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On Multiple M2-brane Model(s) and Its N = 8 Superspace
Formulation(s)

I. A. Bandos

Abstract

We give a brief review of Bagger-Lambert-Gustavsson (BLG) model, with emphasis on its version invariant under the volume
preserving diffeomorphisms (SDiff3) symmetry. We describe the on-shell superfield formulation of this SDiff3 BLG model
in standard N = 8, d = 3 superspace, as well as its superfield action in the pure spinor N = 8 superspace. We also
briefly address the Aharony-Bergman-Jafferis-Maldacena (ABJM/ABJ) model invariant under SU(M)k × SU(N)−k gauge
symmetry, and discuss the possible form of their N = 6 and, for the case of Chern-Simons level k = 1, 2, N = 8 superfield
equations.

1 Introduction
In the fall of 2007, motivated by the search for a low-
energy description of the multiple M2-brane system,
Bagger, Lambert and Gustavsson [1, 2, 3] proposed a
N = 8 supersymmetric superconformal d = 3 model
based on Filippov three algebra [4] instead of Lie al-
gebra.

1.1 3-algebras

Lie algebras are defined with the use of antisym-
metric brackets [X, Y ] = −[Y, X ] of two elements,

X =
∑

a

XaTa and Y =
∑

a

Y aTa, called Lie brack-

ets or commutator. The brackets of two Lie algebra
generators, [Ta, Tb] = fab

cTc, are characterized by an-
tisymmetric structure constants fab

c = −fab
c = f[ab]

c

which obey the Jacobi identity f[ab
dfc]d

e = 0 ⇔
[Ta, [Tb, Tc]] + [Tc, [Ta, Tb]] + [Tb, [Tc, Ta]] = 0.
In contrast, the general Filippov 3-algebra is de-

fined by 3-brackets

{Ta, Tb, Tc} = fabc
d Td , fabc

d = f[abc]
d (1)

which are antisymmetric and obey the so-called ‘fun-
damental identity’

{Ta, Tb, {Tc1, Tc2 , Tc3}} =
3{{Ta, Tb, T[c1}, Tc2, Tc3]}} .

(2)

To write an action for some 3-algebra valued field the-
ory, one needs as well to introduce an invariant inner
product or metric

hab =< Ta, Tb > . (3)

Then for the metric 3-algebra the structure constants
obey fabcd := fabc

ehed = f[abcd].

An example of infinite dimensional 3-algebra is de-
fined by the Nambu brackets (NB) [5] of functions on
a 3-dimensional manifold M3

{Φ,Ξ,Ω} = εijk ∂iΦ ∂jΞ ∂kΩ ,

∂i := ∂/∂yi , i = 1, 2, 3 .
(4)

Here yi = (y1, y2, y3) are local coordinates on M3,
Φ = Φ(y), Ξ = Ξ(y) and Ω = Ω(y) are functions
on M3, and εijk is the Levi-Cevita symbol (it is con-
venient to define NB using a constant scalar density e
[6], but this is not important for our present discussion
here and we simplify the notation by setting e = 1).
These brackets are invariant with respect to the vol-
ume preserving diffeomorphisms of M3, which we call
SDiff3 transformations. In practical applications one
needs to assume compactness of M3. For our discus-
sion here it is sufficient to assume that M3 has the
topology of sphere S3.
Another example of 3-algebra, which was present

already in the first paper by Bagger and Lambert [1]
is A4 realized by generators Ta, a = 1, 2, 3, 4 obeying

{Ta, Tb, Tc} = εabcd Td , a, b, c, d = 1, 2, 3, 4 . (5)

These are related to the 6 generators Mab of SO(4)
as Euclidean d = 4 Dirac matrices are related to
the Spin(4) = SU(2) × SU(2) generators, Ta ↔ γa,
Mab ↔ 1/2γab := 1/4(γaγb − γbγa).
A more general type of 3-algebras with not com-

pletely antisymmetric structure constants were dis-
cussed e.g. in [7], [8] and [9]. In particular, as
it was shown in [8], the Aharony-Bergman-Jafferis-
Maldacena (ABJM) model [10] is based on a partic-
ular ’hermitian 3-algebra’ the 3-brackets of which can
be defined on two M × N (complex) matrices Zi, Zj

and an N ×M (complex) matrix Z
†
k by [8]

