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Sharply Orthocomplete Effect Algebras

M. Kalina, J. Paseka, Z. Riečanová

Abstract

Special types of effect algebras E called sharply dominating and S-dominating were introduced by S. Gudder in [7, 8].
We prove statements about connections between sharp orthocompleteness, sharp dominancy and completeness of E.
Namely we prove that in every sharply orthocomplete S-dominating effect algebra E the set of sharp elements and the
center of E are complete lattices bifull in E. If an Archimedean atomic lattice effect algebra E is sharply orthocomplete
then it is complete.

Keywords: effect algebra, sharp element, central element, block, sharply dominating, S-dominating, sharply orthocom-
plete.

1 Introduction
An algebraic structure called an effect algebra was in-
troduced by D. J. Foulis and M. K. Bennett (1994).
The advantage of effect algebras is that they pro-
vide a mechanism for studying quantum effects, or
more generally, in non-classical probability theory
their elements represent events that may be unsharp
or pairwise non-compatible. Lattice effect algebras
are in some sense a nearest common generalization
of orthomodular lattices [13] that may include non-
compatible pairs of elements, and MV-algebras [3]
that may include unsharp elements. More precisely,
a lattice effect algebra E is an orthomodular lattice
iff every element of E is sharp (i.e., x and “non x”
are disjoint) and it is an MV-effect algebra iff every
pair of elements of E is compatible. Moreover, in ev-
ery lattice effect algebra E the set of sharp elements
is an orthomodular lattice ([10]), and E is a union of
its blocks (i.e., maximal subsets of pairwise compat-
ible elements that are MV-effect algebras (see [21])).
Thus a lattice effect algebra E is a Boolean algebra
iff every pair of elements is compatible and every el-
ement of E is sharp.
However, non-lattice ordered effect algebra E is

so general that its set S(E) of sharp elements may
form neither an orthomodular lattice nor any reg-
ular algebraic structure. S. Gudder (see [7, 8]) in-
troduced special types of effect algebras E called
sharply dominating effect algebras, whose set S(E)
of sharp elements forms an orthoalgebra and also so-
called S-dominating effect algebras, whose set S(E)
of sharp elements forms an orthomodular lattice.
In [7], S. Gudder showed that a standard Hilbert
space effect algebra E(H) of bounded operators on
a Hilbert space H between zero and identity opera-
tors (with partially defined usual operation+) is S-

dominating. Hence S-dominating effect algebras may
be useful abstract models for sets of quantum effects
in physical systems.
We study these two special kinds of effect alge-

bras. We show properties of some remarkable sub-
effect algebras of such effect algebras E satisfying the
condition that E is sharply orthocomplete. Namely
properties of their blocks, sets of sharp elements and
their centers. It is worth noting that it was proved
in [11] that there are even Archimedean atomic MV-
effect algebras which are not sharply dominating,
hence they are not S-dominating.

2 Basic definitions and some
known facts

Definition 1 ([4]) A partial algebra (E;⊕, 0, 1) is
called an effect algebra if 0, 1 are two distinct ele-
ments and ⊕ is a partially defined binary operation
on E which satisfy the following conditions for any
x, y, z ∈ E:

(Ei) x ⊕ y = y ⊕ x if x ⊕ y is defined,

(Eii) (x⊕y)⊕z = x⊕(y⊕z) if one side is defined,

(Eiii) for every x ∈ E there exists a unique y ∈ E
such that x ⊕ y = 1 (we put x′ = y),

(Eiv) if 1⊕ x is defined then x = 0.

We often denote the effect algebra (E;⊕, 0, 1)
briefly by E. On every effect algebra E the par-
tial order ≤ and a partial binary operation ! can be
introduced as follows:

x ≤ y and y!x = z iff x⊕z is defined and x⊕z = y.

If E with the defined partial order is a lattice (a
complete lattice) then (E;⊕, 0, 1) is called a lattice
effect algebra (a complete lattice effect algebra).
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Definition 2 Let E be an effect algebra. Then Q ⊆
E is called a sub-effect algebra of E if

(i) 1 ∈ Q,

(ii) if out of elements x, y, z ∈ E with x ⊕ y = z
two are in Q, then x, y, z ∈ Q.

