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Sharply Orthocomplete Effect Algebras

M. Kalina, J. Paseka, Z. Riecanova

Abstract

Special types of effect algebras E called sharply dominating and S-dominating were introduced by S. Gudder in [7, §].

We prove statements about connections between sharp orthocompleteness, sharp dominancy and completeness of FE.

Namely we prove that in every sharply orthocomplete S-dominating effect algebra E the set of sharp elements and the

center of F are complete lattices bifull in E. If an Archimedean atomic lattice effect algebra F is sharply orthocomplete

then it is complete.

Keywords: effect algebra, sharp element, central element, block, sharply dominating, S-dominating, sharply orthocom-

plete.

1 Introduction

An algebraic structure called an effect algebra was in-
troduced by D. J. Foulis and M. K. Bennett (1994).
The advantage of effect algebras is that they pro-
vide a mechanism for studying quantum effects, or
more generally, in non-classical probability theory
their elements represent events that may be unsharp
or pairwise non-compatible. Lattice effect algebras
are in some sense a nearest common generalization
of orthomodular lattices [13] that may include non-
compatible pairs of elements, and MV-algebras [3]
that may include unsharp elements. More precisely,
a lattice effect algebra E is an orthomodular lattice
iff every element of E is sharp (i.e.,  and “non z”
are disjoint) and it is an MV-effect algebra iff every
pair of elements of F is compatible. Moreover, in ev-
ery lattice effect algebra F the set of sharp elements
is an orthomodular lattice ([10]), and E is a union of
its blocks (i.e., maximal subsets of pairwise compat-
ible elements that are MV-effect algebras (see [21])).
Thus a lattice effect algebra E is a Boolean algebra
iff every pair of elements is compatible and every el-
ement of E is sharp.

However, non-lattice ordered effect algebra E' is
so general that its set S(E) of sharp elements may
form neither an orthomodular lattice nor any reg-
ular algebraic structure. S. Gudder (see [7, 8]) in-
troduced special types of effect algebras E called
sharply dominating effect algebras, whose set S(FE)
of sharp elements forms an orthoalgebra and also so-
called S-dominating effect algebras, whose set S(E)
of sharp elements forms an orthomodular lattice.
In [7], S. Gudder showed that a standard Hilbert
space effect algebra E(H) of bounded operators on
a Hilbert space H between zero and identity opera-
tors (with partially defined usual operation+) is S-

dominating. Hence S-dominating effect algebras may
be useful abstract models for sets of quantum effects
in physical systems.

We study these two special kinds of effect alge-
bras. We show properties of some remarkable sub-
effect algebras of such effect algebras F satisfying the
condition that F is sharply orthocomplete. Namely
properties of their blocks, sets of sharp elements and
their centers. It is worth noting that it was proved
in [11] that there are even Archimedean atomic MV-
effect algebras which are not sharply dominating,
hence they are not S-dominating.

2 Basic definitions and some
known facts

Definition 1 ([4]) A partial algebra (E;®,0,1) is
called an effect algebra if 0, 1 are two distinct ele-
ments and & is a partially defined binary operation
on E which satisfy the following conditions for any
x,y,z € B:

(Bi) z@®y=ydzifzxdy is defined,
(Eii) (x@y)®z=2D(yP=2) if one side is defined,

(Eiii) for every x € E there exists a unique y € E
such that x ®y = 1 (we put 2’ = y),
(Eiv) if 1® x is defined then x = 0.
We often denote the effect algebra (E;@®,0,1)
briefly by E. On every effect algebra E the par-

tial order < and a partial binary operation © can be
introduced as follows:

r<yand ySx =z iff xPz is defined and z®z = y.

If E with the defined partial order is a lattice (a
complete lattice) then (F;@®,0,1) is called a lattice
effect algebra (a complete lattice effect algebra).
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Definition 2 Let E be an effect algebra. Then @ C
E is called a sub-effect algebra of E if

(1) 1e@,
(7i) if out of elements x,y,z € E with x @y = z
two are in Q, then z,y,z € Q.

If E is a lattice effect algebra and Q is a sub-lattice
and a sub-effect algebra of E then Q is called a sub-
lattice effect algebra of E.

Note that a sub-effect algebra @ (sub-lattice ef-
fect algebra Q) of an effect algebra E (of a lattice
effect algebra F) with inherited operation @ is an
effect algebra (lattice effect algebra) in its own right.

