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Aharonov-Bohm Effect and the Supersymmetry of Identical Anyons

V. Jakubský

Abstract

We briefly review the relation between the Aharonov-Bohm effect and the dynamical realization of anyons. We show
how the particular symmetries of the Aharonov-Bohm model give rise to the (nonlinear) supersymmetry of the two-body
system of identical anyons.
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1 Aharonov-Bohm effect
More than fifty years ago, Aharonov and Bohm ar-
gued in their seminal paper [1] that the fundamen-
tal quantity in a description of the quantum system
is the electromagnetic potential and not the elec-
tromagnetic field. They proposed an experiment in
which two beams of electrons are guided around a
thin solenoid that is shielded completely from the
electrons. Despite the absence of the magnetic field
outside the solenoid, the wave functions are affected
by the non-vanishing electromagnetic potential and
acquire an additional phase-factor which is mani-
fested in the altered interference of the beams. The
so-called Aharonov-Bohm (AB) effect has been ob-
served experimentally [2] and has found its applica-
tion in numerous fields of physics. In the present
article, we will review its relation to anyons, two-
dimensional particles of exotic statistics. We will
present the recent results on the nonlocal symmetries
of the AB system and their relation to the supersym-
metry of two-body anyon models.
Let us consider a spin−1/2 particle which is mov-

ing in a plane. The plane is punctured perpendicu-
larly in the origin by an infinitely thin solenoid. The
solenoid is impenetrable for the particle. Hence, the
origin is effectively removed from the space where the
particle lives. The Pauli Hamiltonian of the system
acquires the following simple form 1

H = 1
2m

∑
j=1,2

P2j − eh̄

2mc
B3 σ3 , (1.1)

where Pj = −ih̄∂j − e

c
Aj , B3 = ∂1A2 − ∂2A1. The

non-vanishing electromagnetic potential in the sym-
metric gauge reads

�A =
Φ
2π

(
− x2

x21 + x22
,

x1
x21 + x22

, 0

)
= (1.2)

Φ
2πr
(− sinϕ , cosϕ , 0) ,

where x1 = r cosϕ, x2 = r sinϕ, −π < ϕ ≤ π,
and Φ is the flux of the singular magnetic field,
B3 = Φ δ2(x1, x2). As we will work mostly in po-
lar coordinates, let us present the explicit form of
the Hamiltonian in this coordinate system

Hα =−∂2r − 1
r
∂r +

1
r2
(−i∂ϕ + α)2 + α

1
r
δ(r)σ3, (1.3)

α=
1
2π
Φ .

Here we used the identity δ2(x1, x2) =
1
πr

δ(r) for the

two dimensional Dirac delta function2.
To specify the system uniquely, we have to deter-

mine the domain of the Hamiltonian. We require the
operator (1.3) to act on 2π-periodic functions Ψ(r, ϕ),
i.e. Ψ(r, ϕ + 2π) = Ψ(r, ϕ). Using the expansion in
partial waves, we can write

Ψ(r, ϕ) =
∑

j

eijϕfj(r). (1.4)

The functions fj(r) should be locally square-
integrable (i.e. fj(r) should be square integrable on
any finite interval). The partial waves fj(r) are reg-
ular at the origin up to the exception specified by the
following boundary condition

lim
r→0+

Ψ ∼
(
(1 + eiγ)2−αΓ(1 − α)r−1+αe−iϕ

(1 − eiγ)2−1+αΓ(α)r−α

)
(1.5)

where parameter γ can acquire two discrete values 0
and π. The boundary condition (1.5) is related to
the self-adjoint extensions of the Hamiltonian. Let
us note that the boundary condition (1.5) just fixes
two self-adjoint extensions (one for γ = 0, the second
one for γ = π) of the formal operator Hα that are

1We set m = 1/2, h̄ = c = −e = 1 from now on.
2In fact, the Dirac delta term in the Hamiltonian is quite formal. It can be omitted when the domain of Hα is specified correctly.
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compatible with the existence of N = 2 supersym-
metry, see [3]. To keep our presentation as simple as
possible, we fix from now on

γ = 0. (1.6)

We modify the actual notation to indicate the domain
of the Hamiltonian, i.e. we will write Hα → H0α. For
readers who are eager for a more extensive analysis
of the problem we recommend [3] for reference.
The Hamiltonian H0α commutes with the angular

momentum operator J = −i∂ϕ+α and the spin pro-

jection s3 =
1
2
σ3. Hence, one can find the vectors

|E, l, s〉 such that

H0α|E, l, s〉 = E|E, l, s〉,
J |E, l, s〉 = (l + α)|E, l, s〉, (1.7)

s3|E, l, s〉 = s|E, l, s〉.