If E is a lattice effect algebra and Q is a sub-lattice
and a sub-effect algebra of E then Q is called a sub-
lattice effect algebra of E.

Note that a sub-effect algebra Q (sub-lattice ef-
fect algebra Q) of an effect algebra E (of a lattice
effect algebra E) with inherited operation ⊕ is an
effect algebra (lattice effect algebra) in its own right.
For an element x of an effect algebra E we write

ord (x) =∞ if nx = x ⊕ x ⊕ . . . ⊕ x (n-times) exists
for every positive integer n and we write ord (x) = nx

if nx is the greatest positive integer such that nxx
exists in E. An effect algebra E is Archimedean if
ord (x) < ∞ for all x ∈ E.
A minimal nonzero element of an effect algebra

E is called an atom and E is called atomic if under
every nonzero element of E there is an atom.
For a poset P and its subposet Q ⊆ P we denote,

for all X ⊆ Q, by
∨
Q

X the join of the subset X in

the poset Q whenever it exists.
We say that a finite system F = (xk)nk=1 of

not necessarily different elements of an effect alge-
bra (E;⊕, 0, 1) is orthogonal if x1 ⊕ x2 ⊕ . . . ⊕ xn

(written
n⊕

k=1

xk or
⊕

F ) exists in E. Here we define

x1⊕x2⊕. . .⊕xn = (x1⊕x2⊕. . .⊕xn−1)⊕xn suppos-

ing that
n−1⊕
k=1

xk is defined and
n−1⊕
k=1

xk ≤ x′
n. We also

define
⊕

" = 0. An arbitrary system G = (xκ)κ∈H

of not necessarily different elements of E is called
orthogonal if

⊕
K exists for every finite K ⊆ G.

We say that for an orthogonal system G = (xκ)κ∈H

the element
⊕

G (more precisely
⊕
E

G) exists iff∨
{
⊕

K | K ⊆ G is finite} exists in E and then we

put
⊕

G =
∨

{
⊕

K | K ⊆ G is finite}. (Here
we write G1 ⊆ G iff there is H1 ⊆ H such that
G1 = (xκ)κ∈H1).
We call an effect algebra E orthocomplete [9] if

every orthogonal system G = (xκ)κ∈H of elements of

E has the sum
⊕

G. It is known that every ortho-
complete Archimedean lattice effect algebra E is a
complete lattice (see [22, Theorem 2.6]).
Recall that elements x, y of a lattice effect al-

gebra E are called compatible (written x ↔ y) iff
x ∨ y = x ⊕ (y ! (x ∧ y)) (see [15]). P ⊆ E is a
set of pairwise compatible elements if x ↔ y for all
x, y ∈ P . M ⊆ E is called a block of E iff M is a

maximal subset of pairwise compatible elements. Ev-
ery block of a lattice effect algebra E is a sub-effect
algebra and a sub-lattice of E and E is a union of
its blocks (see [21]). A lattice effect algebra with a
unique block is called an MV-effect algebra. Every
block of a lattice effect algebra is an MV-effect alge-
bra in its own right.
An element w of an effect algebraE is called sharp

(see [7, 8]) if w ∧ w′ = 0.

Definition 3 ([7, 8]) An effect algebra E is called
sharply dominating if for every x ∈ E there exists
x̂ ∈ S(E) such that

x̂ =
∧
E

{w ∈ S(E) | x ≤ w} =∧
S(E)

{w ∈ S(E) | x ≤ w}.

Note that clearly E is sharply dominating iff for
every x ∈ E there exists x̃ ∈ S(E) such that

x̃ =
∨
E

{w ∈ S(E) | x ≥ w} =∨
S(E)

{w ∈ S(E) | x ≥ w}.

A sharply dominating effect algebra E is called
S-dominating [8] if x ∧ w exists for every x ∈ E,
w ∈ S(E).

