Superconformal Calogero Models as a Gauged Matrix Mechanics

S. Fedoruk

Abstract

We present basics of the gauged superfield approach to constructing the \mathcal{N}-superconformal multi-particle Calogero-type systems developed in arXiv:0812.4276, arXiv:0905.4951 and arXiv:0912.3508. This approach is illustrated by multi-particle systems possessing $\operatorname{SU}(1,1 \mid 1)$ and $D(2,1 ; \alpha)$ supersymmetries, as well as by the model of new $\mathcal{N}=4$ superconformal quantum mechanics.

1 Introduction

The celebrated Calogero model [1] is a prime example of an integrable and exactly solvable multi-particle system. It describes the system of n identical particles interacting through an inverse-square pair potential $\sum_{a \neq b} g /\left(x_{a}-x_{b}\right)^{2}, a, b=1, \ldots, n$. The Calogero model and its generalizations provide deep connections of various branches of theoretical physics and have a wide range of physical and mathematical applications (for a review, see $[2,3]$).

An important property of the Calogero model is $d=1$ conformal symmetry $\operatorname{SO}(1,2)$. Being multiparticle conformal mechanics, this model, in the twoparticle case, yields the standard conformal mechanics [4]. Conformal properties of the Calogero model and the supersymmetric generalizations of the latter give possibilities to apply them in black hole physics, since the near-horizon limits of extreme black hole solutions in M-theory correspond to $A d S_{2}$ geometry, having the same $\mathrm{SO}(1,2)$ isometry group. Analysis of the physical fermionic degrees of freedom in the black hole solutions of four- and five-dimensional supergravities shows that related $d=1$ superconformal systems must possess $\mathcal{N}=4$ supersymmetry [5, 6, 7].

Superconformal Calogero models with $\mathcal{N}=2$ supersymmetry were considered in $[8,9]$ and with $\mathcal{N}=4$ supersymmetry in $[10,11,12,13,14,15]$. Unfortunately, consistent Lagrange formulations for the n particle Calogero model with $\mathcal{N}=4$ superconformal symmetry for any n is still lacking.

Recently, we developed a universal approach to superconformal Calogero models for an arbitrary number of interacting particles, including $\mathcal{N}=4$ models. It is based on the superfield gauging of some non-abelian isometries of $d=1$ field theories [16].

Our gauge model involves three matrix superfields. One is a bosonic superfield in the adjoint representation of $\mathrm{U}(n)$. It carries the physical degrees of freedom of the superCalogero system. The second superfield is in the fundamental (spinor) representation of
$\mathrm{U}(n)$ and is described by Chern-Simons mechanical action $[17,18]$. The third matrix superfield accommodates the gauge "topological" supermultiplet [16]. \mathcal{N} extended superconformal symmetry plays a very important role in our model. Elimination of the pure gauge and auxiliary fields gives rise to Calogero-like interactions for the physical fields.

The talk is based on the papers [19, 20, 21].

2 Gauged formulation of the Calogero model

The renowned Calogero system [1] can be described by the following action [18, 22]:

$$
\begin{align*}
S_{0}=\int \mathrm{d} t & {[\operatorname{Tr}(\nabla X \nabla X)+} \tag{2.1}\\
& \left.\frac{i}{2}(\bar{Z} \nabla Z-\nabla \bar{Z} Z)+c \operatorname{Tr} A\right],
\end{align*}
$$

where

$$
\begin{aligned}
& \nabla X=\dot{X}+i[A, X], \\
& \nabla Z=\dot{Z}+i A Z \quad \nabla \bar{Z}=\dot{\bar{Z}}-i \bar{Z} A .
\end{aligned}
$$

The action (2.1) is the action of $\mathrm{U}(n), d=1$ gauge theory. The hermitian $n \times n$-matrix field $X_{a}^{b}(t),\left(\overline{X_{a}^{b}}\right)=$ $X_{b}^{a}, a, b=1, \ldots, n$ and the complex commuting $\mathrm{U}(n)$ spinor field $Z_{a}(t), \bar{Z}^{a}=\left(\overline{Z_{a}}\right)$ present the matter, scalar and spinor fields, respectively. The n^{2} "gauge fields" $A_{a}^{b}(t),\left(\overline{A_{a}^{b}}\right)=A_{b}^{a}$ are non-propagating ones in $d=1$ gauge theory. The second term in the action (2.1) is the Wess-Zumino (WZ) term. The third term is the standard Fayet-Iliopoulos (FI) term.

The action (2.1) is invariant under the $d=1$ conformal $\mathrm{SO}(1,2)$ transformations:

$$
\begin{align*}
& \delta t=\alpha, \tag{2.2}\\
& \delta X_{a}^{b}=\frac{1}{2} \dot{\alpha} X_{a}^{b} \\
& \delta Z_{a}=0,
\end{align*} \delta A_{a}^{b}=-\dot{\alpha} A_{a}^{b}, ~ \$
$$

where the constrained parameter $\partial_{t}^{3} \alpha=0$ contains three independent infinitesimal constant parameters of $\mathrm{SO}(1,2)$.

Talk at the Conference "Selected Topics in Mathematical and Particle Physics", In Honor of 70th Birthday of Jiri Niederle, 5-7 May 2009, Prague and at the XVIII International Colloquium "Integrable Systems and Quantum Symmetries", 18-20 June 2009, Prague, Czech Republic.

The action (2.1) is also invariant with respects to the local $\mathrm{U}(n)$ invariance

$$
\begin{equation*}
X \rightarrow g X g^{\dagger}, \quad Z \rightarrow g Z, \quad A \rightarrow g A g^{\dagger}+i \dot{g} g^{\dagger} \tag{2.3}
\end{equation*}
$$

where $g(\tau) \in \mathrm{U}(n)$.
Let us demonstrate, in Hamiltonian formalism, that the gauge model (2.1) is equivalent to the standard Calogero system.

The definitions of the momenta, corresponding to the action (2.1),

$$
\begin{array}{ll}
P_{X}=2 \nabla X, & P_{Z}=\frac{i}{2} \bar{Z}, \\
\bar{P}_{Z}=-\frac{i}{2} Z, & P_{A}=0 \tag{2.4}
\end{array}
$$

imply the primary constraints
a) $G \equiv P_{z}-\frac{i}{2} \bar{Z} \approx 0, \quad \bar{G} \equiv \bar{P}_{z}+\frac{i}{2} Z \approx 0$;
b) $P_{A} \approx 0$
and give us the following expression for the canonical Hamiltonian

$$
\begin{equation*}
H=\frac{1}{4} \operatorname{Tr}\left(P_{X} P_{X}\right)-\operatorname{Tr}(A T) \tag{2.6}
\end{equation*}
$$

where matrix quantity T is defined as

$$
\begin{equation*}
T \equiv i\left[X, P_{X}\right]-Z \cdot \bar{Z}+c I_{n} \tag{2.7}
\end{equation*}
$$

The preservation of the constraints (2.5b) in time leads to the secondary constraints

$$
\begin{equation*}
T \approx 0 \tag{2.8}
\end{equation*}
$$

The gauge fields A play the role of the Lagrange multipliers for these constraints.