We define the following two additional integrals of
motion

Q = σ1P1 + σ2P2 = q+σ+ + q−σ− ,

q± = −ie∓iϕ

(
∂r ± 1

r
(−i∂ϕ + α)

)
, (1.8)

σ± =
1
2
(σ1 ± iσ2)

and

Q̃ = P11+ iRσ3P2,
RrR = r, (1.9)

RϕR = ϕ+ π,

where 1 is a unit matrix and

P1 + iRP2 = q+Π+ + q−Π− , (1.10)

Π± =
1
2
(1± R) .

We can make a qualitative analysis of how these op-
erators act on the wave functions |E, l, s〉 just by ob-
serving their explicit form. For instance, we have

Q|E, l, 1/2〉 ∼ |E, l + 1, −1/2〉, (1.11)

Q̃|E, 2l, s〉 ∼ |E, 2l − 2s, s〉.

Hence, neither Q nor Q̃ commutes with the angu-
lar momentum J and the parity R. However, the
operator Q̃ preserves spin of the wave functions, i.e.
[Q̃, s3] = 0.
The operators Q and Q̃ are related by nonlocal

unitary transformation, see [4]. In addition, we can
define

W = Q Q̃ = Q̃Q. (1.12)

This operator alters both the angular momentum and
the spin of the wave functions. The explicit action

of Q, Q̃ and W on the kets |E, l, s〉 is illustrated in
Fig. 1.

Fig. 1: The action of operatorW (thick dotted arrows) on
the states |E, 2l, 1/2〉 and |E, 2l + 1, 1/2〉 as a sequential
action of Q̃ (solid arrows) and Q (thin dotted arrows).
Black squares represent the eigenstates |E, l, s〉 with cor-
responding values of l and s

2 Anyons

Quantum theory has classified particles into two dis-
joint families; there are bosons with integer spin and
fermions with half-integer spin. The wave functions
of indistinguishable bosons or fermions reflect the
specific statistical properties of the particles. When
we exchange two bosons, the wave function remains
the same. When we exchange two fermions, the cor-
responding wave function changes the sign. The wave
functions respect either Bose-Einstein or Fermi-Dirac
statistics in this way.
However, when one makes a quantum system be

two-dimensional, there emerges an alternative to the
classification.
As predicted by Wilczek [5], there can exist ex-

otic particles in two-dimensional space that are called
anyons. Anyons interpolate between bosons and
fermions in the sense that when we exchange two
of them in the system, the associated wave function
acquires a multiplicative phase-factor of unit ampli-
tude but distinct from ±1. The prediction of these
particles is physically relevant for various condensed
matter systems where the dynamics is effectively two-
dimensional.
Wilczek proposed a simple dynamical realization

of anyons with the use of “composite” particles. Let
us explain the idea on a simple model of two identi-
cal particles [6]. Take either two bosons or fermions.
Then, glue each of the particles together with a mag-
netic vortex, i.e. with infinitely thin solenoids of the
same magnetic flux α. As a result, we get two identi-
cal composite particles. Each particle can “see” just
the potential generated by the solenoid of the other
particle. The Hamiltonian corresponding to this two-
body system has the following form

Hany = 2
2∑

I=1

(�pI − �aI(�r))
2

. (2.1)
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where �pI = −i∂/∂�xI , �r = �x1 − �x2 and the index
I ∈ {1, 2} labels the individual particles. The poten-
tial

ak
1(�r) = −ak

2(�r) =
1
2
αεkl rl

�r 2
(2.2)

encodes the “statistical” interaction of the particles.
In this sense, we call �aI the statistical potential.
When we write the Hamiltonian in center-of-the-mass
coordinates, the relative motion of the particles is
governed by the effective Hamiltonian

Hrel = −∂2r − 1
r
∂r +

1
r2
(−i∂ϕ + α)2 , (2.3)

where r is the distance between the particles and ϕ
measures their relative angle.
The Hamiltonian (2.3) manifests the relation be-

tween the two-body model of identical anyons and
the AB system; formally, it coincides with H0α up to
the irrelevant Dirac delta term. However, its domain
of definition is quite different. When anyons (com-
posite particles) are composed of bosons, the wave
function has to be invariant under the substitution
ϕ → ϕ + π that corresponds to the exchange of the
particles. When anyons are composed of fermions,
the wave function has to change the sign after the
substitution. Hence, the wave functions are of two
types

ψα(r, ϕ) =
∑

l

eilϕfα,l(r), (2.4)

l ∈
{
2Z for anyons based on bosons ,

2Z+ 1 for anyons based on fermions .