It is a well known fact that in every S-dominating
effect algebra E the subset S(E) = {w ∈ E | w∧w′ =
0} of sharp elements of E is a sub-effect algebra of
E being an orthomodular lattice (see [8, Theorem

2.6]). Moreover if for D ⊆ S(E) the element
∨
E

D

exists then
∨
E

D ∈ S(E) hence
∨

S(E)

D =
∨
E

D. We

say that S(E) is a full sublattice of E (see [10]).
Let G be a sub-effect algebra of an effect algebra

E. We say that G is bifull in E, if, for any D ⊆ G

the element
∨
G

D exists iff the element
∨
E

D exists

and they are equal. Clearly, any bifull sub-effect al-
gebra of E is full but not conversely (see [12]).
The notion of a central element of an ef-

fect algebra E was introduced by Greechie-Foulis-
Pulmannová [6]. An element c ∈ E is called central
(see [18]) iff for every x ∈ E there exist x ∧ c and
x ∧ c′ and x = (x ∧ c) ∨ (x ∧ c′). The center C(E) of
E is the set of all central elements of E. Moreover,
C(E) is a Boolean algebra, see [6]. If E is a lattice
effect algebra then z ∈ E is central iff z ∧ z′ = 0
and z ↔ x for all x ∈ E, see [19]. Thus in a lat-
tice effect algebra E, C(E) = B(E) ∩ S(E), where

B(E) =
⋂

{M ⊆ E | M is a block of E} is called
the compatibility center of E.
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An effect algebra E is called centrally dominat-
ing (see also [5] for the notion central cover) if for
every x ∈ E there exists cx ∈ C(E) such that

cx =
∧
E

{c ∈ C(E) | x ≤ c} =∧
C(E)

{c ∈ C(E) | x ≤ c}.

An element a of a lattice L is called compact iff,
for any D ⊆ L, a ≤

∨
D implies a ≤

∨
F for some

finite F ⊆ D. A lattice L is called compactly gen-
erated iff every element of L is a join of compact
elements.

3 Sharply orthocomplete
effect algebras

In an effect algebra E the set S(E) = {x ∈ E |
x ∧ x′ = 0} of sharp elements plays an important
role. In some sense we can say that an effect alge-
bra E is a “smeared set S(E)” of its sharp elements,
while unsharp effects are important in studies of un-
sharp measurements [4, 2]. S. Gudder proved (see [8])
that, in standard Hilbert space effect algebra E(H)
of bounded operators A on a Hilbert space H be-
tween null operator and identity operator, which are
endowed with usual + defined iff A + B is in E(H),
the set S(E(H)) of sharp elements forms an ortho-
modular lattice of projection operators on H . Fur-
ther in [8, Theorem 2.2] it was shown that in every
sharply dominating effect algebra the set S(E) is a
sub-effect algebra of E. Moreover, in [7, Theorem
2.6] it is proved that in every S-dominating effect al-
gebra E the set S(E) is an orthomodular lattice. We
are going to show that in this case S(E) is bifull in
E.
Theorem 1 Let E be an S-dominating effect alge-
bra. Then S(E) is bifull in E.

Proof. Let S ⊆ S(E).

(1) Assume that z =
∨

S(E)

S ∈ S(E) exists. Let

us show that z is the least upper bound of S in E.
Let y ∈ E be an upper bound of S. Then y ∧ z exists
and it is an upper bound of S as well. Hence, for
any s ∈ S, s ≤ y ∧ z. As E is sharply dominating,
there exists a greatest sharp element ỹ ∧ z ≤ y ∧ z
This yields that s ≤ ỹ ∧ z ≤ y ∧ z, for all s ∈ S,
ỹ ∧ z ∈ S(E). Hence z ≤ ỹ ∧ z ≤ y ∧ z ≤ z. Then
z = y ∧ z ≤ y i.e., z is really the least upper bound
of S in E.
(2) Conversely, let z =

∨
E

S ∈ E exist. Let

y ∈ S(E) be an upper bound of S in S(E). Then
y ∧ z exists and it is again an upper bound of S. As

in (1) we have that ỹ ∧ z is the greatest sharp ele-
ment under y ∧z and hence s ≤ ỹ ∧ z ≤ y ∧z ≤ z, for
all s ∈ S. This gives that z = ỹ ∧ z ∈ S(E). Thus

z =
∨

S(E)

S ∈ S(E).