[Zi, Zj ;Z†
k]

M×N

= ZiZ
†
kZj − ZjZ

†
kZi . (6)
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1.2 BLG action

The BLG model on general 3-algebra is described in
terms of an octet of 3-algebra valued scalar fields in
vector representation of SO(8), φI(x) = φIa(x)Ta, an
octet of 3-algebra valued spinor fields in spinor (say, s-
spinor) representation of SO(8), ψαA(x) = ψαA

a(x)Ta,
and the vector gauge field Aab

μ in the bi-fundamental
representation of the 3-algebra. The BLG Lagrangian
reads

LBLG = Tr

[
−1
2
|Dφ|2 − g2

12

{
φI , φJ , φK

}2− (7)

i

2
ψ̄γμDμψ +

ig

4

{
φI , φJ , ψ̄

}
ρIJψ

]
+
1
2g
LCS ,

I = 1, . . . , 8 .

where g is a real dimensionless parameter, LCS is
the Chern-Simons (CS term) for the gauge potential
Aμb

a = Acd
μ fdcb

a which is also used to define the co-
variant derivatives of the scalar and spinor fields. The
Spin(8) indices are suppressed in (7); ρI := ρI

AḂ
are

the 8 × 8 Spin(8) ‘sigma’ matrices (Klebsh-Gordan
coefficients relating the vector 8v and two spinor,
8s and 8c, representations of SO(8)). These obey
ρI ρ̃J + ρI ρ̃J = 2δIJ I with their transpose ρ̃I := ρ̃I

ȦB
;

notice that ρIJ := (ρ[I ρ̃J])AB and ρ̃IJ := (ρ̃[IρJ])ȦḂ

are antisymmetric in their spinor indices.
This model possesses N = 8 supersymmetry and

superconformal symmetries the set of which includes
8 special conformal supersymmetries. Hence the total
number of supersymmetry parameters is 2×8+2×8 =
32. This coincides with the number of supersymme-
tries possessed by M2-brane [11] and the conformal
symmetry was expected for infrared fixed point (low
energy approximation) of the multiple M2-brane sys-
tem [12]. Thus, action (7) was expected to play for
the multiple M2-brane system the same rôle as it is
played by the U(N) SYM action for the multiple Dp-
brane system [13] (with N Dp-branes).
However, if this were the case, the number of gener-

ators of the Filippov 3-algebra would be related some-
how to the number of M2-branes composing the sys-
tem the low energy limit of which is described by the
action (7). This expectation enters in conflict with
the relatively poor structure of the set of finite dimen-
sional Filippov 3-algebras with positively definite met-
ric (3): this set was proved to contain the direct sums
of A4 and trivial one-dimensional 3-algebras only (see
[14, 15] as well as [16] and refs therein).
A very useful rôle in searching for resolution of this

paradox was played by the analysis by Raamsdock [17],
who reformulated the A4 BLG model in matrix nota-
tion. This was used by Aharony, Bergman, Jafferis and
Maldacena [10] to formulate an SU(N)k × SU(N)−k

and then [26] SU(M)k × SU(N)−k gauge invariant
CS plus matter models, which are believed to describe
the low energy multiple M2-brane dynamics. The sub-

script k denotes the so-called CS level, this is to say the
integer coefficient in front of the CS term in the action
of the CS plus matter models. In the dual description
of the ABJM model by M-theory on the AdS4×S7/Zk

[10] the same integer k characterizes the quotient of the
7-sphere.
The ABJM/ABJ model possesses only N = 6 man-

ifest supersymmetries, which is natural for k > 2,
as the AdS4 × S7/Zk backgrounds with k > 2 pre-
serve only 24 of 32 M-theory supersymmetries in these
cases. The nonperturbative restoration of N = 8 su-
persymmetry for k = 1, 2 cases was conjectured al-
ready in [10]. Recently this enhancement of super-
symmetry was studied in [9], where its relation with
some special ‘identities’ (which we propose to call GR-
identities or Gustavsson-Rey identities) conjectured to
be true due to the properties of monopole operators
specific for k = 1, 2 is proposed. We shortly discuss
the ABJM/ABJ model in the concluding part of this
paper.

