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Does a Functional Integral Really Need a Lagrangian?

D. Kochan

Abstract

Path integral formulation of quantum mechanics (and also other equivalent formulations) depends on a Lagrangian
and/or Hamiltonian function that is chosen to describe the underlying classical system. The arbitrariness presented in
this choice leads to a phenomenon called Quantization ambiguity. For example both L1 = q̇2 and L2 = eq̇ are suitable
Lagrangians on a classical level (δL1 = δL2), but quantum mechanically they are diverse.
This paper presents a simple rearrangement of the path integral to a surface functional integral. It is shown that the

surface functional integral formulation gives transition probability amplitude which is free of any Lagrangian/Hamiltonian
and requires just the underlying classical equations of motion. A simple example examining the functionality of the
proposed method is considered.

Dedicated to my friend and colleague Pavel Bóna.
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1 A standard path integral
lore

According to Feynman [1], the probability amplitude
of the transition of a system from the space-time con-
figuration (q0, t0) to (q1, t1) is given as follows:

A(q1, t1 | q0, t0) ∝∫
[Dγ̃] exp

{ i

h̄

∫
γ̃

padqa − Hdt
}

. (1)

Here the path-summation is taken over all trajecto-
ries γ̃(t) = (q̃(t), p̃(t), t) in the extended phase space
which are constrained as follows:

γ̃(t0) =
(
q̃(t0) = q0, p̃(t0) – arbitrary, t0

)
,

γ̃(t1) =
(
q̃(t1) = q1, p̃(t1) – arbitrary, t1

)
.

To obtain a proper normalization of the Feynman
propagator, one requires:

δ(q̃0 − q0) =∫
Rn[q1]

dq1A∗(q1, t1 | q̃0, t0)A(q1, t1 | q0, t0) ,

δ(q1 − q0) = lim
t1→t0

A(q1, t1 | q0, t0) .

The first equation asks for the conservation of the
total probability and the second expresses the obvi-
ous fact that no evolution takes place whenever t1
approaches t0.
It is a miraculous consequence (not a require-

ment!) of the propagator definition (1) that it satis-

fies an evolutionary chain rule (Chapman-Kolmogo-
rov equation)

A(q1, t1 | q0, t0) =∫
Rn[q]

dq A(q1, t1 | q, t)A(q, t | q0, t0) ,

whose infinitesimal version is the celebrated Schrö-
dinger equation.
It is a curious fact that Formula (1) was not originally
discovered by Feynman. In his pioneering paper [2]
he arrives at a functional integral in the configuration
space only

A(q1, t1 | q0, t0) ∝∫
[Dq] exp

{ i

h̄

∫
q(t)

L(q, q̇, t)dt
}

. (2)

Later, however, it was shown that this formula repre-
sents a very special case of the most general prescrip-
tion (1). Formula (1) is at the heart of our further
discussion.

2 DeHamiltonianization
A step beyond involves eliminating the Hamiltonian
function H from Formula (1). The price to be paid
for this will be to replace the path summation therein
by a surface functional integration.
Our aim is the transition probability amplitude be-
tween (q0, t0) and (q1, t1). Let us suppose that there
exists a unique classical trajectory in the extended
phase space γcl(t) = (qcl(t), pcl(t), t) which connects
these points (locally this assumption is always satis-
fied). Then for any curve γ̃(t) = (q̃(t), p̃(t), t) which
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enters the path integration in (1), we can assign two
auxiliary curves which we call λ0(s) and λ1(s). They
are parameterized by s ∈ [0, 1] and specified as fol-
lows:

λ0(s) = (q0, π0(s), t0)where

π0(0) = pcl(t0), π0(1) = p̃(t0),

λ1(s) = (q1, π1(s), t1)where

π1(0) = pcl(t1), π1(1) = p̃(t1).