Corollary 1 If E is a sharply dominating lattice ef-
fect algebra then S(E) is bifull in E.

Definition 4 An effect algebra E is called shar-
ply orthocomplete (centrally orthocomplete
(see [5])) if for any system (xκ)κ∈H of elements
of E such that there exists an orthogonal system
(wκ)κ∈H , wκ ∈ S(E) with xκ ≤ wκ, κ ∈ H (an or-
thogonal system (cκ)κ∈H , cκ ∈ C(E) with xκ ≤ cκ,
κ ∈ H) there exists⊕

{xκ | κ ∈ H} =∨
E

{
⊕
E

{xκ | κ ∈ F} | F ⊆ H, F finite}.

Theorem 2 Let E be a sharply orthocomplete S-
dominating effect algebra. Then
(i) S(E) is a complete orthomodular lattice bifull in

E.
(ii) C(E) is a complete Boolean algebra bifull in E.
(iii) E is centrally dominating and centrally ortho-

complete.
(iv) If C(E) is atomic then

∨
E

{p ∈ C(E) | p atom of

C(E)} = 1.

Proof. (i): From [8, Theorem 2.6] we know that
S(E) is an orthomodular lattice and a sub-lattice ef-
fect algebra of E.
Let us show that S(E) is orthocomplete. Let

S ⊆ S(E), S orthogonal. Then for every finite F ⊆ S

we have that
⊕
E

F =
∨
E

F =
∨

S(E)

F ∈ S(E). More-

over, for any s ∈ S, s ≤ s. Since S(E) is bifull
in E by Theorem 1 and E is sharply orthocomplete
we have that

⊕
E

S =
∨
E

S =
∨

S(E)

S ∈ S(E) exists.

Since S(E) is an Archimedean lattice effect algebra
we have from [22, Theorem 2.6] that S(E) is com-
plete.
(ii): As C(E) = {x ∈ E | y = (y ∧ x) ∨ (y ∧ x′) for
every y ∈ E}, we obtain that 1 = x ∨ x′ for every
x ∈ C(E) and by the de Morgan Laws 0 = x ∧ x′

for every x ∈ C(E). Hence C(E) ⊆ S(E). It
follows by (i) that, for any Q ⊆ C(E), there ex-

ists
∨

S(E)

Q =
∨
E

Q ∈ C(E) because C(E) is full

in E, hence
∨

C(E)

Q =
∨
E

Q. By the de Morgan

Laws there exists
∧
E

Q = (
∨
E

Q′)′, where evidently
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Q′ = {q′ ∈ E | q ∈ Q} ⊆ C(E). Hence
∧
E

Q ∈ C(E)

which gives
∧

C(E)

Q =
∧
E

Q (see also [5]).

(iii): Let x ∈ E. Using (ii) let us put cx =
∧

C(E)

{c ∈

C(E) | x ≤ c} ∈ C(E). Since C(E) is bifull in E we

have that cx =
∧
E

{c ∈ C(E) | x ≤ c} (see again [5]).

Since C(E) ⊆ S(E) we immediately obtain that E is
centrally orthocomplete.
(iv): Since C(E) is an atomic Boolean algebra we

have
∨

C(E)

{p ∈ C(E) | p atom of C(E)} = 1. As C(E)

is bifull in E, we have that
∨
E

{p ∈ C(E) | p atom of

C(E)} =
∨

C(E)

{p ∈ C(E) | p atom of C(E)} = 1.