1.3 NB BLG action

Coming back to the 3-algebra BLG models, we notice
that inside their set there are clear candidates for the
N →∞ limit of the multiple M2-brane system, which
one can view as describing possible ‘condensates’ of
coincident planar M2-branes. These are the BLG the-
ories in which the Filippov 3-algebra is realized by
the Nambu-bracket (4) of functions defined on some
3-manifold M3. This model was conjectured [18, 19]
to be related with the M5-brane [20, 21, 22] wrapped
overM3 (see [6] and recent [23] for further study of this
proposal) and was put in a general context of SDiff3
gauge theories in [24].
It is described in terms of Spin(8) 8v-plet of real

scalar fields φI (I = 1, . . . 8), and a Spin(8) 8s-
plet of Majorana anticommuting Sl(2;R) spinor fields
ψA (A = 1, . . . , 8), both on the Cartesian product
of 3-dimensional Minkowski spacetime with some 3-
dimensional closed manifold without boundary, M3.
These fields transforms as scalars with respect to
SDiff3: δξφ = −ξi∂iφ , δξψ = −ξi∂iψ, where ξ

i = ξi(y)
is a divergenceless SDiff3 parameter.
The action of this Nambu bracket realization of the

Bagger-Lambert-Gustavsson model (NB BLG model)
is

LNB BLG =
∮
d3y

[
−1
2
e |Dφ|2 − i

2
e ψ̄γμDμψ +

ig

4
εijk∂iφ

I∂jφ
J
(
∂kψ̄ρIJψ

)
− (8)

g2

12
e
{
φI , φJ , φK

}2]
+
1
2g
LCS

In (8) the trace Tr of (7) is replaced by integral
∮

d3y

over M3 and LCS is the CS-like term involving the
SDiff3 gauge potential si and gauge pre-potential Ai
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[24]. The gauge potential si = dxμsi
μ transforms

under the local SDiff3 with ξi = ξi(x, y) as δξs
i =

dξi − ξj∂js
i + sj∂jξ

i and is used to construct SDiff3
covariant derivatives of scalar and spinor fields

Dφ = dφ+ si∂iφ ,Dψ = dψ + si∂iψ . (9)

As the gauge field takes values in the Lie algebra of
the Lie group of gauge symmetries, and this is as-
sociated with volume preserving diffeomorphisms the
infinitesimal parameter of which is a divergenceless
three-vector ξi(x, y), ∂iξ

i = 0, the SDiff3 gauge field
si = dxμsi

μ(x, y) obeys

∂is
i ≡ 0⇔ ∂is

i
μ ≡ 0 (10)

which implies the possibility to express it, at least lo-
cally, in terms of gauge pre-potential one-form Ai =
dxμAμi(x),

si = εijk∂jAk ⇔ si
μ = εijk∂jAμk . (11)

Also the covariant field strength

F i = dsi + sj∂js
i =
1
2
dxμ ∧ dxνF i

νμ . (12)

satisfies the additional identity

∂iF
i ≡ 0⇔ ∂iF

i
μν ≡ 0 (13)

and can be expressed (locally) in terms of pre-field
strength,

F i = εijk∂jGk ⇔ F i
μν = εijk∂jGμν k , (14)

Gi = dAi + sj∂[jAi] =
1
2
dxμ ∧ dxνGνμi . (15)

The CS-like term in (8) is expressed through the gauge
potential and pre-potential by

LCS =
∮
d3y εμνρ

[(
∂μsi

ν

)
Aρ i −

1
3
εijksi

μsj
νsk

ρ

]
, (16)

or, in terms of differential forms, by LCS =∮
d3y

[
dsi ∧Ai −

1
3
εijksi ∧ sj ∧ sk

]
. The formal ex-

terior derivative of LCS can be expressed through the
field strength and pre-field strength by

dLCS =
∮
d3y F i ∧Gi . (17)

The Lagrangian density (8) varies into a total
spacetime derivative under the following infinitesimal
supersymmetry transformations with 8c-plet constant
anticommuting spinor parameter εα

Ȧ
(Ȧ = 1, . . . , 8):

δφI = iερ̃Iψ , δAμi = −ig
(
εγμρ̃Iψ

)
∂iφ

I , (18)

δψ =
[
γμρIDμφI − g

6

{
φI , φJ , φK

}
ρIJK

]
ε .