Using canonical Poisson brackets $\left[X_{a}^{b}, P_{X}{ }_{c}^{d}\right]_{P}=$ $\delta_{a}^{d} \delta_{c}^{b},\left[Z_{a}, P_{Z}^{b}\right]_{P}=\delta_{a}^{b},\left[\bar{Z}^{a}, \bar{P}_{Z b}\right]_{P}=\delta_{b}^{a}$, we obtain the Poisson brackets of the constraints (2.5a)

$$
\begin{equation*}
\left[G^{a}, \bar{G}_{b}\right]_{P}=-i \delta_{b}^{a} . \tag{2.9}
\end{equation*}
$$

Dirac brackets for these second class constraints (2.5a) eliminate spinor momenta P_{z}, \bar{P}_{z} from the phase space. The Dirac brackets for the residual variables take the form

$$
\begin{equation*}
\left[X_{a}^{b}, P_{X}{ }_{c}^{d}\right]_{D}=\delta_{a}^{d} \delta_{c}^{b}, \quad\left[Z_{a}, \bar{Z}^{b}\right]_{D}=-i \delta_{a}^{b} \tag{2.10}
\end{equation*}
$$

The residual constraints (2.8) $T=T^{+}$form the $u(n)$ algebra with respect to the Dirac brackets

$$
\begin{equation*}
\left[T_{a}^{b}, T_{c}^{d}\right]_{D}=i\left(\delta_{a}^{d} T_{c}^{b}-\delta_{c}^{b} T_{a}^{d}\right) \tag{2.11}
\end{equation*}
$$

and generate gauge transformations (2.3). Let us fix the gauges for these transformations.

In the notations

$$
\begin{aligned}
x_{a} \equiv X_{a}^{a}, & p_{a} \equiv P_{X}{ }_{a}^{a} \quad(\text { no summation over } a) ; \\
x_{a}^{b} \equiv X_{a}^{b}, & p_{a}^{b} \equiv P_{X}{ }_{a}^{b} \quad \text { for } a \neq b
\end{aligned}
$$

the constraints (2.7) take the form

$$
\begin{align*}
T_{a}^{b}= & i\left(x_{a}-x_{b}\right) p_{a}^{b}-i\left(p_{a}-p_{b}\right) x_{a}^{b}+ \\
& i \sum_{c}\left(x_{a}^{c} p_{c}^{b}-p_{a}^{c} x_{c}^{b}\right)-Z_{a} \bar{Z}^{b} \approx 0 \quad \text { for } a \neq b, \\
T_{a}^{a}= & i \sum_{c}\left(x_{a}^{c} p_{c}^{a}-p_{a}^{c} x_{c}^{a}\right)-Z_{a} \bar{Z}^{a}+c \approx 0 \tag{2.13}\\
& (\text { no summation over } a) .
\end{align*}
$$

The non-diagonal constraints (2.12) generate the transformations

$$
\delta x_{a}^{b}=\left[x_{a}^{b}, \epsilon_{b}^{a} T_{b}^{a}\right]_{D} \sim i\left(x_{a}-x_{b}\right) \epsilon_{b}^{a}
$$

Therefore, in case of the Calogero-like condition $x_{a} \neq x_{b}$, we can impose the gauge

$$
\begin{equation*}
x_{a}^{b} \approx 0 \tag{2.14}
\end{equation*}
$$

Then we introduce Dirac brackets for the constraints (2.12), (2.14) and eliminate x_{a}^{b}, p_{a}^{b}. In particular, the resolved expression for p_{a}^{b} is

$$
\begin{equation*}
p_{a}^{b}=-\frac{i}{\left(x_{a}-x_{b}\right)} Z_{a} \bar{Z}^{b} . \tag{2.15}
\end{equation*}
$$

The Dirac brackets of residual variables coincide with Poisson ones due to the resolved form of the gauge fixing condition (2.14).

After gauge-fixing (2.14), the constraints (2.13) become

$$
\begin{equation*}
Z_{a} \bar{Z}^{a}-c \approx 0 \quad(\text { no summation over } a) \tag{2.16}
\end{equation*}
$$

and generate local phase transformations of Z_{a}. For these gauge transformations we impose the gauge

$$
\begin{equation*}
Z_{a}-\bar{Z}^{a} \approx 0 \tag{2.17}
\end{equation*}
$$

The conditions (2.16) and (2.17) eliminate Z_{a} and \bar{Z}^{a} completely.

Finally, using the expressions (2.15) and the conditions (2.14), (2.16) we obtain the following expression for the Hamiltonian (2.6)

$$
\begin{align*}
H_{0}= & \frac{1}{4} \operatorname{Tr}\left(P_{X} P_{X}\right)= \\
& \frac{1}{4}\left(\sum_{a}\left(p_{a}\right)^{2}+\sum_{a \neq b} \frac{c^{2}}{\left(x_{a}-x_{b}\right)^{2}}\right), \tag{2.18}
\end{align*}
$$

which corresponds to the standard Calogero action [1]

$$
\begin{equation*}
S_{0}=\int \mathrm{d} t\left[\sum_{a} \dot{x}_{a} \dot{x}_{a}-\sum_{a \neq b} \frac{c^{2}}{4\left(x_{a}-x_{b}\right)^{2}}\right] . \tag{2.19}
\end{equation*}
$$

$3 \mathcal{N}=2$ superconformal Calogero model

$\mathcal{N}=2$ supersymmetric generalization of the system (2.1) is described by

