
1 Introduction
Facing the need for a simulation environment, we investi-

gated whether we can use some of the existing enviroments.
We found that are many freely available simulation platforms.
We analyzed them with the aim to find a platform capable of
running the required simulations, but none of those analyzed
was fully able to satisfy our needs. We also found that they are
mainly focused on just one specific domain of Artificial Life.
Almost none of them are capable of simulating Artificial
Life on a more general level. And just a handful of them
also provide a set of analytical tools to evaluate the simulation
in a broader context. We therefore decided to design our own
simulation environment. The main goal was to develop a sim-
ulator on a high modularity level and simple enough to be
usable by anyone interested in ALife research. Special atten-
tion was given to the possibility of making an analysis, either
during the simulation or after the simulation, from the saved
data. Visualization modules involve not only displaying the
simulated agent world but are targeted on efficient analysis
of agents’ behavior. Visualization can provide both a simpli-
fied and an attractive view in order to present the simulation
to a broader or non-technical audience. This simulator has
helped us to focus on the topic under study (whatever it was)
while abstracting from the implementation details of the envi-
ronment itself.

2 Designed abstract architecture
Our requirements for this platform were as follows:

� The ability to simulate various phenomena of Artificial Life
from cellular automata, boids, bimorphs, ant colonies etc.,
up to complex and socially behaving agents.

� The ability to export simulation inner data so that it can be
used for parameter visualization.

� Variability of simulation with easy modifiability and step by
step run.

� Interesting visualization of the agent world, in order
to present the simulation to a wider or non-technical
audience.

� Meaningful and helpful visualization of parameters in
time.

� Modularity

� Easy extendibility
� Interoperability.

In order to implement such task, a general abstract archi-
tecture was proposed and named WAL Abstract Architecture,
WALA2 in short. It should provide a general guide or in-
structions on how an application for simulation of Artificial
Life should be defined and implemented with care for high
interoperability and modularity between various implemen-
tations. This design was not work of one person, but the result
of tight cooperation and many discussions among all MRG
members [1]. While designing this abstract architecture we
kept in mind that our implementation can be superseded in
future by better ones, but if it sticks with the philosophy and
recommendations of the abstract architecture, i.e. if the inter-
faces remain the same, the agents will be transferable with no
or only minor reprogramming and redesign. Another goal of
WALA2 is to ensure that agents can also run and compete on
other implementations of the same architecture. The aim is
to ensure that when different agent architectures and ap-
proaches are used the results can be evaluated in the basic
environment, or that test agents’ behavior can be tested in a
different environment than the agent was designed for. We
can observe if the agent can adapt and to new circumstances

46 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 47 No. 6/2007

Simulation Environment for Artificial
Creatures
K. Kohout, P. Nahodil

Our research is focused on the design and simulation of artificial creatures – animates. This topic has been addressed in our research group
for the last decade. The designed animates have been greatly inspired by sciences such as ethology, biology and psychology. Several agent
architectures have been proposed and tested in recent years. We started to face the problem of comparing various architectures in order
to benchmark them. Intelligence is embodied in our agent, and it needs an environment to be placed into. We have solved both these
problems by first proposing and then implementing a common simulation environment in which these agents can run and compete. The
main contribution of this paper is to offer a description of this designed simulation environment. It has been named the World of
Artificial Life (WAL).

Keywords: anticipation, ALife, hybrid architecture, behavior, animate, artificial creatures.

Fig. 1: Block scheme of WAL abstract architecture

and survive. WALA2 itself defines the modular block architec-
ture of the platform, as shown in Fig. 1. This architecture was
designed to enable easy parameterization of simulation and
distributivity of its parts (body and mind can be separated and
even run on different computation units). One of the benefits
is that the environment is divided into layers. This is not lay-
ered architecture in the agent design but in the environment
design. This decomposition of the environment leads to sim-
pler and more comprehensive simulation and also gives an
opportunity to describe more complex environments.

2.1 Platform – engine
The core part of the simulation environment will be re-

ferred to as the engine or platform. It is the basic unit and it
controls the run of the simulation on the program level. This
means that it synchronizes the whole application – it gives
impulses at the start and end of each step. It contains an
interface for modules. There are two components of the envi-
ronment: the layers and the agents. In one simulation step,
the engine asks all layers to evaluate the actions of all agents
and perform appropriate environmental changes. The dis-
tribution of evaluation to the layers means distribution of
simulation control. Each layer can run in a different computa-
tion thread (on a multiprocessor unit they might also run
on different processors). The main data structure where the
parameters of all layers and agents are stored is also main-
tained by the engine. This data can be viewed or modified by
the agent or even by external modules. It is important to
distinguish between the control part of the engine, which in-
teracts mostly with the operating system (graphical interface,
loading and saving configuration, user interaction etc.) and
the part providing and simulating the virtual world for the
agents. The first is done by the engine described above.
The second function is described below, and is handled by
the layers.