The BLG equations of motion are

DμDμφI =
ig

2
εijk∂iφ

J∂jψ̄ρIJ∂kψ −

g2

2

{{
φI , φJ , φK

}
, φJ , φK

}
,

γμDμψ = −g

2
ρIJ

{
φI , φJ , ψ

}
, (19)

F i
μν = −g εμνρε

ijk

[
∂jφ

IDρ∂kφI − i

2
∂jψγρ∂kψ

]
.

2 NB BLG in N = 8
superfields

The NB BLG equations of motion can be obtained
from the set of superfield equations in N = 8 super-
space [30]. We will review this approach in this section.
Let us introduce 8v-plet of scalar, and SDiff3-

scalar, superfields φI , the lowest component of which
(also denoted by φI) may be identified with the
BLG scalar fields, and impose on it the following
superembedding-like equation [30]1

DαȦφI = iρ̃I
ȦB

ψαB. (20)

The SDiff3-covariant spinorial derivatives on N = 8
superspace, entering (20),

DαȦ = DαȦ + ςαȦ
i∂i , (21)

are constrained to obey the following algebra [30]

[DαȦ, DβḂ]+ = 2iδȦḂ(Cγμ)αβDμ + (22)

2iεαβWȦḂ
i ∂i ,

where Dμ = ∂μ+isi
μ∂i is the 3-vector covariant deriva-

tive which obeys[
DαȦ,Dμ

]
= FαȦ μ

i∂i , [Dμ,Dν ] = Fμν
i ∂i . (23)

Eqs. (22), (23) are equivalent to the Ricci iden-
tity DD = F i∂i for the covariant exterior derivative
D := d+ si∂i = EαȦDαȦ+EμDμ , plus the constraint
F i

αȦ βḂ
= 2iCαβ WȦḂ

i.

The basic SDiff3 gauge superfield strengthWȦḂ
i is

antisymmetric on c-spinor indices (this is to sayWȦḂ
i

is in the 28 of SO(8)); it is also divergence-free, so

WȦḂ
i = −WḂȦ

i , ∂iWȦḂ
i = 0 . (24)

Using the Bianchi identity DF i = 0, one finds that

1The name comes from the observation that (20) can be obtained from the superembedding equation for a single M2-brane [25] by
first linearizing with respect to the dynamical fields in the static gauge, and then covariantizing the result with respect to SDiff3.
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FαȦ μ
i = i

(
γμWȦ

i
)
α

, WαḂ
i :=

i

7
DαȦWȦḂ

i , (25)

Fμν
i =

1
16

εμνρDȦγρWȦ
i ,

and that

Dα(ȦWḂ)Ċ
i = iWαḊ

i
(
δḊ(ȦδḂ)Ċ − δḊĊδȦḂ

)
, (26)

DȦαWβḂ
i = (Cγμ)αβ

(
DμWȦḂ

i − 4δȦḂWμ
i
)
. (27)

We see that the SDiff field strength supermultiplet in-
cludes a scalar 28 (WȦḂ

i), a spinor 8c (WαȦ
i) and

a singlet divergence-free vector (Wμi = DȦγρWȦ
i).

There are many other independent components, but
these become dependent on-shell as far as we are
searching for a description of Chern-Simons (CS)
rather than the Yang-Mills one. The relevant super-
Chern-Simons (super-CS) system superfield equation
in the absence of ‘matter’ supermutiplets is obviously
WȦḂ

i = 0, since this sets to zero all SDiff3 field
strengths; in particular it implies F i

μν = 0. In the
presence of matter, the super-CS equation may get a
nonvanishing right hand side.
Indeed, acting on the superembedding-like equa-

tion (20) with an SDiff3-covariant spinor derivative,
and making use of the anticommutation relation (22),
one finds that Dα[Ȧρ̃I

Ḃ]Cψα
C = 2WȦḂ

i∂iφ
I which is

solved by the ‘super-CS’ equation [30]

WȦḂ
i = 2gεijk∂iφ

I∂jφ
J ρ̃IJ

ȦḂ
. (28)

It was shown in [30] that the two N = 8 super-
field equations (20) and (28) imply the Nambu-bracket
BLG equations (19).