- the even hermitian $(n \times n)$-matrix superfield $\mathcal{X}_{a}^{b}(t, \theta, \bar{\theta}),(\mathcal{X})^{+}=\mathcal{X}, a, b=1, \ldots, n$ [supermultiplets (1,2,1)];
- commuting chiral $\mathrm{U}(n)$-spinor superfield $\mathcal{Z}_{a}\left(t_{L}, \theta\right), \quad \overline{\mathcal{Z}}^{a}\left(t_{R}, \bar{\theta}\right)=\left(\mathcal{Z}_{a}\right)^{+}, \quad t_{L, R}=t \pm i \theta \bar{\theta}$ [supermultiplets (2,2,0)];
- commuting n^{2} complex "bridge" superfields $b_{a}^{c}(t, \theta, \bar{\theta})$.
The $\mathcal{N}=2$ superconformally invariant action of these superfields has the form

$$
\begin{align*}
S_{2}=\int \mathrm{d} t \mathrm{~d}^{2} \theta[& \operatorname{Tr}(\overline{\mathcal{D}} \mathcal{X} \mathcal{D} \mathcal{X})+ \tag{3.1}\\
& \left.\frac{1}{2} \overline{\mathcal{Z}} e^{2 V} \mathcal{Z}-c \operatorname{Tr} V\right]
\end{align*}
$$

Here the covariant derivatives of the superfield \mathscr{X} are

$$
\begin{equation*}
\mathcal{D} \mathcal{X}=D \mathcal{X}+i[\mathscr{A}, \mathcal{X}], \quad \overline{\mathcal{D}} \mathcal{X}=\bar{D} \mathcal{X}+i[\overline{\mathscr{A}}, \mathcal{X}] \tag{3.2}
\end{equation*}
$$

$D=\partial_{\theta}+i \bar{\theta} \partial_{t}, \quad \bar{D}=-\partial_{\bar{\theta}}-i \theta \partial_{t}, \quad\{D, \bar{D}\}=-2 i \partial_{t}$, where the potentials are constructed from the bridges as

$$
\begin{align*}
& \mathscr{A}=-i e^{i \bar{b}}\left(D e^{-i \bar{b}}\right), \\
& \overline{\mathscr{A}}=-i e^{i b}\left(\bar{D} e^{-i b}\right) \quad\left(\bar{b} \equiv b^{+}\right) . \tag{3.3}
\end{align*}
$$

The gauge superfield prepotential $V_{a}^{b}(t, \theta, \bar{\theta}),(V)^{\dagger}=$ V, is constructed from the bridges as

$$
\begin{equation*}
e^{2 V}=e^{-i \bar{b}} e^{i b} \tag{3.4}
\end{equation*}
$$

The superconformal boosts of the $\mathcal{N}=2$ superconformal group $\mathrm{SU}(1,1 \mid 1) \simeq \operatorname{OSp}(2 \mid 2)$ have the following realization:

$$
\begin{align*}
& \delta t=-i(\eta \bar{\theta}+\bar{\eta} \theta) t, \tag{3.5}\\
& \delta \theta=\eta(t+i \theta \bar{\theta}), \quad \delta \bar{\theta}=\eta(t-i \theta \bar{\theta}), \\
& \quad \delta \mathcal{X}=-i(\eta \bar{\theta}+\bar{\eta} \theta) \mathcal{X}, \quad \delta \mathcal{Z}=0, \\
& \quad \delta b=0, \quad \delta V=0 . \tag{3.6}
\end{align*}
$$

Its closure with $\mathcal{N}=2$ supertranslations yields the full $\mathcal{N}=2$ superconformal invariance of the action (3.1).

The action (3.1) is invariant also with respect to the two types of the local $\mathrm{U}(n)$ transformations:

- τ-transformations with the hermitian $(n \times n)$-matrix parameter $\tau(t, \theta, \bar{\theta}) \in u(n),(\tau)^{+}=\tau$;
- λ-transformations with complex chiral gauge parameters $\lambda\left(t_{L}, \theta\right) \in u(n), \bar{\lambda}\left(t_{R}, \theta\right)=(\lambda)^{+}$.
These $\mathrm{U}(n)$ transformations act on the superfields in the action (3.1) as

$$
\begin{gather*}
e^{i b^{\prime}}=e^{i \tau} e^{i b} e^{-i \lambda}, \quad e^{2 V^{\prime}}=e^{i \bar{\lambda}} e^{2 V} e^{-i \lambda} \tag{3.7}\\
\mathcal{X}^{\prime}=e^{i \tau} \mathcal{X} e^{-i \tau}, \quad \mathcal{Z}^{\prime}=e^{i \lambda} \mathcal{Z}, \quad \overline{\mathcal{Z}}^{\prime}=\overline{\mathcal{Z}} e^{-i \bar{\lambda}} \tag{3.8}
\end{gather*}
$$

In terms of τ-invariant superfields V, \mathcal{Z} and new hermitian $(n \times n)$-matrix superfield

$$
\begin{equation*}
\mathscr{X}=e^{-i b} \mathcal{X} e^{i \bar{b}}, \quad \mathscr{X}^{\prime}=e^{i \lambda} \mathscr{X} e^{-i \bar{\lambda}} \tag{3.9}
\end{equation*}
$$

the action (3.1) takes the form

$$
\begin{align*}
S_{2}=\int \mathrm{d} t \mathrm{~d}^{2} \theta[& \operatorname{Tr}\left(\overline{\mathscr{D}} \mathscr{X} e^{2 V} \mathscr{D} \mathscr{X} e^{2 V}\right)+ \tag{3.10}\\
& \left.\frac{1}{2} \overline{\mathcal{Z}} e^{2 V} \mathcal{Z}-c \operatorname{Tr} V\right]
\end{align*}
$$

where the covariant derivatives of the superfield \mathscr{X} are

$$
\begin{align*}
\mathscr{D} \mathscr{X} & =D \mathscr{X}+e^{-2 V}\left(D e^{2 V}\right) \mathscr{X}, \\
\overline{\mathscr{D}} \mathscr{X} & =\bar{D} \mathscr{X}-\mathscr{X} e^{2 V}\left(\bar{D} e^{-2 V}\right) . \tag{3.11}
\end{align*}
$$

For gauge λ-transformations we impose the WZ gauge

$$
V(t, \theta, \bar{\theta})=-\theta \bar{\theta} A(t)
$$

Then, the action (3.10) takes the form

$$
\begin{align*}
& S_{2}=S_{0}+S_{2}^{\Psi} \\
& S_{2}^{\Psi}=-i \operatorname{Tr} \int \mathrm{~d} t(\bar{\Psi} \nabla \Psi-\nabla \bar{\Psi} \Psi) \tag{3.12}
\end{align*}
$$

where $\Psi=D \mathscr{X} \mid$ and

$$
\nabla \Psi=\dot{\Psi}+i[A, \Psi], \quad \nabla \bar{\Psi}=\dot{\bar{\Psi}}+i[A, \bar{\Psi}]
$$

The bosonic core in (3.12) exactly coincides with the Calogero action (2.19).

