
1 Introduction

Vibrodiagnostics is a well-established technique for condi-
tion monitoring and for detecting faults in modern rotary
machines, e.g. automotive gearboxes. The development of a
new design for a rotary machine component is a typical field
where acoustic and vibration signals produced by the machine
need to be analyzed in order to ensure a longer lifetime and
quieter running of the machine component. The properties
of the newly designed component are evaluated during ex-
periments that test its reliability and its ability to deal with
wide-ranging conditions.

The gear transmission is an important machine compo-
nent which is still under intensive development. Paper [1] de-
scribes the design and a way of testing for gears with a
non-standard profile developed at the Czech Technical Uni-
versity in Prague. The suitability of the gear transmission de-
sign was investigated in a stress test, in which various levels of
torque load forced on the two shafts paired by the tested
gears. Besides an estimation of the lifetime, the main aim of
the experiment was to discover the influence of the load value
forcing on the gear transmission on the vibration exposure of
the gears. Paper [2] describes the signal processing method
applied in order to analyze the vibrations acquired during
this test. This paper evaluates the efficiency that can be
achieved by several suitable methods.

Theoretical models of these designs are very complicated
and often, as in this case, none is available. Some characteris-
tics of gear transmission vibration exposure are known, but

they are too general and not accurate enough to satisfy our
objective. The main general feature of gear vibration is that
the energy of the vibrations produced by the gears is concen-
trated mainly around the harmonics of the Tooth Frequency
(TF). Tooth Frequency ft can be estimated using equation (1).

f n f n ft � � � �1 1 2 2, (1)

where f1 is the revolution rate of the first gear, n1 is the num-
ber of teeth of the first gear, and f2 and n2 denote the same
properties of the second gear. TF (shown in Fig. 1) is charac-
terized by the presence of many (sub)harmonics in spectra
and their amplitude modulations by some frequencies, such
as the repetitive frequencies of the shafts in engagement.
Other characteristic frequencies and their modulations can
also occur, e.g. the Hunting Tooth Frequency described in
[3]. It is complicated to select a few frequencies that are most
important for vibration analysis of the inspected gear trans-
mission. It requires mutual comparison of many vibration
spectra. This comparison can be performed via a cascade dia-
gram (shown in Fig. 1).

The significant features included in the acquired vibra-
tions related to the new gear design are given by the differ-
ences between the Power Spectral Densities (PSDs) of gear vi-
bration signals acquired when they are forced by different lev-
els of gearbox load, and between the PSDs of vibration signals
acquired when the gearbox is forced by the same load value.
The need to compare hundreds of PSDs to discover this influ-
ence is a big disadvantage. Therefore, it is convenient to sim-
plify and automate this process. Because it is supposed that
the torque load mainly affects the vibrations produced by the
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tested gear transmission, discovering the significant features
included in PSDs enables us to separate the undesirable vibra-
tion signals produced by the gear transmission.

The tested gear transmission was placed in a gearbox
fitted with flow cooling. Because of many technical issues,
the accelerometers were placed on the gearbox housing. The
amount of background noise and vibration contained in the
vibration signal acquired on the housing increases the diffi-
culty of further analysis, and can make the results of further
analysis unclear. In this case, it is essential to separate the
vibration signal produced by the gear transmission from
the background vibration produced by other sources.

Under these circumstances, the gear transmission vibra-
tion signal can be separated utilizing methods implementing
feature separation based on the dependence of the vibra-
tion on a known independent parameter. One big group
of these methods applied in our study comprises methods
of feature selection. This uses a systematic search in the
feature state space. Branch and Bound Feature Selection,
Sequential Backward Feature Selection, Sequential Forward
Feature Selection, Pudil’s Floating Feature Selection (for-
ward), and Plus-L-takeaway-R Feature Selection were applied.
Other applied methods were based on the genetic algorithm,
which implements a stochastic search in the state space. Meth-
ods based on the genetic algorithm are well suited to deal with
nonlinear problems and they also support parallel imple-
mentation, which shortens the necessary computing time.
The Multilayered Iterative Algorithm from the Group Meth-
od of Data Handling, and the Group of Adaptive Models
Evolution were used.