For an element x of an effect algebra F we write
ord(z) =ccif ne =@z @ ... 0 x (n-times) exists
for every positive integer n and we write ord (z) = n,
if n, is the greatest positive integer such that n,x
exists in E. An effect algebra E is Archimedean if
ord (z) < oo for all x € E.

A minimal nonzero element of an effect algebra
E is called an atom and F is called atomic if under
every nonzero element of E there is an atom.

For a poset P and its subposet Q C P we denote,
for all X C @, by \/ X the join of the subset X in

Q
the poset Q whenever it exists.

We say that a finite system F = (zx)j—; of
not necessarily different elements of an effect alge-
bra (E;®,0,1) is orthogonal if 1 ® 22 @ ... ® xy

n

(written @ ), Or @ F) exists in E. Here we define

k=1

21 Dx2D... Dz, = (21 DT2D. .. DTp_1) DTy, SUPPOS-
n—1 n—1

ing that @mk is defined and @mk < m’n We also
k=1 k=1

define @ © = 0. An arbitrary system G = (z)xen

of not necessarily different elements of E is called

orthogonal if @K exists for every finite K C G.

We say that for an orthogonal system G = (x)xecn

the element @G (more precisely @G) exists iff
E

\/{@K | K C @ is finite} exists in F and then we
put @G = \/{@K | K C G is finite}. (Here

we write G; C G iff there is H; C H such that
G = (mH)HEHl)'

We call an effect algebra E orthocomplete [9] if
every orthogonal system G = (x)xen of elements of
E has the sum
complete Archimedean lattice effect algebra F is a
complete lattice (see [22, Theorem 2.6]).

Recall that elements z,y of a lattice effect al-
gebra FE are called compatible (written = < y) iff
xVy=2® @Yo (rAy)) (see [15]). P C FE is a
set of pairwise compatible elements if © < y for all
z,y € P. M C FE is called a block of E iff M is a

@ G. It is known that every ortho-
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maximal subset of pairwise compatible elements. Ev-
ery block of a lattice effect algebra E is a sub-effect
algebra and a sub-lattice of F and FE is a union of
its blocks (see [21]). A lattice effect algebra with a
unique block is called an MV-effect algebra. Every
block of a lattice effect algebra is an MV-effect alge-
bra in its own right.

An element w of an effect algebra E is called sharp
(see [7, 8]) if w Aw' = 0.

Definition 3 ([7, 8/) An effect algebra E is called
sharply dominating if for every x € E there exists
z € S(E) such that

J?z/\{weS(E)\xSw}:
E

/\{wES(E)|33§w}.

S(E)

Note that clearly E is sharply dominating iff for
every x € E there exists T € S(E) such that

fz\/{weS(E)\xzw}:
E

\/{wES(E)|3:2w}.

S(E)

A sharply dominating effect algebra E is called
S-dominating [8] if x A w exists for every x € E,
we S(E).

It is a well known fact that in every S-dominating
effect algebra E the subset S(F) = {w € E | wAw' =
0} of sharp elements of E is a sub-effect algebra of
E being an orthomodular lattice (see [8, Theorem

2.6]). Moreover if for D C S(FE) the element \/D
E

exists then \/D € S(E) hence \/ D = \/D. We
E S(E) E
say that S(F) is a full sublattice of E (see [10]).
Let G be a sub-effect algebra of an effect algebra
E. We say that G is bifull in E, if, for any D C G

the element \/D exists iff the element \/D exists

and they are Ce:quaul. Clearly, any bifull suﬁ—effect al-
gebra of F is full but not conversely (see [12]).

The notion of a central element of an ef-
fect algebra E was introduced by Greechie-Foulis-
Pulmannova [6]. An element ¢ € E is called central
(see [18]) iff for every x € E there exist z A ¢ and
zAcd and z = (zAc)V (xAc). The center C(E) of
E is the set of all central elements of E. Moreover,
C(F) is a Boolean algebra, see [6]. If F is a lattice
effect algebra then 2z € E is central iff z A 2 = 0
and z < z for all € E, see [19]. Thus in a lat-
tice effect algebra E, C(E) = B(E) N S(E), where
B(E) = ﬂ{M C E | M is ablock of E} is called
the compatibility center of E.
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An effect algebra F is called centrally dominat-
ing (see also [5] for the notion central cover) if for
every x € E there exists ¢, € C(E) such that

Cy = /\{CGC(E)\xSC}:

/\{cGC’(E)|x§c}.
)

C(E

An element a of a lattice L is called compact iff,
forany D C L, a < \/D implies a < \/F for some
finite ¥ C D. A lattice L is called compactly gen-
erated iff every element of L is a join of compact
elements.