Let us emphasize that neither λ0(s) nor λ1(s) varies
with respect to the q and t coordinates in the ex-
tended phase space. They are allowed to evolve only
with respect to the momentum variables. There are,
of course, infinitely many of such curves, but as we
will see nothing in the theory will be dependent on a
particular choice of λ0(s) and λ1(s).
Using these curves one can write:∫

γ̃

padq
a − Hdt =

∫
γcl

padqa − Hdt+
∮
∂Σ

padqa − Hdt , (3)

where ∂Σ = γ̃ − λ1 − γcl + λ0 is a contour spanned
by four curves γ̃(t), γcl(t), λ0(s), λ1(s) counting their
orientations.
The first integral on the right is the classical action
Scl(q1, t1 | q0, t0). While the contour integral in (3)
can be rearranged to represent a surface integral:∮
∂Σ

padqa − Hdt =

∫
Σ

dpa ∧
(
dqa − ∂H

∂pa
dt
)

− ∂H

∂qa
dqa ∧ dt =:

∫
Σ

Ω . (4)

Surface Σ spanning the contour ∂Σ is understood
here as a map from the parametric space (t, s) ∈
[t0, t1]× [0, 1] to the extended phase space, i.e.

Σ : (t, s) �→
(
qa(t, s), pa(t, s), t(t, s) = t

)
.

Partial derivatives of the initial Hamiltonian function
can be substituted using the velocity-momentum re-
lations and classical equations of motion:

∂H

∂pa
= T abpb

(
= q̇a

)
and

∂H

∂qa
= −Fa

(
= −ṗa

)
.

Here we consider the physically mostly relevant sit-
uation only. In this case the velocities and mo-
menta become related linearly by the metric tensor
Tab(q) (and its inverse) defined by the kinetic energy

T =
1
2
Tabq̇

aq̇b =
1
2
T abpapb of the system, then

Ω = dpa ∧ dqa −
(
T abpadpb − Fadqa

)
∧ dt . (5)

This object represents a canonical two-form in the
extended phase space. It is a straightforward gen-
eralization of the standard closed two-form dθ =
dp ∧ dq − dH ∧ dt to the case when the forces are
not potential-generated.
It is clear that for a given pair of trajectories

(γ̃, γcl) there exists infinitely many Σ surfaces. They
form a set which we call Uγ̃ . Since the surface inte-

gral
∫
Σ
Ω is only boundary dependent and Formulas

(3) and (4) are satisfied, we can write:

exp
{ i

h̄

∫
γ̃

padq
a − Hdt

}
=

e
i
h̄Scl

∞γ̃

∫
Uγ̃

[DΣ] exp
{ i

h̄

∫
Σ

Ω
}
.

Here ∞γ̃ stands for the number of elements pertain-
ing to the corresponding stringy set Uγ̃ . Assuming
no topological obstructions from the side of the ex-
tended phase space,∞γ̃ becomes an infinite constant
independent of γ̃. Taking all of this into account we
can rewrite (1) as follows:

A(q1, t1 | q0, t0) ∝ e i
h̄Scl

∫
U

[DΣ] exp
{ i

h̄

∫
Σ

Ω
}

. (6)

In this formula the undetermined normalization con-
stant ∞ was included into the integration measure
[DΣ] and the path integral over γ̃’s was converted to
the surface functional integral as was promised:∫

[Dγ̃]
∫
Uγ̃

[DΣ] . . . =
∫

⋃
γ̃
Uγ̃

[DΣ] . . . =:
∫
U

[DΣ] . . .

The set U =
⋃
γ̃

Uγ̃ over which the functional integra-

tion is carried out contains all extended phase space
strings which are anchored to the given classical tra-
jectory γcl.
To eliminate Hamiltonian H completely we need

to express Scl(q1, t1 | q0, t0) in terms of the force field.
Such a quantity may not exist in general, however we
will see that in special cases one can recover an appro-
priate analog of Scl(q1, t1 | q0, t0) requiring a certain
behavior of

A(q1, t1 | q0, t0) ∝

e
i
h̄Scl

∫
U

[DΣ] exp
{ i

h̄

∫
Σ

Ω
}

.

in the limit h̄ → 0.
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3 Functionality