The results achieved by various methods during the sep-
aration process have to be evaluated and compared. The
methods need to be evaluated with regard to the ability of
the separated part of the vibration signal to retroactively rec-

ognize the value of the applied torque load. This aspect was
verified using Inter/Intra Class Distance.

Another important consideration should be an evaluation
of the statistical reliability of the results achieved by the sepa-
ration process. For this reason, it is crucial to evaluate the
differences between the results achieved during particular ex-
ecutions of the separation process performed by the same
method on different datasets acquired in the case of the same
experiment and conditions. A proposed method known as
“Selection Error Rate on Multiple Datasets” rates the statisti-
cal reliability of the results. This is particularly important for
methods using a stochastic search in the state space, which
cannot guarantee that the same results will be achieved even
when the same input data are applied.

2 Signal processing
As mentioned in section 1, the actual condition of the gear

transmission can be described by a vibration level at the fre-
quency given by equation (1) and their higher harmonic and
subharmonic frequencies. The frequencies are characteristic
for a certain gearing and revolution rate. An evaluation of the
power of the vibration signal at these frequencies and its
changes reveals changes in gearing operational conditions,
among others especially the wear or a fault that has arisen on
the gearing. The aim of signal processing described here is to
recognize the bands in PSD that are most important and also
contain most information about the condition of the gear
transmission.

The experiment and further signal processing focused on
separating the vibration produced by the gear transmission
from a mixture of vibrations acquired on the gearbox housing
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Fig. 1: Cascade diagram showing the dependency of vibration power spectra density on the torque load forcing on the gear transmission



is depicted in Fig. 2. The gearwheels are operated under a de-
fined stress or, more precisely, under a pre-selected torque
load during the experiment.

The Power Spectral Density (PSD) of the vibration signal
was estimated. Then PSD was split into bands. In order to
reduce the number of features, the PSD of the signal was rep-
resented by the power of the signal inside each band. This set
of features was utilized to separate the vibration signal of the
gear transmission using methods of feature selection. The set
of selected features corresponds to the frequency response of
the filter which separates the vibration signal produced by the
gear transmission from the rest of the acquired signal.

3 Methods used for feature selection
This section briefly describes the methods used for sepa-

rating the vibration signal produced by the gearing.

3.1 Branch and Bound Feature Selection
The Brand and Bound Feature Selection (BBFS) method

is a method of feature selection designed to select features
valid for solving the task from the set of given features. The
methods select the features that carry the most information in
the sense of the selected criterion function. BBFS works on
the basis of a systematic search in the feature state space by
creating a decision tree using the “Depth First Search with
a Backtrack Mechanism” [4]. This is a recursive algorithm
which is initialized with the complete set of given features and
a corresponding value of the criterion function. In the first
step, it is removed the feature whose removal causes a mini-
mal decrease (or even an increase) in the criterion function.
Then all valid branches of the decision tree are sought in
dependence on the value of the criterion function. The algo-
rithm continues recursively till the optimal set of features is
found. A detailed description of the Branch and Bound
method is given in [4].

3.2 Sequential Forward or Backward Feature
Selection

Although the BBFS method can find the optimal solution
very effectively, its computation can be quite demanding.
Feature selection methods are therefore used that can find a
suboptimal solution only, but their computation is less de-

manding. Sequential Forward Feature Selection (SFFS) and
Sequential Backward Feature Selection (SBFS) are two of
these methods. Both methods also systematically search the
feature state space while creating the decision tree. Unlike
BBFS, these methods only search the bounds of the tree
that provide the least decrease of the criterion function [4].
Unlike BBFS and SBFS, SFFS starts with the empty set and
proceeds by adding the features one after another.

3.3 Plus-L-takeaway-R Feature Selection
SFFS and SBFS both work without a backtracking mecha-

nism. Once a feature is added (removed), this action cannot
be undone. Plus-L-takeaway-R Feature Selection (LRFS) (also
known as (l, r) search) [4] is derived from the sequential for-
ward selection algorithm and gets around this lack by adding l
features at a time, and after that r features from the obtained
set are excluded in accordance with the criterion function, etc.
This algorithm results in better performance than sequential
selection.