4 Sharply orthocomplete
lattice effect algebras

M. Kalina in [12] has shown that even in an
Archimedean atomic lattice effect algebra E with
atomic center C(E) the join of atoms of C(E) com-
puted in E need not be equal to 1. Next examples
and theorems show connections between sharp ortho-
completeness, sharp dominancy and completeness of
an effect algebra E as well as bifullness of S(E), C(E)
and atomic blocks in a lattice effect algebra E. It is
worth noting that if S(E) = {0, 1} then evidently E
is S-dominating and sharply orthocomplete.
Example 1 Example of a compactly generated
sharply orthocomplete MV-effect algebra that is not
complete.
It is enough to take the Chang MV-effect alge-

bra E = {0, a, 2a, 3a, . . . , (3a)′, (2a)′, a′, 1} that is not
Archimedean (hence it is not complete). It is com-
pactly generated (every x ∈ E is compact) and ob-
viously sharply orthocomplete (the center C(E) =
S(E) is trivial) and hence sharply dominating.

Example 2 Example of a sharply dominating Archi-
medean atomic lattice MV-effect algebra E with com-
plete and bifull S(E) that is not sharply orthocom-
plete.
Let E =

∏
{{0n, an, 1n} | n = 1, 2, . . .} and let

E0 = {(xn)∞n=1 ∈ E | xk = ak

for at most finitely many k ∈ {1, 2, . . .}}.

Then E0 is a sub-lattice effect algebra of E (hence
it is an MV-effect algebra), evidently sharply domi-
nating and it is not sharply orthocomplete (since it
is not complete).

S(E0) =
∏

{{0n, 1n} | n = 1, 2, . . .} is a com-
plete Boolean algebra and S(E0) = C(E0) is a bifull
sub-lattice of E0.

Lemma 1 Let E be a sharply orthocomplete Archi-
medean atomic MV-effect algebra. Then E is com-
plete.

Proof. Let A ⊆ E be a set of all atoms of E.
Then 1 =

∨
E

{naa|a ∈ A} =
⊕
E

{naa|a ∈ A},

naa ∈ C(E) = S(E) are atoms of C(E) for all
a ∈ A. By [23, Theorem 3.1] we have that E
is isomorphic to a subdirect product of the family
{[0, naa] | a ∈ A}. The corresponding lattice effect
algebra embedding ϕ:E →

∏
{[0, naa] | a ∈ A} is

given by ϕ(x) = (x ∧ naa)a∈A.

Let us check that E is isomorphic to
∏

{[0, naa] |
a ∈ A}. It is enough to check that ϕ is onto. Let

(xa)a∈A ∈
∏

{[0, naa] | a ∈ A}. Then (na)a∈A is an

orthogonal system and xa = kaa ≤ naa ∈ S(E) for

all a ∈ A. Hence x =
⊕
E

{xa | a ∈ A} =
∨
E

{kaa |

a ∈ A} ∈ E exists. Evidently, ϕ(x) = (x∧naa)a∈A =
(kaa)a∈A = (xa)a∈A.

Example 3 Example of a sharply orthocomplete
Archimedean MV-effect algebra that is not complete.
If we omit in Lemma 1 the assumption of atom-

icity in E it is enough to take the MV-effect alge-
bra E = {f : [0, 1] → [0, 1] | f continuous function},
which is a sub-lattice effect algebra of a direct prod-
uct of copies of the standard MV-effect algebra of
real numbers [0, 1] that is Archimedean, sharply or-
thocomplete (the center C(E) = S(E) = {0, 1} is
trivial) and hence sharply dominating. Moreover, E
is not complete.

It is well known that an Archimedean lattice effect
algebra E is complete if and only if every block of E
is complete (see [22, Theorem 2.7]). If moreover E is
atomic then E may have atomic as well as non-atomic
blocks [1]. K. Mosná [16, Theorem 8] has proved that

in this case E =
⋃

{M ⊆ E | M atomic block of E}.
Hence every non-atomic block of E is covered

by atomic blocks. Moreover, many properties of
Archimedean atomic lattice effect algebras as well as
their non-atomic blocks depend on properties of their
atomic blocks.
Namely, the center C(E), the compatibility cen-

ter B(E) and the set S(E) of sharp elements of
Archimedean atomic lattice effect algebras E can
be expressed by set-theoretical operations on their
atomic blocks. As follows, B(E) =

⋂
{M ⊆ E |

M atomic block of E}, S(E) =
⋃

{C(M) | M ⊆
E, M atomic block of E} and C(E) = B(E) ∩ S(E)
(see [16]).
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For instance, an Archimedean atomic lattice ef-
fect algebra E is sharply dominating iff every atomic
block of E is sharply dominating (see [11]). More-
over, we can prove the following:

Theorem 3 Let E be an Archimedean atomic lat-
tice effect algebra. Then the following conditions are
equivalent:
(i) E is complete.
(ii) Every atomic block of E is complete.
In this case every block of E is complete.

