3
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7 Finite recurrences
This section is based on [4]. Consider a finite recur-
rence of length (k + 1) given by

pn+1(z) = Q1(z)pn(z) + . . .+Qk(z)pn−k+1(z),

with polynomial or rational coefficients
{Q1(z), . . . , Qk(z)} uniquely determined by the ini-
tial k-tuple {p0(z), . . . , pk(z)}.
Theorem 6 There exists a finite subset Θ ⊂ C de-
pending on the initial k-tuple and a curve Σ depend-
ing on the recurrence such that the asymptotic ratio

Ψ(z) = lim
n→∞

pn+1(z)
pn(z)

exists and satisfies the symbol

equation

Ψk(z) = Q1(z)Ψk−1(z) + . . .+Qk(z) (∗)

in C \ (Σ ∪ Θ). Here Σ is the so-called Stokes dis-
criminant of (∗) which is the set of all z for which
the equation (∗) has at most two roots with the same
and maximal absolute value.
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Fig. 9: Zeros of p31(z) satisfying the recurrence relation
(z+1)pn(z) = (z

2+1)pn−1(z) + (z − 5I)pn−2(z) + (z
3−

1− I)pn−3(z)
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