Exactly as in the pure bosonic case, residual local $\mathrm{U}(\mathrm{n})$ invariance of the action (3.12) eliminates the nondiagonal fields $X_{a}^{b}, a \neq b$, and all spinor fields Z_{a}. Thus, the physical fields in our $\mathcal{N}=2$ supersymmetric generalization of the Calogero system are n bosons $x_{a}=X_{a}^{a}$ and $2 n^{2}$ fermions Ψ_{a}^{b}. These fields present the on-shell content of n multiplets $(\mathbf{1}, \mathbf{2}, \mathbf{1})$ and $n^{2}-n$ multiplets $(\mathbf{0}, \mathbf{2}, \mathbf{2})$ which are obtained from n^{2} multiplets $(\mathbf{1 , 2 , 1})$ by the gauging procedure [16]. We can present it by the plot:

$$
\begin{aligned}
\underbrace{\mathscr{X}_{a}^{a}=\left(X_{a}^{a}, \Psi_{a}^{a}, C_{a}^{a}\right)}_{(\mathbf{1}, \mathbf{2}, \mathbf{1}) \text { multiplets }} \\
\Downarrow
\end{aligned} \text { gauging } \underbrace{\Downarrow}_{(\mathbf{1}, \mathbf{2}, \mathbf{1}) \text { multiplets }} \begin{array}{r}
\Downarrow \\
\underbrace{\mathscr{X}_{a}^{a}=\left(X_{a}^{a}, \Psi_{a}^{a}, C_{a}^{a}\right)}_{(\mathbf{1}, \mathbf{2}, \mathbf{1}) \text { multiplets }} \text { interact } \underbrace{\left.\Omega_{a}^{b}=\left(\Psi_{a}^{b}, \Psi_{a}^{b}, C_{a}^{b}\right), C_{a \neq b}^{b}\right), a \neq b}_{(\mathbf{0}, \mathbf{2}, \mathbf{2}) \text { multiplets }}
\end{array}
$$

where the bosonic fields C_{a}^{a}, C_{a}^{b} and B_{a}^{b} are auxiliary components of the supermultiplets. Thus, we obtain some new $\mathcal{N}=2$ extensions of the n-particle Calogero models with n bosons and $2 n^{2}$ fermions as compared to the standard $\mathcal{N}=2$ superCalogero with $2 n$ fermions constructed by Freedman and Mende [8].

$4 \mathcal{N}=4$ superconformal Calogero model

The most natural formulation of $\mathcal{N}=4, d=1$ superfield theories is achieved in the harmonic superspace [23] parametrized by

$$
\begin{aligned}
& \left(t, \theta_{i}, \bar{\theta}^{k}, u_{i}^{ \pm}\right) \sim\left(t, \theta^{ \pm}, \bar{\theta}^{ \pm}, u_{i}^{ \pm}\right) \\
& \theta^{ \pm}=\theta^{i} u_{i}^{ \pm}, \quad \bar{\theta}^{ \pm}=\bar{\theta}^{i} u_{i}^{ \pm}, \quad i, k=1,2
\end{aligned}
$$

Commuting SU(2)-doublets $u_{i}^{ \pm}$are harmonic coordinates [24], subjected by the constraints $u^{+i} u_{i}^{-}=1$. The $\mathcal{N}=4$ superconformally invariant harmonic analytic subspace is parametrized by
$(\zeta, u)=\left(t_{A}, \theta^{+}, \bar{\theta}^{+}, u_{i}^{ \pm}\right), \quad t_{A}=t-i\left(\theta^{+} \bar{\theta}^{-}+\theta^{-} \bar{\theta}^{+}\right)$.
The integration measures in these superspaces are $\mu_{H}=\mathrm{d} u \mathrm{~d} t \mathrm{~d}^{4} \theta$ and $\mu_{A}^{(-2)}=\mathrm{d} u \mathrm{~d} \zeta^{(-2)}$.

The $\mathcal{N}=4$ supergauge theory related to our task is described by:

- hermitian matrix superfields $\mathscr{X}\left(t, \theta^{ \pm}, \bar{\theta}^{ \pm}, u_{i}^{ \pm}\right)=$ $\left(\mathscr{X}_{a}^{b}\right)$ subjected to the constraints

$$
\begin{align*}
& \mathscr{D}^{++} \mathscr{X}=0, \quad \mathscr{D}^{+} \mathscr{D}^{-} \mathscr{X}=0, \\
& \left(\mathscr{D}^{+} \overline{\mathscr{D}}^{-}+\overline{\mathscr{D}}^{+} \mathscr{D}^{-}\right) \mathscr{X}=0 \tag{4.1}
\end{align*}
$$

[multiplets (1,4,3)];

- analytic superfields $\mathcal{Z}^{+}(\zeta, u)=\left(\mathcal{Z}_{a}^{+}\right)$subjected to the constraint

$$
\begin{equation*}
\mathscr{D}^{++} \mathcal{Z}^{+}=0 \tag{4.2}
\end{equation*}
$$

[multiplets ($\mathbf{4}, \mathbf{4}, \mathbf{0}$)];

- the gauge matrix connection $V^{++}(\zeta, u)=$ $\left(V^{++b}{ }_{a}^{b}\right)$.
In (4.1) and (4.2) the covariant derivatives are defined by

$$
\begin{aligned}
& \mathscr{D}^{++} \mathscr{X}=D^{++} \mathscr{X}+i\left[V^{++}, \mathscr{X}\right] \\
& \mathscr{D}^{++} \mathcal{Z}^{+}=D^{++} \mathcal{Z}^{+}+i V^{++} \mathcal{Z}^{+} .
\end{aligned}
$$

Also $\mathscr{D}^{+}=D^{+}, \overline{\mathscr{D}}^{+}=\bar{D}^{+}$and the connections in \mathscr{D}^{-}, $\overline{\mathscr{D}}^{-}$are expressed through derivatives of V^{++}.

The $\mathcal{N}=4$ superconformal model is described by the action

$$
\begin{align*}
S_{4}^{\alpha \neq 0}= & -\frac{1}{4(1+\alpha)} \int \mu_{H} \operatorname{Tr}\left(\mathscr{X}^{-1 / \alpha}\right)+ \tag{4.3}\\
& \frac{1}{2} \int \mu_{A}^{(-2)} \mathcal{V}_{0} \widetilde{\mathcal{Z}}^{+} \mathcal{Z}^{+}+\frac{i}{2} c \int \mu_{A}^{(-2)} \operatorname{Tr} V^{++}
\end{align*}
$$

The tilde in $\widetilde{\mathcal{Z}}^{+}$denotes 'hermitian' conjugation preserving analyticity [24, 23].