2.2 Engine interface
The interface between the simulation environment and its

program surrounding (e.g., visualization, analysis tool or pa-
rameterization) is an important part of the application. This
is what makes WAL modular and distributable. From the
point of view of the processing speed of the data, it is suitable
to exchange information in binary format. It is also possible to
use text based formats such as XML. The textual format is in
principle highly redundant (but descriptive) and its process-
ing can be slow. Still, it can be used for offline analysis. The
engine contains all its data, the data of the layers and agents
in an inner tree-based data structure. It can provide all of this
data or just part of it to the external modules. Each connected
external module can ask for data. The inner data representa-
tion is not defined in the abstract architecture. It can be
implemented in various ways and it does not matter as long as
the interface for exchanging this data remains the same. This
interface should work in both directions: for exporting the
data to be read by the external modules, as well as for re-
ceiving updates of the data structure from the modules. The
running simulation can also be stopped at any moment.
Thanks to the single data structure it can be saved at each
step, hence the simulation can even be traced back to a certain
point in history and run again to observe if any change of be-
havior will occur (emerge) given the same starting conditions.

Change of simulation parameters should be available while
the simulation is running. An agent is understood to be any
object in simulation either virtually alive (creature, predator)
or virtually non-living (trees, food, water, rocks). Sensors and
effectors of the agent are their interface with the virtual world
and therefore they are part of the environment and layers.
The agent mind (decision control) is not part of the environ-
ment and can be remote.

2.3 Simulation world in layers
Layers are the part of the application directly interacting

with the agent via its sensors and effectors. Layers define the
virtual world in which the agents live. They separate opera-
tions which would otherwise be controlled by the engine. The
layer is a logically separable part of the environment which
can be used standalone and which when combined with oth-
ers defines the environment as a whole. Basically, by using lay-
ers we segregate the simulation of physical laws. As an exam-
ple, we can have a physical layer taking care of agents’ posi-
tions and collisions. We can add a thermal layer taking care of
propagation of heat in the virtual world. All agents influenced
by a particular layer or having an influence in this particular
layer must be registered with it. This ensures that the layer
has full information for computing the next step. The layer
will evaluate agents’ actions in each step, and through their
sensors it will provide them with the new state of the environ-
ment. According to the executed actions the layer will modify
its own values and then will provide new sensoric data to the
agents. The layer must have the ability to register and deregis-
ter the agent and also fill the agents’ sensors. This means that
it must have an interface for communicating with sensors. For
example, the thermal layer should have the ability to provide
information for sensors of temperature. To sum this up in
each step the layer must read agents’ executed actions, vali-
date them (whether they are possible or executable), modify
the environment and provide new sensory data. We have
defined two types of layers. There is the point layer, where the
value can be evaluated directly, or it can be obtained immedi-
ately from the layers data. The gradient layer is where the
value at the point of interest cannot be evaluated just from
the current information but the history of the value must also
be taken into account. The physical body of the agent and its
sensors and effectors are also part of the environment, so it is
necessary to interpret them in it. The layer must have infor-
mation about how much space the body, sensors and effectors
take. This could enable a more complex agent to be built from
the basic blocks. The potential of layers has been used in sev-
eral works, where the implementations have had up to seven
different layers [5]. Another advantage of layers is that they
can solve communication between agents in the sense of dis-
tribution of the signal. We can implement the acoustic layer
to propagate sound based on the physical laws. This solves the
problem of transporting the message, but not the under-
standing and context of the message. To sum up layers in a
single simple sentence, they implement various physical laws.

2.4 Human interface and analysis
Everything that has been described above is just an algo-

rithm with no human interface. Visualization of the designed
world can be an attractive and also a useful tool. For this pur-
pose, an external visualization module or an internal (default)

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 47

Acta Polytechnica Vol. 47 No. 6/2007

module can be used. Internal visualization is meant for de-
bugging and observing the simulation by the creator (Fig. 2).
The external module can be used to present this simulation to
a wider audience (Fig. 3). On-line or off-line tools for analysis
of changes in agent attributes in time are also supported. The
proposed environment is compatible with the visualization
tool called VAT. It can be used to observe agent parameters at
any time of simulation. We will not go into much detail about
the parameter visualization problem. Information about this
can be found in [4]. Using the third dimension for data visual-
ization makes the analysis more comprehensive, and com-
puter graphics has various methods for visualizing even more
than three dimensions. This is why 3D analytical tools are
strongly supported. They offer many advantages, because the
value of the parameter can be mapped to shape, height, width
or length, etc. Another advantage is the possibility to use sen-
sitivity analysis. Analytical tools provide an offline or online
evaluation of the simulation together with fast orientation in
complex situations. They also enable backward analysis of an

interesting simulation, and they can be used for observing the
relations between sensory inputs and executed actions (i.e.
what action was triggered when there was a specific sensory
input, and vice versa).