We shall explain how the considered model ex-
plains anyons as the interpolation between bosons
and fermions. We can transform the system by a
unitary mapping U = eiϕα and describe alterna-
tively the system of two identical anyons by the
Hamiltonian H̃rel = UHrelU

−1 = −∂2r − 1/r∂r +
(−i∂ϕ)2/r2. It coincides with the energy operator
of the free motion. The simplicity of the Hamilto-
nian is traded for the additional gauge factor that ap-
pears in the wave functions, ψ̃α(r, ϕ) = Uψα(r, ϕ) =

eiϕα
∑

l

eilϕfα,l(r). The wave functions ψ̃α(r, ϕ) ac-

quire the phase eiπα after the substitution ϕ → ϕ+π
and, hence, interpolate between the values corre-
sponding to Bose-Einstein and Fermi-Dirac statistics.
We are ready to reconsider the AB system

and its symmetries in the framework of identi-
cal anyons. The Hamiltonian H0α can be rewrit-
ten as a direct sum with subsystems of fixed
value of spin s3 and parity R. It is convenient
to use the notation that reflects the decomposi-
tion of the wave functions into these subspaces,
Ψ̃ = (ΨΣ+Π+,ΨΣ+Π−,ΨΣ−Π+,ΨΣ−Π−)

T whe-

re Σ± =
1
2
(1 ± σ3) and Π± =

1
2
(1 ± R). In this

formalism, the Hamiltonian reads

Hγ=0
α = diag (H0α,+, H0α,−, HAB

α,+, HAB
α,−) ,

H0α,± = H0αΣ+Π±, (2.5)

HAB
α,± = H0αΣ−Π± .

Let us make a few comments on the elements of
(2.5). Consider HAB

α,+ in more detail first. It acts on
the wave functions that are periodic in π. Hence, it
can be interpreted as the Hamiltonian of the relative
motion of two identical anyons based on bosons. Its
wave functions are regular at r → 0, which can be
interpreted as a consequence of a hard-core interac-
tion between the anyons. It is worth noting that the
system represented by HAB

α,+ coincides with the sys-
tem represented by H0α,+. Indeed, the Hamiltonians
coincide not only formally but in their domains as
well (there are no singular wave functions in their do-
mains, see (1.5)). Hence, we can write H0α,+ = HAB

α,+.
The operators HAB

α,− and H0α,− describe the sys-
tems of two identical anyons based on fermions. The
operator HAB

α,− prescribes hard-core interaction be-
tween anyons. By contrast, the system described by
H0α,− allows singular wave functions. It can be un-
derstood as a consequence of a nontrivial contact in-
teraction between the composite particles.
The integrals of motion Q, Q̃ and W shall be

rewritten in the 4 × 4-matrix formalism. They read
explicitly

Q =

⎛⎜⎜⎜⎜⎝
0 0 0 q+

0 0 q+ 0

0 q− 0 0

q− 0 0 0

⎞⎟⎟⎟⎟⎠ ,

Q̃ =

⎛⎜⎜⎜⎜⎝
0 q− 0 0

q+ 0 0 0

0 0 0 q+

0 0 q− 0

⎞⎟⎟⎟⎟⎠ , (2.6)

W =

⎛⎜⎜⎜⎜⎝
0 0 q+q− 0

0 0 0 q2+

q−q+ 0 0 0

0 q2− 0 0

⎞⎟⎟⎟⎟⎠ ,

where q± was defined in (1.8). Substituting (2.5)
and (2.6) into the relations [Q, Hγ

α] = 0, [Q̃, Hγ
α] = 0

and [W , Hγ
α] = 0 we get the following set of indepen-

dent intertwining relations

H0+q− = q−H0− , q+H0+ = H0−q+ , (2.7)

H0+q+ = q+HAB
− , q−H0+ = HAB

− q− , (2.8)

HAB
− q2− = q2−H0− , q2+HAB

− = H0−q2− . (2.9)
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Let us focus on the first set (2.7). They can be
rewritten as [

q(1)a ,h(1)
]
= 0, (2.10)

where we used the operators

h(1) =

(
H0+ 0

0 H0−

)
,

q(1)1 =

(
0 q−

q+ 0

)
, (2.11)

q(1)2 = i

(
0 −q−

q+ 0

)
.