The unconstrained superfield $\mathcal{V}_{0}(\zeta, u)$ is a real analytic superfield, which is defined by the integral transform $\left(\mathscr{X}_{0} \equiv \operatorname{Tr}(\mathscr{X})\right)$

$$
\begin{aligned}
& \mathscr{X}_{0}\left(t, \theta_{i}, \bar{\theta}^{i}\right)= \\
& \left.\int \mathrm{d} u \mathcal{V}_{0}\left(t_{A}, \theta^{+}, \bar{\theta}^{+}, u^{ \pm}\right)\right|_{\theta^{ \pm}=\theta^{i} u_{i}^{ \pm}, \bar{\theta}^{ \pm}=\bar{\theta}^{i} u_{i}^{ \pm}}
\end{aligned}
$$

The real number $\alpha \neq 0$ in (4.3) coincides with the parameter of the $\mathcal{N}=4$ superconformal group $D(2,1 ; \alpha)$ which is symmetry group of the action (4.3). Field transformations under superconformal boosts are (see the coordinate transformations in $[23,16]$)

$$
\begin{align*}
& \delta \mathscr{X}=-\Lambda_{0} \mathscr{X}, \quad \delta \mathcal{Z}^{+}=\Lambda \mathcal{Z}^{+}, \\
& \delta V^{++}=0 \tag{4.4}
\end{align*}
$$

where $\Lambda=2 i \alpha\left(\bar{\eta}^{-} \theta^{+}-\eta^{-} \bar{\theta}^{+}\right), \Lambda_{0}=2 \Lambda-D^{--} D^{++} \Lambda$. It is important that just the superfield multiplier \mathcal{V}_{0} in the action provides this invariance due to $\delta \mathcal{V}_{0}=$ $-2 \Lambda \mathcal{V}_{0}$ (note that $\delta \mu_{A}^{(-2)}=0$).

The action (4.3) is invariant under the local $\mathrm{U}(n)$ transformations:

$$
\begin{align*}
& \mathscr{X}^{\prime}=e^{i \lambda} \mathscr{X} e^{-i \lambda}, \quad \mathcal{Z}^{+\prime}=e^{i \lambda} \mathcal{Z}^{+}, \\
& V^{++\prime}=e^{i \lambda} V^{++} e^{-i \lambda}-i e^{i \lambda}\left(D^{++} e^{-i \lambda}\right), \tag{4.5}
\end{align*}
$$

where $\lambda_{a}^{b}\left(\zeta, u^{ \pm}\right) \in u(n)$ is the 'hermitian' analytic matrix parameter, $\widetilde{\lambda}=\lambda$. Using gauge freedom (4.5) we choose the WZ gauge

$$
\begin{equation*}
V^{++}=-2 i \theta^{+} \bar{\theta}^{+} A\left(t_{A}\right) \tag{4.6}
\end{equation*}
$$

Considering the case $\alpha=-\frac{1}{2}$ (when $D(2,1 ; \alpha) \simeq$ $\operatorname{OSp}(4 \mid 2))$ in the WZ gauge and eliminating auxiliary and gauge fields, we find that the action (4.3) has the following bosonic limit

$$
\begin{align*}
S_{4, b}^{\alpha=-1 / 2}= & \int \mathrm{d} t\left\{\sum_{a} \dot{x}_{a} \dot{x}_{a}+\frac{i}{2} \sum_{a}\left(\bar{Z}_{k}^{a} \dot{Z}_{a}^{k}-\dot{\bar{Z}}_{k}^{a} Z_{a}^{k}\right)+\right. \\
& \left.\sum_{a \neq b} \frac{\operatorname{Tr}\left(S_{a} S_{b}\right)}{4\left(x_{a}-x_{b}\right)^{2}}-\frac{n \operatorname{Tr}(\hat{S} \hat{S})}{2\left(X_{0}\right)^{2}}\right\} \tag{4.7}
\end{align*}
$$

where

$$
\left(S_{a}\right)_{i}{ }^{j} \equiv \bar{Z}_{i}^{a} Z_{a}^{j}, \quad(\hat{S})_{i}{ }^{j} \equiv \sum_{a}\left[\left(S_{a}\right)_{i}{ }^{j}-\frac{1}{2} \delta_{i}^{j}\left(S_{a}\right)_{k}{ }^{k}\right]
$$

The fields x_{a} are "diagonal" fields in $X=\mathscr{X} \mid$. The fields Z^{i} define first components in $\mathcal{Z}^{+}, \mathcal{Z}^{+} \mid=Z^{i} u_{i}^{+}$. They are subject to the constraints

$$
\begin{equation*}
\bar{Z}_{i}^{a} Z_{a}^{i}=c \quad \forall a \tag{4.8}
\end{equation*}
$$

These constraints are generated by the equations of motion with respect to the diagonal components of gauge field A.

Using Dirac brackets $\left[\bar{Z}_{i}^{a}, Z_{b}^{j}\right]_{D}=i \delta_{b}^{a} \delta_{i}^{j}$, which are generated by the kinetic WZ term for Z, we find that the quantities S_{a} for each a form $u(2)$ algebras

$$
\left[\left(S_{a}\right)_{i}^{j},\left(S_{b}\right)_{k}^{l}\right]_{D}=i \delta_{a b}\left\{\delta_{i}^{l}\left(S_{a}\right)_{k}^{j}-\delta_{k}^{j}\left(S_{a}\right)_{i}^{l}\right\}
$$

Thus modulo center-of-mass conformal potential (up to the last term in (4.7)), the bosonic limit (4.7) is none other than the integrable $\mathrm{U}(2)$-spin Calogero model in the formulation of $[25,3]$. Except for the case $\alpha=-\frac{1}{2}$, the action (4.3) yields non-trivial sigma-model type kinetic term for the field $X=\mathscr{X}$.