A major advantage of the surface functional inte-
gral formulation rests in its explicit independence on
Hamiltonian H . From the point of view of classi-
cal physics, dynamical equations and the force fields
entering them seem to be more fundamental than
the Hamiltonian and/or Lagrangian function, which
provide these equations in a relatively compact but
ambiguous way, see [3]. Therefore from the concep-
tual point of view, Formula (6) gives us transition
probability amplitude from a different and hopefully
new perspective. It is clear that for the potential
generated forces the surface functional integral for-
mula (6) gives nothing new compared to (1), since
in this case Ω is closed and can be represented as
Ω = d(padq

a − Hdt). There are, of course, some hid-
den subtleties which we pass over either quickly or in
silence, however, all of them are discussed in [4].
To show functionality we need to analyze either a

strongly non-Lagrangian system [5] or a weakly non-
Lagrangian one. For the sake of simplicity let us
focus on the second case. To this end, let us consider
a system consisting of a free particle with unit mass
affected by friction:

q̈ = −κq̇ ⇔ Ω = dp ∧ (dq − p dt)− κp dq ∧ dt .

In the considered example, the surface functional
integral can be carried out explicitly (for details
see [4]). At the end one arrives at the path integral
in the configuration space with a surprisingly trivial
result: ∫

U

[DΣ] exp
{ i

h̄

∫
Σ

Ω
}

∝

exp
{

− i

h̄

t1∫
t0

(
1
2
q̇2cl − κpclqcl

)
dt
}

×

∫
[Dq] exp

{ i

h̄

t1∫
t0

(
1
2
q̇2 − κpclq

)
dt
}

.

If we define Scl to be

Scl(q1, t1 | q0, t0) =

t1∫
t0

(
1
2
q̇2cl − κpclqcl

)
dt , (7)

then

A(q1, t1 | q0, t0) ∝∫
[Dq] exp

{ i

h̄

t1∫
t0

(
1
2
q̇2 − κpclq

)
dt
}

and in the classical limit h̄ → 0 we arrive at the sad-
dle point equation which is specified by the functional

term in the exponent above:

q̈ = −κq̇cl .

This differential equation is different from the equa-
tion q̈ = −κq̇ that we started with initially, but
both of them coincide when a solution q(t) satisfy-
ing q(t0) = q0 and q(t1) = q1 is looking for. In the
present situation we gain:

Scl =
κ

4
(q1 − q0)

(q0 + 3q1)e−κt1 − (q1 + 3q0)e−κt0

e−κt0 − e−κt1

and

A(q1, t1|q0, t0) =
√

κ

4πih̄ tanh κ
2 (t1 − t0)

e
i
h̄Scl . (8)

Here we have already employed the normaliza-
tion conditions specified in the first paragraph.
One can immediately verify that in the frictionless
limit (κ → 0) the transition probability amplitude
A(q1, t1 | q0, t0) matches the Schrödinger propaga-
tor for a single free particle.

4 Conclusion
Quantization of dissipative systems has been very at-
tractive problem from the early days of quantum me-
chanics. It has been revived again and again across
the decades. Many phenomenological techniques and
effective methods have been suggested. References [6]
and [7] provide a very basic list of papers dealing with
this point.
We have developed here a new quantization

method that generalizes the conventional path inte-
gral approach. We have focused only on the nonrela-
tivistic quantum mechanics of spinless systems. How-
ever, the generalization to the field theory is straight-
forward.
Let us stress that the proposed method repre-

sents an alternative approach to [7] and possesses
several qualitative advantages. For example, prop-
agator (8) is invariant with respect to time trans-
lations, the same symmetry property which is pos-
sessed by the underlying equation of motion. More-
over, it is reasonable to expect that the “dissipative
quantum evolution” will not remain Markovian. This
fact is again confirmed, since the probability ampli-
tude under consideration does not satisfy the memo-
ryless Chapman-Kolmogorov equation mentioned in
the first paragraph.
Finally, let us believe that the simple geometri-

cal idea behind the surface functional integral quan-
tization will fit within the Ludwig Faddeev dictum
quantization is not a science, quantization is an art!
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