3 Sharply orthocomplete
effect algebras

In an effect algebra E the set S(E) = {z € E |
x A2’ = 0} of sharp elements plays an important
role. In some sense we can say that an effect alge-
bra F is a “smeared set S(E)” of its sharp elements,
while unsharp effects are important in studies of un-
sharp measurements [4, 2]. S. Gudder proved (see [8])
that, in standard Hilbert space effect algebra £(H)
of bounded operators A on a Hilbert space H be-
tween null operator and identity operator, which are
endowed with usual + defined iff A+ B is in £(H),
the set S(E(H)) of sharp elements forms an ortho-
modular lattice of projection operators on H. Fur-
ther in [8, Theorem 2.2] it was shown that in every
sharply dominating effect algebra the set S(F) is a
sub-effect algebra of E. Moreover, in [7, Theorem
2.6] it is proved that in every S-dominating effect al-
gebra E the set S(E) is an orthomodular lattice. We
are going to show that in this case S(F) is bifull in
E.

Theorem 1 Let E be an S-dominating effect alge-
bra. Then S(E) is bifull in E.

Proof. Let S C S(E).

(1) Assume that z = \/ S € S(FE) exists. Let
S(E)

us show that z is the least upper bound of S in F.
Let y € FE be an upper bound of S. Then y A z exists
and it is an upper bound of S as well. Hence, for
any s € S, s < yAz. As FE is sharply dominating,
there exists a greatest sharp element y Az < y A z
This yields that s < yAz < y Az, for all s € S,
YAz € S(F). Hence z < yAz<yAz<z Then
z =y Az < yi.e., zis really the least upper bound
of S'in F.

(2) Conversely, let z = \/S € FE exist. Let

E
y € S(E) be an upper bound of S in S(F). Then
y A z exists and it is again an upper bound of S. As

in (1) we have that y A z is the - greatest sharp ele-
ment under y Az and hence s < y Az <yAz < z, for
all s € S. This gives that z = y Az € S(E). Thus
z=\/ Ses®E). n

S(E)

Corollary 1 If E is a sharply dominating lattice ef-
fect algebra then S(E) is bifull in E.

Definition 4 An effect algebra E is called shar-
ply orthocomplete (centrally orthocomplete
(see [5])) if for any system (x.)wem of elements
of E such that there exists an orthogonal system
(We)rer,ws € S(E) with x, < wx, kK € H (an or-
thogonal system (cx)rem,cx € C(E) with xx < ¢4,
k € H) there exists

@{x“ |ke H} =
\ (D« | k€ F} | F C H,F finite}.

Theorem 2 Let E be a sharply orthocomplete S-

dominating effect algebra. Then

(i) S(E) is a complete orthomodular lattice bifull in
E.

(#1) C(F) is a complete Boolean algebra bifull in E.

(#i1) E is centrally dominating and centrally ortho-

complete.
() If C(E) is atomic then \/{p € C(E) | p atom of
E
C(E)}=1.

Proof. (i): From [8, Theorem 2.6] we know that

S(FE) is an orthomodular lattice and a sub-lattice ef-

fect algebra of E.

Let us show that S(E) is orthocomplete. Let

S C S(F), S orthogonal. Then for every finite F' C S

we have that @F = \/F = \/ F € S(E). More-
E E 5(E)

over, for any s € S, s < s. Since S(E) is bifull

in £ by Theorem 1 and F is sharply orthocomplete

we have that @S = \/S = \/ S € S(F) exists.
E E 5(E)

Since S(E) is an Archimedean lattice effect algebra

we have from [22, Theorem 2.6] that S(E) is com-

plete.