For $\alpha=0$ it is necessary to modify the transformation law of \mathscr{X} in the following way [16]

$$
\begin{equation*}
\delta_{\text {mod }} \mathscr{X}=2 i\left(\theta_{k} \bar{\eta}^{k}+\bar{\theta}^{k} \eta_{k}\right) . \tag{4.9}
\end{equation*}
$$

Then the $D(2,1 ; \alpha=0)$ superconformal action reads

$$
\begin{align*}
S_{4}^{\alpha=0}= & -\frac{1}{4} \int \mu_{H} \operatorname{Tr}\left(e^{\mathscr{X}}\right)+ \tag{4.10}\\
& \frac{1}{2} \int \mu_{A}^{(-2)} \widetilde{\mathcal{Z}}^{+} \mathcal{Z}^{+}+\frac{i}{2} c \int \mu_{A}^{(-2)} \operatorname{Tr} V^{++}
\end{align*}
$$

The $D(2,1 ; \alpha=0)$ superconformal invariance is not compatible with the presence of \mathcal{V} in the WZ term of the action (4.10), still implying the transformation laws (4.4) for \mathcal{Z}^{+}and for V^{++}. This situation is quite analogous to what happens in the $\mathcal{N}=2$ super Calogero model considered in Sect. 3, where the center-of-mass supermultiplet $\operatorname{Tr}(\mathscr{X})$ decouples from the WZ and gauge supermultiplets. Note that the (matrix) \mathscr{X} supermultiplet interacts with the (column) \mathcal{Z} supermultiplet in (3.1) and (4.10) via the gauge supermultiplet.

$5 \quad D(2,1 ; \alpha)$ quantum mechanics

The $n=1$ case of the $\mathcal{N}=4$ Calogero-like model (4.3) above (the center-of-mass coordinate case) amounts to a non-trivial model of $\mathcal{N}=4$ superconformal mechanics.

Choosing the WZ gauge (4.6) and eliminating the auxiliary fields by their algebraic equations of motion, we obtain that the action takes the following on-shell form

$$
\begin{align*}
S= & S_{b}+S_{f}, \tag{5.1}\\
S_{b}= & \int \mathrm{d} t\left[\dot{x} \dot{x}+\frac{i}{2}\left(\bar{z}_{k} \dot{z}^{k}-\dot{\bar{z}}_{k} z^{k}\right)-\right. \tag{5.2}\\
& \left.\frac{\alpha^{2}\left(\bar{z}_{k} z^{k}\right)^{2}}{4 x^{2}}-A\left(\bar{z}_{k} z^{k}-c\right)\right], \\
S_{f}= & -i \int \mathrm{~d} t\left(\bar{\psi}_{k} \dot{\psi}^{k}-\dot{\bar{\psi}}_{k} \psi^{k}\right)+ \tag{5.3}\\
& 2 \alpha \int \mathrm{~d} t \frac{\psi^{i} \bar{\psi}^{k} z_{(i} \bar{z}_{k)}}{x^{2}}+ \\
& \frac{2}{3}(1+2 \alpha) \int \mathrm{d} t \frac{\psi^{i} \bar{\psi}^{k} \psi_{(i} \bar{\psi}_{k)}}{x^{2}} .
\end{align*}
$$

The action (5.1) possesses $D(2,1 ; \alpha)$ superconformal invariance. Using the Nöther procedure, we find the $D(2,1 ; \alpha)$ generators. The quantum counterparts of them are

$$
\begin{align*}
\mathbf{Q}^{i}= & P \Psi^{i}+2 i \alpha \frac{\left.Z^{(i} \bar{Z}^{k}\right) \Psi_{k}}{X}+ \tag{5.4}\\
& i(1+2 \alpha) \frac{\left\langle\Psi_{k} \Psi^{k} \bar{\Psi}^{i}\right\rangle}{X} \\
\overline{\mathbf{Q}}_{i}= & P \bar{\Psi}_{i}-2 i \alpha \frac{Z_{i} \bar{Z}_{k)} \bar{\Psi}^{k}}{X}+ \tag{5.5}\\
& i(1+2 \alpha) \frac{\left\langle\bar{\Psi}^{k} \bar{\Psi}_{k} \Psi_{i}\right\rangle}{X} \\
\mathbf{S}^{i}= & -2 X \Psi^{i}+t \mathbf{Q}^{i}, \quad \overline{\mathbf{S}}_{i}=-2 X \bar{\Psi}_{i}+t \overline{\mathbf{Q}}_{i} \tag{5.6}
\end{align*}
$$

$$
\begin{gather*}
\mathbf{H}=\frac{1}{4} P^{2}+\alpha^{2} \frac{\left(\bar{Z}_{k} Z^{k}\right)^{2}+2 \bar{Z}_{k} Z^{k}}{4 X^{2}}- \tag{5.7}\\
2 \alpha \frac{\left.\left.Z^{(i} \bar{Z}^{k}\right) \Psi_{(i} \bar{\Psi}_{k}\right)}{X^{2}}- \\
(1+2 \alpha) \frac{\left\langle\Psi_{i} \Psi^{i} \bar{\Psi}^{k} \bar{\Psi}_{k}\right\rangle}{2 X^{2}}+\frac{(1+2 \alpha)^{2}}{16 X^{2}}, \\
\mathbf{K}=X^{2}-t \frac{1}{2}\{X, P\}+t^{2} \mathbf{H}, \tag{5.8}\\
\mathbf{D}=-\frac{1}{4}\{X, P\}+t \mathbf{H}, \\
\left.\mathbf{J}^{i k}=i\left[Z^{(i} \bar{Z}^{k)}+2 \Psi^{(i} \bar{\Psi}^{k}\right)\right], \quad \mathbf{I}^{\prime^{\prime} 1^{\prime}}=-i \Psi_{k} \Psi^{k}, \\
\mathbf{I}^{2^{\prime} 2^{\prime}}=i \bar{\Psi}^{k} \bar{\Psi}_{k}, \quad \mathbf{I}^{\mathbf{1}^{\prime} 2^{\prime}}=-\frac{i}{2}\left[\Psi_{k}, \bar{\Psi}^{k}\right] . \tag{5.9}
\end{gather*}
$$