The operators (2.11) close for N = 2 supersym-
metry3. Indeed, they satisfy the commutation re-
lation{

q(1)a ,q(1)b

}
= 2δa,bh(1) , a, b = 1, 2 . (2.13)

Hence, operator h(1) can be understood as the super-
extended Hamiltonian of the two-body anyonic sys-
tems. The system represented by H0+ is based on
bosons (the wave functions are π-periodic), the other
system (represented by H0−) is based on fermions
with nontrivial contact interaction. The super-
charges q(1)a provide the mapping between these two
systems. They exchange the bosons with fermions
within the composite particles. Besides, they switch
on (off) the nontrivial contact interaction between
the anyons.
The relations (2.8) can be analyzed in the same

vein, giving rise to the N = 2 supersymmetric system
of the pair of two-body anyonic models. For the sake
of completeness, we present the corresponding oper-
ators and the algebraic relations of the superalgebra

h(2) =

(
H0+ 0

0 HAB
−

)
,

q(2)1 =

(
0 q+

q− 0

)
, (2.14)

q(2)2 = i

(
0 −q+

q− 0

)
,

[
q(2)a ,h(2)

]
= 0,{

q(2)a ,q(2)b

}
= 2δa,bh(2) , (2.15)

a, b = 1, 2 .

The only difference appears in the contact interac-
tion between the anyons. This time, the hard-core
interaction appears in both systems (neither H0+ nor
HAB

− has singular wave functions in its domain).
A qualitatively different situation occurs in the

last case (2.9). The intertwining relations define the
N = 2 nonlinear supersymmetry4 represented by the
operators

h(3) =

(
H0− 0

0 HAB
−

)
,

q(3)2 =

(
0 q2+

q2− 0

)
, (2.16)

q(3)2 = i

(
0 −q2+

q2− 0

)
.

They satisfy the following relations

[
q(3)a ,h(3)

]
= 0,{

q(3)a ,q(3)b

}
= 2δab

(
h(3)
)2

, (2.17)

a, b = 1, 2 .

The supercharges q(3) alter the contact interaction
between the anyons (hard-core in HAB

− to nontrivial
in H0− and vice versa) but do not alter the nature of
the composite particles.

3 Comments
In this paper, we have utilized the intimate relation
between the Aharonov-Bohm model and the dynam-
ical realization of anyons in order to construct three
different N = 2 supersymmetric systems of identi-
cal anyons. The origin of the supersymmetry can
be attributed to the symmetries Q, Q̃ and W of the

3Let us suppose that we have a quantum mechanical system described by a Hamiltonian H. There are N additional observables,
represented by the operators Qa, a ∈ {1, . . . , N}. It is said that the system has supersymmetry, as long as operators Qa together
with the Hamiltonian satisfy the following algebraic relations

{Qa, Qb} ∼ Hδab (2.12)

If this is the case, operators Qa are called supercharges. As a direct consequence of (2.12), they satisfy the relations

Q2j ∼ H, [Qj, H] = 0.

4The system has nonlinear supersymmetry when the supercharges Qa, a ∈ {1, . . . , N} satisfy the generalized anticommutation
relation [7]

{Qa, Qb} = δabf(H)

where f(H) is a function of the Hamiltonian H. Usually, f(H) is considered to be a higher-order polynomial.
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spin−1/2 particle in the field of a magnetic vortex.
Reduction of these operators into the specific sub-
spaces (of the fixed value of spin and parity) gave
rise to supersymmetry of the anyon systems. A simi-
lar construction was recently employed in the case of
the reflectionless Poschl-Teller system [8]. Its super-
symmetric structure originated from the geometrical
symmetries of a higher-dimensional system living in
AdS2 space after the reduction to the subspaces with
a fixed angular momentum value.
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