3 NB BLG in pure-spinor
superspace

An N = 8 superfield action for the abstract BLG
model, i.e. for the BLG model based on a finite dimen-
sional 3-algebra, which in practical terms implies A4
or the direct sum of several A4 and trivial 3-algebras,
was proposed by Cederwall [28]. Its generalization for
the case of NB BLG model invariant under infinite di-
mensional SDiff3 gauge symmetry, constructed in [24],
will be reviewed in this section.
The pure-spinor superspace of [28] is parametrized

by the standard N = 8 D = 3 superspace coordinates
(xμ, θα

Ȧ
) together with additional pure spinor coordi-

nates λα
Ȧ
. These are described by the 8c-plet of com-

plex commuting D = 3 spinors satisfying the ‘pure
spinor’ constraint

λγμλ := λα
Ȧ
γμ

αβλβ

Ȧ
= 0 . (29)

This is a variant of the D = 10 pure-spinor super-
space first proposed by Howe [31] (see [32] for earlier
attempt to use pure spinors in the SYM and super-
gravity context). From a more general perspective,

the approach of [28] can be considered as a realiza-
tion of the harmonic superspace programme of [33]
(although one cannot state that the algebra of all the
symmetries of the superfield action of [28] are closed
off shell, i.e. without the use of equations of mo-
tion). The D = 10 pure spinors are also the cen-
tral element of the Berkovits approach to covariant
description of quantum superstring [34]. In this ap-
proach the pure spinors are considered to be the ghosts
of a local fermionic gauge symmetry related to the κ-
symmetry of the standard Green-Schwarz formulation.
This ‘ghost nature’ may be considered as a justifica-
tion for that the pure-spinor superfields are assumed
(in [28, 24] and here) to be analytic functions of λ that
can be expanded as a Taylor series in powers of λ. To
discuss the BLG model, we allow all the pure spinor
superfields to depend also on the local coordinates yi

of the auxiliary compact 3-dimensional manifold M3.
Following [28], we define the BRST-type operator

(cf. [34])

Q := λα
Ȧ
DαȦ , (30)

which satisfies Q2 ≡ 0 as a consequence of the pure
spinor constraint (29). We now introduce the 8v-plet
of complex scalar N = 8 ‘matter’ superfields ΦI , with
SDiff3 transformation

δΦI = Ξi∂iΦI (31)

characterized by the commuting M3-vector parameter
Ξi = Ξi(y).
We allow these superfields to be complex because

they may depend on the complex pure-spinor λ but,
to make contact with the spacetime BLG model, we
assume that the leading term in its decomposition in
power series on complex λ

ΦI = φI +O (λ) , (32)

is given by a real 8v-plet of ‘standard’ N = 8 scalar
superfields, like the basic objects in Sec. 2.
Let us consider (complex and anticommuting) La-

grangian density

L
0
mat =

1
2
MIJ

∮
d3y eΦIQΦJ , (33)

whereMIJ = λα
Ȧ

ρ̃IJ
ȦḂ

λαḂ is one of the two nonvanish-
ing analytic pure spinor bilinears

MIJ := λα ρ̃IJλα , Nμ
IJKL := λγμρ̃IJKLλ . (34)

It is important that, due to (29), these obey the iden-
tities (see [24] for a detailed proof)

MIJ ρ̃Jλ ≡ 0 , M[IJMKL] = 0 , (35)

NPQ[IJ ·NKL]PQ ≡ 0 .