The symbol $\langle\ldots\rangle$ denotes Weyl ordering.
It can be directly checked that the generators (5.4)-(5.9) form the $D(2,1 ; \alpha)$ superalgebra

$$
\begin{align*}
\left\{\mathbf{Q}^{a i^{\prime} i}, \mathbf{Q}^{b k^{\prime} k}\right\}= & -2\left(\epsilon^{i k} \epsilon^{i^{\prime} k^{\prime}} \mathbf{T}^{a b}+\right. \tag{5.10}\\
& \left.\alpha \epsilon^{a b} \epsilon^{i^{\prime} k^{\prime}} \mathbf{J}^{i k}-(1+\alpha) \epsilon^{a b} \epsilon^{i k} \mathbf{I}^{i^{\prime} k^{\prime}}\right), \\
{\left[\mathbf{T}^{a b}, \mathbf{T}^{c d}\right]=} & -i\left(\epsilon^{a c} \mathbf{T}^{b d}+\epsilon^{b d} \mathbf{T}^{a c}\right), \tag{5.11}\\
{\left[\mathbf{J}^{i j}, \mathbf{J}^{k l}\right]=} & -i\left(\epsilon^{i k} \mathbf{J}^{j l}+\epsilon^{j l} \mathbf{J}^{i k}\right), \tag{5.12}\\
{\left[\mathbf{I}^{i^{\prime} j^{\prime}}, \mathbf{I}^{k^{\prime} l^{\prime}}\right]=} & -i\left(\epsilon^{i k} \mathbf{I}^{j^{\prime} l^{\prime}}+\epsilon^{j^{\prime} l^{\prime}} \mathbf{i}^{i^{\prime} k^{\prime}}\right), \\
{\left[\mathbf{T}^{a b}, \mathbf{Q}^{c i i^{\prime} i}\right]=} & i \epsilon^{c(a} \mathbf{Q}^{b) i^{\prime} i}, \tag{5.13}\\
{\left[\mathbf{J}^{i j}, \mathbf{Q}^{a i^{\prime} k}\right]=} & i \epsilon^{k(i} \mathbf{Q}^{\left.a i^{\prime} j\right)}, \\
{\left[\mathbf{J}^{i^{\prime} j^{\prime}}, \mathbf{Q}^{a k^{\prime} i}\right]=} & i \epsilon^{k^{\prime}\left(i^{\prime}\right.} \mathbf{Q}^{\left.a j^{\prime}\right) i}
\end{align*}
$$

due to the quantum brackets

$$
\begin{align*}
& {[X, P]=i, \quad\left[Z^{i}, \bar{Z}_{j}\right]=\delta_{j}^{i}} \\
& \left\{\Psi^{i}, \bar{\Psi}_{j}\right\}=-\frac{1}{2} \delta_{j}^{i} . \tag{5.14}
\end{align*}
$$

In (5.11)-(5.14) we use the notation $\mathbf{Q}^{21^{\prime} i}=-\mathbf{Q}^{i}$, $\mathbf{Q}^{22^{\prime} i}=-\overline{\mathbf{Q}}^{i}, \quad \mathbf{Q}^{11^{\prime} i}=\mathbf{S}^{i}, \mathbf{Q}^{12^{\prime} i}=\overline{\mathbf{S}}^{i}, \mathbf{T}^{22}=\mathbf{H}$, $\mathbf{T}^{11}=\mathbf{K}, \mathbf{T}^{12}=-\mathbf{D}$.

To find the quantum spectrum, we make use of the realization

$$
\begin{equation*}
\bar{Z}_{i}=v_{i}^{+}, \quad Z^{i}=\partial / \partial v_{i}^{+} \tag{5.15}
\end{equation*}
$$

for the bosonic operators where v_{i}^{+}is a commuting complex $\mathrm{SU}(2)$ spinor, as well as the following realization of the odd operators

$$
\begin{equation*}
\Psi^{i}=\psi^{i}, \quad \bar{\Psi}_{i}=-\frac{1}{2} \partial / \partial \psi^{i} \tag{5.16}
\end{equation*}
$$

where ψ^{i} are complex Grassmann variables.
The full wave function $\Phi=A_{1}+\psi^{i} B_{i}+\psi^{i} \psi_{i} A_{2}$ is subjected to the constraints

$$
\begin{equation*}
\bar{Z}_{i} Z^{i} \Phi=v_{i}^{+} \frac{\partial}{\partial v_{i}^{+}} \Phi=c \Phi . \tag{5.17}
\end{equation*}
$$

Table 1

	r_{0}	j	i
$A_{k^{\prime}}^{(c)}\left(x, v^{+}\right)$	$\frac{\|\alpha\|(c+1)+1}{2}$	$\frac{c}{2}$	$\frac{1}{2}$
$B_{k}^{\prime(c)}\left(x, v^{+}\right)$	$\frac{\|\alpha\|(c+1)+1}{2}-\frac{1}{2} \operatorname{sign}(\alpha)$	$\frac{c}{2}-\frac{1}{2}$	0
$B_{k}^{\prime \prime(c)}\left(x, v^{+}\right)$	$\frac{\|\alpha\|(c+1)+1}{2}+\frac{1}{2} \operatorname{sign}(\alpha)$	$\frac{c}{2}+\frac{1}{2}$	0

Requiring the wave function $\Phi\left(v^{+}\right)$to be single-valued gives rise to the condition that positive constant c is integer, $c \in \mathbb{Z}$. Then (5.17) implies that the wave function $\Phi\left(v^{+}\right)$is a homogeneous polynomial in v_{i}^{+}of the degree c :

$$
\begin{align*}
\Phi= & A_{1}^{(c)}+\psi^{i} B_{i}^{(c)}+\psi^{i} \psi_{i} A_{2}^{(c)}, \tag{5.18}\\
A_{i^{\prime}}^{(c)}= & A_{i^{\prime}, k_{1} \ldots k_{c} v^{+k_{1}} \ldots v^{+k_{c}},}^{B_{i}^{(c)}=} B_{i}^{\prime(c)}+B_{i}^{\prime \prime(c)}= \tag{5.19}\\
& v_{i}^{+} B_{k_{1} \ldots k_{c-1}}^{\prime} v^{+k_{1}} \ldots v^{+k_{c-1}}+ \tag{5.20}\\
& B_{\left(i k_{1} \ldots k_{c}\right)}^{\prime \prime} v^{+k_{1}} \ldots v^{+k_{c}} .
\end{align*}
$$

On the physical states (5.17), (5.18) the Casimir operator takes the value

$$
\begin{align*}
\mathbf{C}_{2}= & \mathbf{T}^{2}+\alpha \mathbf{J}^{2}-(1+\alpha) \mathbf{I}^{2}+\frac{i}{4} \mathbf{Q}^{a i^{\prime} i} \mathbf{Q}_{a i^{\prime} i}= \\
& \alpha(1+\alpha)(c+1)^{2} / 4 \tag{5.21}
\end{align*}
$$

On the same states, the Casimir operators of the bosonic subgroups $\mathrm{SU}(1,1), \mathrm{SU}(2)_{R}$ and $\mathrm{SU}(2)_{L}$,
$\mathbf{T}^{2}=r_{0}\left(r_{0}-1\right), \quad \mathbf{J}^{2}=j(j+1), \quad \mathbf{I}^{2}=i(i+1)$,
take the values listed in the Table 1.
The fields B_{i}^{\prime} and $B_{i}^{\prime \prime}$ form doublets of $\mathrm{SU}(2)_{R}$ generated by $\mathbf{J}^{i k}$, whereas the component fields $A_{i^{\prime}{ }^{\prime}}=$ $\left(A_{1}, A_{2}\right)$ form a doublet of $\mathrm{SU}(2)_{L}$ generated by $\mathbf{I}^{i^{\prime} k^{\prime}}$.