(ii): AsC(E) ={z e E|y=(yAz)V(yAa) for

every y € E}, we obtain that 1 = z V 2’ for every

z € C(F) and by the de Morgan Laws 0 = x A 2’

for every x € C(E). Hence C(E) C S(E). It

follows by (i) that, for any Q@ C C(E), there ex-

ists \/ Q@ = \/Q € C(E) because C(E) is full
)

S(E E
in E, hence \/ Q = \/Q By the de Morgan
C(E) E
Laws there exists /\Q = (\/ Q'), where evidently
E E
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Q ={¢d €FE|qeQ} CC(E). Hence /\Q € C(E)
E

which gives /\ Q= /\Q (see also [5]).
C(E) E
(7i1): Let x € E. Using (i¢) let us put ¢, = /\ {ce
C(E)
C(E) |z <c} € C(E). Since C(E) is bifull in E we
have that ¢, = /\{c € C(E) | x < ¢} (see again [5]).

E
Since C(E) C S(FE) we immediately obtain that E is
centrally orthocomplete.
(iv): Since C(FE) is an atomic Boolean algebra we

have \/ {pe C(E) |patom of C(E)} =1. AsC(E)
C(E)
is bifull in E, we have that \/{p € C(E) | p atom of
E

E)} = \/{precC(E

C(E)

)|patomof C(E)} =1. ®

4 Sharply orthocomplete
lattice effect algebras

M. Kalina in [12] has shown that even in an
Archimedean atomic lattice effect algebra E with
atomic center C'(E) the join of atoms of C'(E) com-
puted in F need not be equal to 1. Next examples
and theorems show connections between sharp ortho-
completeness, sharp dominancy and completeness of
an effect algebra E as well as bifullness of S(E), C(E)
and atomic blocks in a lattice effect algebra E. It is
worth noting that if S(E) = {0,1} then evidently £
is S-dominating and sharply orthocomplete.
Example 1 Ezample of a compactly generated
sharply orthocomplete MV-effect algebra that is not
complete.

It is enough to take the Chang MV-effect alge-
bra E = {0, a,2a,3a,...,(3a)’, (2a)’,a’, 1} that is not
Archimedean (hence it is not complete). It is com-
pactly generated (every z € F is compact) and ob-
viously sharply orthocomplete (the center C(E) =
S(F) is trivial) and hence sharply dominating.

Example 2 Example of a sharply dominating Archi-
medean atomic lattice MV-effect algebra E with com-
plete and bifull S(FE) that is not sharply orthocom-
plete.
Let E = [[{{0n,an, 1.} [n=1,2,...} and let
Ey = {(zn)nt1 € E | 2k = ax
for at most finitely many k € {1,2,...}}.

Then Fj is a sub-lattice effect algebra of E (hence
it is an MV-effect algebra), evidently sharply domi-
nating and it is not sharply orthocomplete (since it
is not complete).
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Eo) = [[{{0n, 10} | n = 1,2,...} is a com-
plete Boolean algebra and S(FEy) = C(Ep) is a bifull
sub-lattice of Ej.

Lemma 1 Let E be a sharply orthocomplete Archi-
medean atomic MV-effect algebra. Then E is com-
plete.

Proof. Let A C E be a set of all atoms of E.

Then 1 = \/{naa|a e A} = @{naam e A},

E E
nea € C(E) = S(E) are atoms of C(F) for all
a € A. By [23, Theorem 3.1] we have that E
is isomorphic to a subdirect product of the family
{[0,n4a] | @ € A}. The corresponding lattice effect

algebra embedding ¢: £ — H{[O,naa] | a € A} is
given by ¢(x) = (2 A na@)aca.

Let us check that E is isomorphic to H{[O, ngal |
a € A}. It is enough to check that ¢ is onto. Let
(Ta)aca € H{[O,naa} | a € A}. Then (ng)eca is an
orthogonal system and z, = k,a < nga € S(F) for
all a € A. Hencex—@{xa|a€A}—\/{ka\

a € A} € E exists. EVldently, o(x) = (xAnga )aeA =
(k a)aGA - (xa)aGA |

Example 3 Example of a sharply orthocomplete
Archimedean MV-effect algebra that is not complete.

If we omit in Lemma 1 the assumption of atom-
icity in F it is enough to take the MV-effect alge-
bra E = {f:[0,1] — [0,1] | f continuous function},
which is a sub-lattice effect algebra of a direct prod-
uct of copies of the standard MV-effect algebra of
real numbers [0, 1] that is Archimedean, sharply or-
thocomplete (the center C(E) = S(E) = {0,1} is
trivial) and hence sharply dominating. Moreover, F
is not complete.