To construct the N = 8 supersymmetric action
with the use of the Lagrangian (33) one needs to spec-
ify an adequate superspace integration measure. We
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refer to [29] for details on such a measure, which has
the crucial property of allowing us to discard a BRST-
exact terms when varying with respect ΦI . Then, as
a consequence of this and also of the identities (35),
the action is invariant under the gauge symmetries
δΦI = λα

Ȧ
ρ̃I

ȦB
ζαB + QKI for arbitrary pure-spinor-

superfield parameters ζα and KI .
The variation with respect to ΦI yields the super-

field equation

MIJQΦJ = 0 , (36)

which implies, as a consequence of the pure-spinor
identities, that

QΦI = λρ̃IΘ (37)

for some 8s-plet of complex spinor superfields ΘαȦ.
The first nontrivial (∼ λ) term in the λ-expansion of
this equation is precisely the free field limit of the on-
shell superspace constraint (20), DαȦφI = iρ̃I

ȦBψαB,
with ψ = Θ|λ=0. 2 In the light of the results of Sec. 2,
this implies that the free field (g �→ 0) limit of the NB
BLG field equations (19) can be obtained from the
pure spinor superspace action (33).
Now, as the free field limit is reproduced, to con-

struct the pure spinor superspace description of the
NB BLG system we need to describe its gauge field
(Chern-Simons) sector and to use it to gauge the
SDiff3 invariance. To this end, we introduce an M3-
vector-valued complex anticommuting scalar Ψi with
the SDiff3 gauge transformations

δΨi = QΞi +Ψj∂j Ξi − Ξj∂jΨi , ∂iΞi = 0 (38)

involving the commuting M3-vector parameter Ξ
i =

Ξi(x, θ, λ; yj) and its derivatives. In the present con-
text, Ψi will play the role of the SDiff3 gauge potential.
We require that ∂iΨ

i = 0 so that, locally on M3,

Ψi = εijk∂j Πk , (39)

where Πi is the complex anticommuting, and space-
time scalar, pre-gauge potential of this formalism.
Using Ψi we can define an SDiff3-covariant exten-

sion of QΦI by

QΦI := QΦI +Ψi∂iΦI (40)

and construct the generalization of (33) invariant un-
der local SDiff3 symmetry (31), (38):

Lmat =
1
2
MIJ

∮
d3y eΦIQΦJ , (41)

MIJ = λ ρ̃IJελ .

Next we have to construct the (complex and
fermionic) Lagrangian density LCS describing the

(Chern-Simons) dynamics of the gauge potential Ψi.
To this end we introduce the field-strength superfield

F i := QΨi +Ψj∂jΨi = εijk∂jGk , (42)

where the last equality is valid locally on M3 and

Gi := QΠi +Ψ
j∂jΨi (43)

is the pre-field-strength superfield of this formalism.
Both F i and Gi are SDiff3 covariant, so F iGi is an
SDiff3 scalar. Furthermore, the integral of this den-
sity over M3 is Q-exact, in the sense that∫

d3y eF iGi = Q LCS , (44)

where

LCS =
∫
d3σ e

(
Πi QΨi − 1

3
εijkΨiΨjΨk

)
(45)

is the complex and anti-commuting CS-type La-
grangian density [24] which can be used, together with
Lmat of (41), to construct the candidate Lagrangian
density of the NB BLG model,

L = Lmat −
1
g

LCS . (46)

The Πi equation of motion of this combined La-
grangian is

F i =
g

2e
MIJεijk∂jΦI∂kΦJ . (47)

At this stage it is important to assume that Ψi has
‘ghost number one’ [28], which means that it is a power
series in λ with vanishing zeroth order term (and sim-
ilarly for its pre-potential Πi). In other words

Ψi = λα
Ȧ
ςi
αȦ

, (48)

where ςi is an M3-vector-valued 8c-plet of arbitrary
anticommuting spinors. Its zeroth component in the λ-
expansion is the fermionic SDiff3 potential introduced,
with the same symbol, in (21). With this ‘ghost num-
ber’ assumption, (47) produces at lowest nontrivial
order (∼ λ2) the superspace constraints (22) for the
‘ghost number zero’ contribution ςi|λ=0 to the pure
spinor superfield ςi in (48), accompanied by the su-
per CS equation (28) for the field strength WȦḂ con-
structed from this potential.
An heuristic justification of the assumption (48), so

crucial to obtain the correct super-CS equations, can
be found in that with this form of Ψi the covariantized
BRST operator in (40) does not contain a contribution

2Notice that the above mentioned gauge symmetry δΦI = λα
Ȧ

ρ̃I
ȦB

ζαB of the action (33) contributes to δ(QΦI ) the terms of at least
the second order in λ. Then the induced transformation of the pure spinor superfield ΘαȦ in (37) is of the first order in λ so that
ψαȦ = ΘαȦ|λ=0, entering the superembedding-like equation (20), is inert under those transformations.
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of ghost number zero, i.e. it has the form of (30),
Q = λȦ

α DαȦ, but with the SDiff3 covariant Grass-
mann derivative DαȦ = DαȦ + ξi

αȦ
∂i.