Each of $A_{i^{\prime}}, B_{i}^{\prime}, B_{i}^{\prime \prime}$ carries a representation of the $\mathrm{SU}(1,1)$ group. Basis functions of these representations are eigenvectors of the generator $\mathbf{R}=$ $\frac{1}{2}\left(a^{-1} \mathbf{K}+a \mathbf{H}\right)$, where a is a constant of the length dimension. These eigenvalues are $r=r_{0}+n, n \in \mathbb{N}$.

6 Outlook

In $[19,20,21]$, we proposed a new gauge approach to the construction of superconformal Calogero-type systems. The characteristic features of this approach are the presence of auxiliary supermultiplets with WZ type actions, the built-in superconformal invariance and the emergence of the Calogero coupling constant
as a strength of the FI term of the $\mathrm{U}(1)$ gauge (super)field.

We see continuation of the researches presented in the solution of some problems, such as

- An analysis of possible integrability properties of new superCalogero models with finding-out a role of the contribution of the center of mass in the case of $D(2,1 ; \alpha), \alpha \neq 0$, invariant systems.
- Construction of quantum $\mathcal{N}=4$ superconformal Calogero systems by canonical quantization of systems (4.3) and (4.10).
- Obtaining the systems, constructed from mirror supermultiplets and possessing $D(2,1 ; \alpha)$ symmetry, after use gauging procedures in bi-harmonic superspace [26].
- Obtaining other superextensions of the Calogero model distinct from the A_{n-1} type (related to the root system of the $\mathrm{SU}(n)$ group), by applying the gauging procedure to other gauge groups.

Acknowledgement

I thank the Organizers of Jiri Niederle's Fest and the XVIII International Colloquium for the kind hospitality in Prague. I would also like to thank my co-authors E. Ivanov and O. Lechtenfeld for fruitful collaboration. I acknowledge a support from the RFBR grants 08-0290490, 09-02-01209 and 09-01-93107 and grants of the Heisenberg-Landau and the Votruba-Blokhintsev Programs.

References

[1] Calogero, F.: J. Math. Phys. 10 (1969) 2191; 10 (1969) 2197.
[2] Olshanetsky, M. A., Perelomov, A. M.: Phys. Rept. 71, 313 (1981); 94, 313 (1983).
[3] Polychronakos, A. P.: J. Phys. A: Math. Gen. 39 (2006) 12793.
[4] de Alfaro, V., Fubini, S., Furlan, G.: Nuovo Cim. A34 (1976) 569.
[5] Claus, P., Derix, M., Kallosh, R., Kumar, J., Townsend, P. K., Van Proeyen, A.: Phys. Rev. Lett. 81 (1998) 4553.
[6] Gibbons, G. W., Townsend, P. K.: Phys. Lett. B454 (1999) 187.
[7] Michelson, J., Strominger, A.: Commun. Math. Phys. 213 (2000) 1; JHEP 9909 (1999) 005; Maloney, A., Spradlin, M., Strominger, A.: JHEP 0204 (2002) 003.
[8] Freedman, D. Z., Mende, P. F.: Nucl.Phys. B344, 317 (1990).
[9] Brink, L., Hansson, T. H., Vasiliev, M. A.: Phys. Lett. B286 (1992) 109; Brink, L., Hansson, T. H., Konstein, S., Vasiliev, M. A.: Nucl. Phys. B401 (1993) 591.
[10] Wyllard, N.: J. Math., Phys. 41 (2000) 2826.
[11] Bellucci, S., Galajinsky, A., Krivonos, S.: Phys. Rev. D68 (2003) 064010.
[12] Bellucci, S., Galajinsky, A. V., Latini, E.: Phys. Rev. D71 (2005) 044023.
[13] Galajinsky, A., Lechtenfeld, O., Polovnikov, K.: Phys. Lett. B643 (2006) 221; JHEP 0711 (2007) 008; JHEP 0903 (2009) 113.
[14] Bellucci, S., Krivonos, S., Sutulin, A.: Nucl. Phys. B805 (2008) 24.
[15] Krivonos, S., Lechtenfeld, O., Polovnikov, K.: Nucl. Phys. B817 (2009) 265.
[16] Delduc, F., Ivanov, E.: Nucl. Phys. B753 (2006) 211, B770 (2007) 179.
[17] Faddeev, L., Jackiw, R.: Phys. Rev. Lett. 60 (1988) 1692; Dunne, G. V., Jackiw, R., Trugenberger, C. A.: Phys. Rev. D41 (1990) 661; Roberto, F., Percacci, R., Sezgin, E.: Nucl. Phys. B322 (1989) 255; Howe, P. S., Townsend, P. K.: Class. Quant. Grav. 7 (1990) 1655.
[18] Polychronakos, A. P.: Phys. Lett. B266, 29 (1991).
[19] Fedoruk, S., Ivanov, E., Lechtenfeld, O.: Phys. Rev. D79 (2009) 105015.
[20] Fedoruk, S., Ivanov, E., Lechtenfeld, O.: JHEP 0908 (2009) 081.
[21] Fedoruk, S., Ivanov, E., Lechtenfeld, O.: JHEP 1004 (2010) 129.
[22] Gorsky, A., Nekrasov, N.: Nucl. Phys. B414 (1994) 213.
[23] Ivanov, E., Lechtenfeld, O.: JHEP 0309 (2003) 073.
[24] Galperin, A. S., Ivanov, E. A., Ogievetsky, V. I., Sokatchev, E. S.: Harmonic Superspace, Cambridge Univ. Press, 2001.
[25] Polychronakos, A. P.: JHEP 0104 (2001) 011; Morariu, B., Polychronakos, A. P.: JHEP 0107 (2001) 006; Phys. Rev. D72 (2005) 125002.
[26] Ivanov, E., Niederle, J.: Phys. Rev. D80 (2009) 065027.

Sergey Fedoruk
E-mail: fedoruk@theor.jinr.ru
Bogoliubov Laboratory of Theoretical Physics, JINR
141980 Dubna, Moscow region, Russia