It is well known that an Archimedean lattice effect
algebra E is complete if and only if every block of F
is complete (see [22, Theorem 2.7]). If moreover F is
atomic then F may have atomic as well as non-atomic
blocks [1]. K. Mosn4 [16, Theorem 8] has proved that
in this case £ = U{M C E | M atomic block of E}.

Hence every non-atomic block of E is covered
by atomic blocks. Moreover, many properties of
Archimedean atomic lattice effect algebras as well as
their non-atomic blocks depend on properties of their
atomic blocks.

Namely, the center C(FE), the compatibility cen-
ter B(E) and the set S(E) of sharp elements of
Archimedean atomic lattice effect algebras F can
be expressed by set—theoretical operations on their

E)=(){Mc E |

atomic blocks. As follows,

M atomic block of E}, S(E U{C’ ) | M C
E, M atomic block of E'} and C(F)=B(E ) NS(E)
(see [16]).
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For instance, an Archimedean atomic lattice ef-
fect algebra F is sharply dominating iff every atomic
block of F is sharply dominating (see [11]). More-
over, we can prove the following:

Theorem 3 Let E be an Archimedean atomic lat-
tice effect algebra. Then the following conditions are
equivalent:

(1) E is complete.

(i1) Ewery atomic block of E is complete.

In this case every block of E is complete.

Proof. (i) = (i1): This is trivial, as every block M
of F is a full sub-lattice effect algebra of E.

(i4) = (¢): It is enough to show that E is ortho-
complete. From [22, Theorem 2.6] we then get that
FE is complete.

Let G C E be a @-orthogonal system. Then,
for every x € G, there is a set A, of atoms of E and
positive integers k,, a € A, such that x = @{kaa |
a € A;}. Moreover, for any F C G finite ]\?ve have

that U{AT | z € F} is an orthogonal set of atoms.

Hence Ag = U{Az | € G} is an orthogonal set of

atoms of F and there is a maximal orthogonal set A

of atoms of E such that Ag C A. Therefore there is

an atomic block M of F with A C M. By assump-

tion @ G exists and @ G= @ G, as M is bifull in
M M

E
E because E is Archimedean and atomic (see [17]).

Theorem 4 Let E be a sharply orthocomplete lat-

tice effect algebra. Then

(1) S(E) is a complete orthomodular lattice bifull
in E.

(i1) C(E) is a complete Boolean algebra bifull in E.

(iit) F is sharply dominating, centrally dominating
and S-dominating.

(iv) If moreover E is Archimedean and atomic then
FE is a complete lattice effect algebra.

Proof. (i), (iii): Let S C S(E), S be orthogonal.
Then, for any s € S, s < s. Hence (since S(E)
is full in B) @S =\/S = \/ S € S(E) exists.
E E S(E)

Since S(E) is an Archimedean lattice effect algebra
we have from [22, Theorem 2.6] that S(E) is com-
plete. Moreover, let z € E and let G = (wk)ren,
w, € S(E),x € H be a maximal orthogonal sys-
tem of mutually different elements such that w, =
@{w“ | k € H} < x. Let us show that y € S(E),
E

y <z =y < w, €S(E). Clearly, w, € S(E).
Assume that y £ w;. Then w, < yV w, < x. Hence
z=(yVuwy) ©w, # 0 and GU{z} is an orthogo-
nal system of mutually different elements such that

yVw, = w, &z = Plws | K € H} © 2 < x,
E

a contradiction with the maximality of G. There-
fore y < w, and FE is sharply dominating, hence S-
dominating and from Theorem 2 we get that F is
centrally dominating. From Theorem 1, we get that
S(F) is bifull in E.

(7i): It follows from (4), (i7¢) and Theorem 2.

(iv): Assume now that F is a sharply orthocomplete
Archimedean atomic lattice effect algebra. Then ev-
ery atomic block M of F is a sharply orthocomplete
Archimedean atomic MV-effect algebra and hence it
is a complete MV-effect algebra by Lemma 1. By
Theorem 3, E is a complete lattice effect algebra. B

Theorem 5 Let E be an atomic lattice effect alge-
bra. Then the following conditions are equivalent:
(i) E is complete.

(#9) E is Archimedean and sharply orthocomplete.

Proof. (i) = (i7): By [20, Theorem 3.3] we
have that any complete lattice effect algebra is
Archimedean. Evidently, any complete lattice effect
algebra is sharply orthocomplete.

(11) = (i): It follows from Theorem 4, (iv). [ |
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