3.4 Pudil’s Floating Feature Selection
Pudil’s Floating Feature Selection (PFFS) is also derived

from SFFS. It implements the “floating search algorithm”
described in [5]. Pudil’s Floating Feature Selection supports
backtracking as long as there is an increase in the criterion
function which may not be monotonic. PFFS is believed to
give results similar to those given by Branch and Bound, but
it needs far less computation effort [6].

3.5 Group Method of Data Handling
The Group Method of Data Handling (GMDH) is a set of

several methods for constructing inductive models [7]. This
approach is based on gradually sorting out complicated
models and selecting the best solution on the basis of the
minimum of external criterion. This leads to the selection of
valid features that are able to describe the analyzed influence
in the data.

The vibration signals acquired on the gearbox were pro-
cessed by the “Multilayered Iterative Algorithm” (MIA or
MIA GMDH). This approach uses a data set to construct a
model of a complex system. The model is represented by a
neural network which has been trained using the genetic
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Fig. 2: Experiment used for separating the vibration produced by the gear transmission from a mixture of vibrations measured on the
gearbox housing (2H denotes the sensor placing)



algorithm. The genetic algorithm not only adjusts the net-
work, but also has an influence on the network topology.

The MIA algorithm works as follows. First the initial
population of units with a given polynomial transfer function
is generated. The units have two inputs and therefore all
pair-wise combinations of input variables are employed. Then
coefficients of unit transfer functions are estimated using
stepwise regression or some other optimization method. The
units are sorted by their error of output variable modeling.
A few of the best-performing units are selected as inputs for
the next layer according to the rules of the genetic algorithm.
The next layers are generated identically until the error of
modeling decreases. The units that are connected to features
carrying most of the information provide the best results, and
so they should with higher probability survive in a network.
The fitted MIA GMDH neural network describes the solved
problem via polynomial equations [7].

3.6 Group of Adaptive Models Evolution
The Group of Adaptive Models Evolution (GAME) [8] is

derived from GMDH theory. It improves the Multilayer Iter-
ative Algorithm (MIA). The GAME method uses the niching
genetic algorithm [8] to build networks with neurons and con-
nections proper to the data set. The connecting can be more
complex than MIA provides, and several types of neurons
are possible.

GAME also contains a technique for verifying the models.
A selected number of models are created during the training
phase. The inner structures of all models are compared, and
possible correlations in inner structure are penalized (danger
of possible creation of similar models). Subsequently, the
models obtained during the training phase are compared all
together and also to the known right values (right answers).
This results in the selection of a few best models and simulta-
neously the credibility of the models for each value of a known
parameter is determined.

It has been proven that GAME networks are able to solve a
certain type of complex problems that cannot be solved using
MIA GMDH [9]. The main disadvantage of using GAME is
the higher computing severity.

4 Evaluation of methods used for
feature selection
The efficiency of the methods described in the section 3

was evaluated using Inter/Intra Class Distance and Selection
Error Rate on Multiple Datasets.

4.1 Inter/Intra Class Distance
Because it is assumed that the torque load mainly affects

the vibrations produced by the tested gear transmission,
the significant features are related to differences between
their values for the different load. Conversely, the differences
should be small in the case of the same load. Hence the load
defines classes in the feature space. The values of features for
the given load value form a cluster.

Inter/Intra Class Distance (IICD) evaluates the ability of
selected features to form clusters, and the ability of the clus-
ters to be easily discriminated. The IICD criterion was calcu-
lated using the following equations:
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where NS is the number of samples, K is the number of classes,
Nk is the number of samples included in class k. sk denotes the
centre of class k. s is the centre of all samples zn. zn denotes
sample n, zk,n denotes sample n belonging to class k. The
sample is presented by the set of features.

4.2 Selection Error Rate on Multiple Datasets
Selection Error Rate on Multiple Datasets (SERMD) is a

novel method designed mainly for evaluation of separation
using a stochastic search. When applied to methods using a
systematic search, SERMD evaluates the sensitivity of the
search when scattered data is applied. SERMD is based on
analyzing the differences between the results (set of selected
features) achieved during single executions of the separation
process done by the same method on different datasets ac-
quired in the case of the same experiment and its settings.