Varying the interacting action with respect to ΦI

results in SDiff3 gauge invariant generalization of Eqs.
(36),

MIJQΦJ = 0 , (49)

which contains, as the first nontrivial (∼ (λ)3) term
in the λ-expansion, precisely the superembedding-like
equation (20) with ψ = Θ|λ=0.
We have now shown, following [24], how the on-

shell N = 8 superfield formulation of Sec. 2, and
hence all BLG field equations (19), may be extracted
from the equations of motion derived from the pure
spinor superspace action (46). Of course, the field
content and equations of motion should be analyzed
at all higher-orders in the λ-expansion. To this end,
one must take into account the existence of additional
gauge invariance [28, 29]

δΦI = λ̄ρ̃Iζα + (Q+ Ψj ∂j)KI , (50)

δΠi = KI MIJ ∂iΦJ ,

for arbitrary pure-spinor-superfield parameters ζα and
KI .
What one can certainly state, even without a de-

tailed analysis of these symmetries, is that, if addi-
tional fields are present inside the pure spinor super-
fields of the model (46), they are decoupled from the
BLG fields in the sense that they do not enter the equa-
tions of motion of the BLG fields which are obtained
from the pure spinor superspace equations. This al-
lowed us [24], following the terminology of [28], to call
(46) the N = 8 superfield action for the NB BLG
model.

4 Remarks on ABJM/ABJ
model

The N = 6 pure spinor superspace action for the
ABJM model [10] invariant under SU(N)k×SU(N)−k

gauge symmetry, was proposed in [29]3. One can ex-
tract the standard (not pure spinor) N = 6 superspace
equation by varying the action of [29] and fixing its
gauge symmetries. It is also instructive (and probably
simpler) to develop independently the on-shell N = 6
superspace formalism for the ABJM as well as for the
ABJ [26] model invariant under SU(M)k × SU(N)−k

symmetry [37].
For any value of the CS-level k the starting point of

the on-shell N = 6 superfield formalism could be the

following (superembedding-like) superspace equation
for complex M ×N matrix superfield Z

i [37]4

D
I
αZ

i = γ̃Iijψαj , (51)

I = 1, 2, . . . , 6, i, j = 1, 2, 3, 4 .

Here γ̃Iij =
1
2
εijklγI

kl = −(γI
ij)

∗ and γI
ij = −γI

ji are

SO(6) Klebsh-Gordan coefficients (generalized Pauli
matrices), which obey γI γ̃J + γJ γ̃I = δIJ . The ma-
trix superfield Z

i carries (M, N̄) representation of the
SU(M)×SU(N) gauge group. Its hermitian conjugate
Z
†
i is N × M matrix carrying (M̄,N) representation
and obeying D

I
αZ

†
i = γI

ijψ
†j
α . Note that, although in

the original ABJM model [10] M = N , the N × N

matrix superfields Z
i and Z

†
i carry different represen-

tation of SU(N) × SU(N): (N, N̄) and (N̄,N), re-
spectively. Here we speak in terms of the case with
M �= N , which is terminologically simpler, but all our
arguments clearly also apply for M = N .
The Grassmann spinorial covariant derivatives D

I
α

in (51) includes the gauge group SU(M)×SU(N) con-
nection and obey the algebra

{DI
α, DJ

β} = iγa
αβδIJDa + iεαβW IJ . (52)

This algebra involves the 15-plet of the basic field
strength superfields W IJ = −W JI which can be ex-
pressed through the matter superfields by the following
N = 6 super-CS equation [37]

W IJ
SU(M) = iZi

Z
†
j γIJ

i
j , W IJ

SU(N) = iZ†
jZ

iγIJ
i
j . (53)

Here W IJ
SU(M) and W IJ

SU(N) are the basic field strength
corresponding to SU(M) and SU(N) subgroups of the
gauge group SU(M)k×SU(N)−k. One can check that
the consistency conditions for Eqs. (51) and (53) are
satisfied if the matter superfield obeys the superfield
equation of motion

γJ
ijD

β(ID
J)
β Z

j + 4iγJ
ij[Z

j , Zk;Z†
k] + (54)

4iγJ
jk[Z

j, Zk;Z†
i ] ,

where [Zj , Zk;Z†
k] are hermitian 3-brackets (6).