2.5 Influencing the simulation
Parameterization provides the ability to alter the simula-

tion either as an initial setup of simulation or a direct change
to the simulation in runtime. This means changing the agent
or layer parameters while the simulation is in progress. For
example, you can set a new target for the agent, decrease the
temperature at a particular spot or even create a new object
(agent, food, etc.). This should provide the ability to run
longer simulations. User intervention via parameterization
can be used for example in a learning process (imitation, con-
ditioned and unconditioned reflexes, etc.). Moreover, com-
bined with visual analytical tools it is possible to observe the
interesting moments of the simulation and change the sce-
nario to see how the agents will adapt to this change. Pausing
and resuming the simulation and tracing step by step (even
backwards) are also a part of parameterization. Backward run
is a key element that had been missing until now in simula-
tions. For observing emergent behavior, it is useful when we
can trace the simulation back to some interesting point and
run it again in order observe if the situation will end exactly as
it did before or if it will differ.

2.6 Agent of WAL
WALA2 separates the body of the agent (physical repre-

sentation of agent) from the mind (control mechanism). The
agent’s body is part of the environment and therefore it is
covered here in the environment architecture. The mind of
an agent on the other hand communicates with the body
through data from sensors. Please note that even the agent’s
own state has to be observed by sensors. This internal state
covers the state of agent sensors and effectors (some of these
may be damaged or partial by malfunctioning) and the Vege-
tative System Block. The data from sensors is send to the
mind of the agent, where it is processed. How the data is
processed is not a subject of this abstract architecture. Several
approaches to agent mind design can be found in [2, 5, 6]. Fi-
nally, the mind evaluates the situation and selects the action
or actions for execution. The body tries to perform these ac-

48 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 47 No. 6/2007

Fig. 2: Example of internal visualization

Fig. 3: Example of external 3D visualization Fig. 4: WAL Agent decomposition

tions using its effectors. The layer mentioned above will then
provide feedback about the effect of these actions by setting
new sensory data. The agent’s body is part of the environment
and as such it has physical properties such as position, shape,
temperature, etc. The decomposition and the interfaces of
the agent are shown in Fig. 4.

2.6.1 Agent’s sensors
Sensors are the agent’s senses. They are used to perceive

its surroundings and also its internal state. The richness of the
information about the surrounding world that the agent can
obtain depends just on the type and number of sensors.
Layers should know all types of possible sensors in order to
be able to fill them with data. This means that creating a
new layer necessarily also requires the creation of adequate
sensors and, conversely, when adding a new sensor it is also
necessary to alter the layers so that they are able to fill it. Sen-
sors are the part of an environment that contains exact data (a
numerical value). It is not always desirable to provide this
crisp data to the agent’s mind. Creatures in nature are also not
able to perceive for example “that the object is 35.56 meters
from them”. Rather, they are able to perceive relative distance
(closer/further) or inprecise data (close/mid range/far). They
can attempt to estimate the value based on their experi-
ence (it might be 30 to 40 meters). To simulate this kind of
perception in an agent’s world we want to implement fuzzy
information rather than crisp values. This can be done by
filtering the exact floating point value to a fuzzy value after it
has been obtained by the sensor.

2.6.2 Agent’s effectors
Effectors enable an agent to interact with its surroundings.

In our simulated world we use simplified effectors. For exam-
ple we use effectors of motion which can move agents in a
certain direction at a certain speed. Of course we could go
into greater detail and implement effectors such as leg or
wheel, but this would distract us (by solving inverse and
forward kinematics tasks, friction, etc.) from our subject of re-
search – behavior. We do not require this level of detail, but
we do not run away from it. The possibility to implement it is
open. In the field of effectors there is space for improvement.
Instead of using effectors as part of the environment and con-
trolling their action, we implemented them only as the action
result. In the movement example above, we move the agent
from one position to another, instead of sending a signal to
the agent’s locomotion system.

2.7 Communication
Communication between the agent body and the layers is

internal communication, so there is no need for explicit data
sending. This communication can be done via the internal
data structure, which is in this case the shared medium. The
communication between body and mind is in general done
via messages. It can be done even remotely, via various media
(for example over TCP/IP, see Fig. 5). Communication on the
agent level means sending a message from one agent to an-
other, or to a group of agents. Here we would like to let the
layers decide who receives the information and who not. We
are trying to reflect real world behavior, where information is
carried via various media and can be received by various enti-
ties based on their sensor capabilities. When one agent wants

to send a message (tell something) to another agent it will use
its effectors and certain media of communication (an acoustic
wave, for example). The information can be then received not
only by the addressee but also by another agent who is within
the range of the signal (even if it did not request this informa-
tion). The interesting thing about this is that it can disregard
unwanted information, or make use of it for its own purposes.