The presumption behind the idea of SERMD is that the
results (selected features) given by the search should be the
same or similar when it is applied to the data acquired during
the same experiment under the same conditions (the same
experimental settings). Methods producing results that vary,
or even results that are stochastic, are assumed not to be statis-
tically reliable. It is also necessary to penalize methods that
provide results that can be totally different for some execu-
tions depending on the data. On the other hand, methods
that give results varying around the right set of features seem
to be more acceptable.

SERMD analyzes the sets of Z features and their ratings
given by method m when it is applied to N datasets. The set of
ratings of features selected when applied to dataset n is de-
noted as z(n, m). z(n, m) is a vector of length Z. The element of
z(n, m) is z(n, m, fi), where fi denotes the index of the selected
feature (further denoted as selected feature) (matches the
center frequency fi or index i of the selected band). z(n, m, fi)
responds to the rating of feature fi by method m when it is
applied to dataset n. When the method does not give the fea-
ture rating, the rating is set subsequently. If the feature has
been selected, the rating is given by probability with uniform
distribution for all the selected features. If it is not selected,
the rating is zero.

First, the Most Rated Features (MRFs) given by all meth-
ods are estimated. The MRFs are given by the histogram of
ratings of all features through all methods and all datasets
available (equation (5)).
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The Most Rated Features for all methods fE are given as
follows:

� 	 � 	fE E i i ZP f f f f f� 
arg max ( ) , , , ,1 2 � , (6)
where the transformation “argmax” gives a vector of E fea-
tures assigned by E maximum values included in P( fi) reflect-
ing all features fi. The vector of MRFs given by all methods fE
forms a standard to which all methods are compared.

The evaluation of method m starts with estimating MRFs
which are given only for this method and dataset n. Each vec-
tor of these MRFs is estimated by equation (7).

� 	 � 	f ( , ) arg max ( , , ) , , , ,n m z n m f f f f fE i i Z� 
 1 2 � (7)
Then the matrix Dm formed from differences between

MRFs f(n, m) given by method m when applied to dataset n
and the standard MRFs fE given by all the methods and
datasets. Matrix Dm is created subsequently by stacking the
differences d(n, m) which form columns of the matrix (equa-
tion (8)).
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The efficiency of the method is estimated by the values of
E minimum values included in Dm according to equation (9).

� 	d DE E mm( ) arg min� , (9)

where the transformation “argmin” gives a vector of E value
assigned by E minimum values included in Dm.

The value of the SERMD criterion is given by the mean
absolute error of the selected features according to equation
(10).
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where dE(m, e) is a value included in dE(m).
The multiple datasets are created by splitting and shuf-

fling the acquired dataset. Each class (torque load value)
should be represented equidistantly by the same number or a
similar number of samples.

5 Experimental setup

5.1 Testing stand
An universal testing stand was used to test the gearwheels.

The stand is designed to abridge the lifetime of the gear-
wheels. The design of Niemann’s closed loop circuit [10] was
used for this purpose because of its lower energy intensive-
ness. The testing stand, shown in Fig. 3 and Fig. 4, consists of
one measured gearbox and one auxiliary gearbox, a drive en-
gine, tension equipment, and sensors for torque load, shaft

revolution rate, temperature and vibration of the tested gear
transmission.

Unlike the testing gearbox, the auxiliary gearbox is over-
rated for the values of the torque load. The torque sensor
works up to 2000 Nm. The circuit is dimensioned for maxi-
mal virtual power 785 kW and for a revolution rate of
1450 rpm. ft was 398 Hz.

5.2 Data acquisition and sensor placing
The accelerometer was placed at a point located on the

bearing housing above the shafts (shown in Fig. 2 as 2H). The
vibrations were acquired using a Brüel & Kj r PULSE 7537
analyzer fitted with calibrated 4507 B accelerometers.