Proof. (i) =⇒ (ii): This is trivial, as every blockM
of E is a full sub-lattice effect algebra of E.
(ii) =⇒ (i): It is enough to show that E is ortho-
complete. From [22, Theorem 2.6] we then get that
E is complete.
Let G ⊆ E be a

⊕
-orthogonal system. Then,

for every x ∈ G, there is a set Ax of atoms of E and
positive integers ka, a ∈ Ax such that x =

⊕
E

{kaa |

a ∈ Ax}. Moreover, for any F ⊆ G finite we have

that
⋃

{Ax | x ∈ F} is an orthogonal set of atoms.
Hence AG =

⋃
{Ax | x ∈ G} is an orthogonal set of

atoms of E and there is a maximal orthogonal set A
of atoms of E such that AG ⊆ A. Therefore there is
an atomic block M of E with A ⊆ M . By assump-
tion

⊕
M

G exists and
⊕
M

G =
⊕
E

G, asM is bifull in

E because E is Archimedean and atomic (see [17]).

Theorem 4 Let E be a sharply orthocomplete lat-
tice effect algebra. Then
(i) S(E) is a complete orthomodular lattice bifull
in E.

(ii) C(E) is a complete Boolean algebra bifull in E.
(iii) E is sharply dominating, centrally dominating

and S-dominating.
(iv) If moreover E is Archimedean and atomic then

E is a complete lattice effect algebra.

Proof. (i), (iii): Let S ⊆ S(E), S be orthogonal.
Then, for any s ∈ S, s ≤ s. Hence (since S(E)

is full in E)
⊕
E

S =
∨
E

S =
∨

S(E)

S ∈ S(E) exists.

Since S(E) is an Archimedean lattice effect algebra
we have from [22, Theorem 2.6] that S(E) is com-
plete. Moreover, let x ∈ E and let G = (wκ)κ∈H ,
wκ ∈ S(E), κ ∈ H be a maximal orthogonal sys-
tem of mutually different elements such that wx =⊕
E

{wκ | κ ∈ H} ≤ x. Let us show that y ∈ S(E),

y ≤ x =⇒ y ≤ wx ∈ S(E). Clearly, wx ∈ S(E).
Assume that y 
≤ wx. Then wx < y ∨ wx ≤ x. Hence
z = (y ∨ wx) ! wx 
= 0 and G ∪ {z} is an orthogo-
nal system of mutually different elements such that

y ∨ wx = wx ⊕ z =
⊕
E

{wκ | κ ∈ H} ⊕ z ≤ x,

a contradiction with the maximality of G. There-
fore y ≤ wx and E is sharply dominating, hence S-
dominating and from Theorem 2 we get that E is
centrally dominating. From Theorem 1, we get that
S(E) is bifull in E.
(ii): It follows from (i), (iii) and Theorem 2.
(iv): Assume now that E is a sharply orthocomplete
Archimedean atomic lattice effect algebra. Then ev-
ery atomic block M of E is a sharply orthocomplete
Archimedean atomic MV-effect algebra and hence it
is a complete MV-effect algebra by Lemma 1. By
Theorem 3, E is a complete lattice effect algebra.

Theorem 5 Let E be an atomic lattice effect alge-
bra. Then the following conditions are equivalent:
(i) E is complete.
(ii) E is Archimedean and sharply orthocomplete.

Proof. (i) =⇒ (ii): By [20, Theorem 3.3] we
have that any complete lattice effect algebra is
Archimedean. Evidently, any complete lattice effect
algebra is sharply orthocomplete.
(ii) =⇒ (i): It follows from Theorem 4, (iv).
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