This superfield equation implies, in particular, the
fermionic equations of motion [37]

γa
αβDaψβ

i = −2
3
[ψαj , Z

j ;Z†
i ] +

1
6
[ψαi, Z

j ;Z†
j ] +(55)

1
2
εijkl[Z

j , Zk;ψ†l
α ] .

We refer to [37] for further details on the N = 6 super-
space formalism of the ABJM/ABJ model, including

3Note the existence of the off-shell N = 3 superfield formalism for the ABJM model [35] which was used to develop the quantum
calculation technique in [36]
4Here and below we use the Latin symbols from the middle of the alphabet, i, j, . . ., to denote the four-valued SU(4) index,

i, j, . . . = 1, 2, 3, 4; we hope that this will not produce confusion with real 3-valued vector indices of M3, see secs. 1.3, 2 and 3, as far
as we do not use these in the present discussion.
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for the explicit form of the bosonic equations of mo-
tion.
Searching for an N = 8 superfield formulation for

the ABJM/ABJ models with CS levels k = 1, 2 it is
natural to assume that the universal N = 6 sector
is present as a part of N = 8 superspace formalism
and, to describe two additional fermionic directions of
N = 8 superspace, introduce, in addition to six D

I
α,

one complex spinor Grassmann derivative Dα, and its
conjugate (Dα)† = −D̄α obeying

{Dα, D̄β} = iγa
αβDa + iεαβW , (56)

{Dα, Dβ} = 0 , {D̄α, D̄β} = 0 ,

{Dα, DJ
β} = iεαβW J , (57)

{D̄α, DJ
β} = iεαβW̄ J .

The structure of additional N = 2 supersymmetries
proposed in [9] suggests to impose on the basic N = 8
superfields the chirality condition in the new fermionic
directions [37],

D̄αZ
i = 0 , DαZ

†
i = 0 . (58)

While the natural candidate for the super-CS equation
for the SO(6) scalar superfield strength W is

W = Z
i
Z
†
i , (59)

to write a possibly consistent super-CS equation for
6 complex field strength W J , which has to be chiral,
DαW J = 0 = D̄αW̄ J , to provide the consistency of
the constraints (56), (57) and (52),

W̄ J
SU(M) =∝ Z

iγJ
ij Z̃j , W J

SU(M) =∝ Z̃
†
i γ̃

J ijZ
†
j , (60)

one needs to involve “non-ABJM superfields”, the
leading components of which are the “non-ABJM

fields” of [9]. These are N ×M matrix Z̃
i
and M ×N

matrix Z̃
†
i which obey

D̄αZ̃
i
= 0 , DαZ̃

†
i = 0 (61)

and must be related with ABJM superfields Z
i, Z

†
i

by using the suitable monopole operators (converting
(M̄,N) representation into (M, N̄)) which exist for the
case of CS levels k = 1, 2 only [9]. According to [9], the
existence of these monopole operators is reflected by
the ‘identities’ between hermitain three brackets (6)
of the ABJM and non-ABJM (super)fields. The set of
these ‘GR-identities’ includes

[(. . .), Z̃†
i ; Z̃

i] = −[(. . .), Zi ;Z†
i ] . (62)

The consistency of the system of N = 8 superfield
equations (51)–(60) and the set of GR-identities nec-
essary for that are presently under investigation [37].
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Notice added: After this manuscript has been
finished, a paper [38] devoted to N = 8 superspace
formulations of d = 3 gauge theories appeared on the
net. It contains a detailed description of the on-shell
N = 8 superspace formulation of the BLG model for
finite dimensional three algebras, similar to the for-
mulation of the SDiff3 invariant Nambu bracket BLG
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gauge theory constraints and Bianchi identities. Also
the component field content of the SYM model defined
by the constraints (22) and its finite-3-algebra coun-
terpart is discussed there.
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