The attachment of accelerometers enables operation
up to the upper limit frequency at 3 kHz with sensitivity
10 mV/ms�2.
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Fig. 3. Niemann’s closed loop circuit [2]
1 - Tensing screw, 2 - Auxiliary gearbox, 3 - Auxiliary gear transmission, 4 - Gear coupling, 5 - Fixes part of the gear coupling, 6 -
Torsion shaft, 7 - Coupling with evolvent grooving, 8 – Tested gearwheel, 9 - Testing gearbox, 10 – Testing pinion, 11 -
ETP-Techno coupling, 12 - Radex-N coupling with cutable screw, 13 - Moment sensor, 14 - Axial fixed pinion, 15 - Radex-N cou-
pling with cutable screw, 16 - Moment sensor, 17 - Radex-N coupling, 18 - Drive engine

Fig. 4. Visualization of the testing circuit [2]



5.3 Digital signal processing
The measured vibration signal was filtered by a low-pass

filter with the stop frequency at 3 kHz. The power spectral
density was estimated using Welch’s method. The Hanning
window in time was applied. Welch’s segment length was
selected as one hundredth of the whole signal length. The
overlap value was 25 %. The PSD of the acquired vibration
was divided into uniformly spread bands with constant band-
widths at 20 Hz. The division performed in such a way that TF
were in the center of each band. The vibration in each band
was represented by its power value. For feature selection, each
measurement of the data set was represented by a set of
150 features.

The vibration signals acquired during the stress test con-
tained 5 classes formed by different states of the torque
forcing on the gearing. The dataset contained 192 records:
40 records for torque at 0 Nm, 38 records for 500 Nm, 38 re-
cords for 1000 Nm, 38 records for 1500 Nm, and 38 records
for 2000 Nm. The record order was shuffled using a random
process with normal distribution. 10 most rated features were
selected for each dataset and method.

6 Experimental results
A comparison of the results achieved by the methods is

shown in Table 1.

The values of SERMD stated in Table 1 are given for
evaluating 2 datasets. Each dataset contained 96 samples
of measurement. The 10 most rated features were selected
for each dataset and method (E �10). The results given by
SERMD are strongly dependent on the size of the dataset
used for feature selection. This dependency corresponding to
each method is shown in Fig. 5. The dependency shown in
Fig. 5 is an approximation of the dependency which can be
estimated by repetitive estimation on datasets created by
random shuffling.

According the computing severity of each method, the re-
quired computing time can be interesting. Fig. 6 shows the
maximum and minimum computing time that was needed to
select the features. The values stated in Fig. 6 were estimated
on a PC fitted with an Inter Pentium M processor operated at
1.73 GHz, 533 MHz FSB, and 2 GB RAM. Because of the way

in which the times were estimated, the values stated in Fig. 6
are informative, but they provide an overview of the
computing severity of the methods.

An overview of Power Spectral Density of vibration and its
evaluation by Group of Adaptive Models Evolution is shown
in Fig. 7.

Conclusion
This paper has focused on an evaluation of feature se-

lection applicable methods. The novel method presented
here, Selection Error Rate on Multiple Datasets, takes into ac-
count the statistical reliability of the results achieved when the
methods were applied repeatedly to multiple sets of signals
acquired on the same machine under the same conditions.
This is particularly important in the case of methods based on
a stochastic search in the state space. When this criterion was
applied to methods based on a systematic search, it evaluated
the sensitivity of the search when scattered data are applied.

The methods for signal separation were applied in order
to separate the vibration signals produced by a new design of
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Method IICD
(-)

SERMD
(Hz)

Avg. Computing Time
(s)

SBFS 82.8 138.0 1052

SFFS 48.8 30.8 117

LRFS 48.8 30.6 116

BBFS 112.6 67.1 3608

PFFS 42.7 44.2 127

MIA GMDH 52.1 74.4 43

GAME 52.5 36.8 158

Table 1. Comparison of methods used for feature selection
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gear transmission from the rest of the signal that was acquired
during a stress test. The aim of the experiment was to inspect
the influence of the torque load on the vibration exposure of
the gear transmission. The vibration signals were acquired on
the gearbox housing and contained significant disturbances,
so their interpretation was unclear. The feature selection
methods based on a systematic search in the state space and
methods based on the genetic algorithm, which implements
a stochastic search in the state space, were applied. Selec-
tion Error Rate on Multiple Datasets, Inter/Intra Class Dis-
tance, and computation severity were taken into account.
The evaluation of the method indicates that Sequential For-
ward Feature Selection, Pudil’s Floating Feature Selection,
Plus-L-takeaway-R Feature Selection, and Group of Adaptive
Models Evolution seem to be suitable for the objective in view.
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Fig. 7: Overview of gear transmission vibration PSD and the cor-
responding evaluation by GAME (torque load at 1500 N)