3 Simulations and results
We mentioned above that there are two components to

run the simulation. The first of these is the environment de-
scribed here, while the second is the control of the agent itself
(agent mind). Several agent behavior control architectures
have been introduced. The basis for the agent architecture
was designed by D. Kadleček [2, 3]. This agent architecture
with was redesigned for the WAL environment by K. Kohout
in [1]. Several simulations, including the Lotka-Volterra sys-
tem (also known as predator-prey system, see Fig. 6), and
several task oriented scenarios were tested. In one of the sim-
ulations a task was given to the agent. This means that the
agent, in addition to assuring its own survival should com-
plete a task. In our case the task was to deliver messages. This
simulation tested whether the thresholds were set correctly. If
the agent’s “need” to fulfill the task was low, it focused almost
only on its own survival (lazy agents). If the need was high, the
agent was busy with his task and he fulfilled his survival needs
only when necessary (hardworking agent). This simulation
showed that various creature or human qualities can be repro-
duced in agents.

3.1 Case study
In chapter 2.4 we mentioned the usefulness of external

modules namely for simulation analysis. We wanted to test
this on a case study performed while redesigning the agent to
the WAL environment. The above mentioned VAT tool was
used for the analysis. The simulation scenario involved a sin-
gle agent which was intended to move an object between two

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 49

Acta Polytechnica Vol. 47 No. 6/2007

Recon-

struction
Filter

Serialize
Deserialize

Fig. 5: Block scheme of communication to external client

Fig. 6: Lotka-Volterra simulation results

places. The agent had enough food and water to satisfy its
needs. Fig. 7 shows the visualized data from this simulation.
On the left there is a 3D mesh; on the right is a detail of values
in the 60th step. Even a brief look at the mesh indicates that
there is something wrong with the simulation. Almost all the
parameters are zero (the mesh is flat). This means that the
agent is not hungry or thirsty; neither is it tired or sleepy. But
we implemented and designed all these features. The reason
for this could be a data export failure, a mistake in implemen-
tation of the inner agent vegetative block (part taking care of
the “chemicals” in the agent’s body) or bad initial configu-
ration of the agent. Because we had run the simulation
previously and the vegetative block had worked properly,
there is no problem with the implementation itself. A brief
check of the configuration showed that an excessively high
value had been set to the time function for increasing/de-
creasing the chemicals. Fig. 8 shows the mesh after correction
of the configuration mistake. The values now change with
time as they should.

4 Conclusion
In this paper, we have described the simulation environ-

ment architecture for artificial creatures. It was used by several
agent architectures. The first agent architecture tested in this
environment was described in section 3 above. This agent
architecture was superseded by several other architectures
namely Lemming, designed by L. Foltýn [5], ACS proposed
by M. Mach [6] and AnimatSim introduced by A. Svrček [7].

These architectures focused on different topics or different
approaches to agent learning. AnimatSim focuses on rein-
forced learning; Lemming uses the TDIDT algorithm to
create knowledge about the environment and to reason about
it. ACS uses Hidden Markov models and reinforced learning.
They have one thing in common. They were designed in vari-
ous programming languages (C, Java, Matlab) but took WAL
architecture into account and are capable of running in the
WAL environment.

References
[1] Kohout, K.: Simulation of Animates, Behavior. Diploma

thesis. Prague: Czech Technical University in Prague,
Faculty of Electrical Engineering, Department of Cyber-
netics, 2004.

[2] Kadleček, D., Nahodil, P.: New Hybrid Architecture
in Artificial Life Simulation. In: Lecture Notes in Artifi-
cial Intelligence No. 2159, Berlin: Springer Verlag, 2001.
p. 143–146.

[3] Kadleček, D.: Simulation of an Agent – Mobot in a Virtual
Environment. Diploma thesis. Prague: Czech Technical
University in Prague, Faculty of Electrical Engineering,
Department of Cybernetics, 2001.

[4] Kadleček, D., Řehoř. D., Nahodil, P., Slavik, P.,
Kohout, K.: Transparent visualization of multi-agent
systems. In: Proceedings of 4th International Carpathian
Control Conference, May 26–29, 2003, Vysoké Tatry.
p. 723 – 726, ISBN 80-7099-509-2.

[5] Foltýn, L.: Realization of Intelligent Agents Architecture for
Artificial Life Domain. Diploma thesis. Prague: Czech
Technical University in Prague, Faculty of Electrical
Engineering, Department of Cybernetics, 2005.

[6] Mach, M.: Data mining knowledge mechanism of an environ-
ment based on behavior and functionality of its partial objects.
Diploma thesis. Prague: Czech Technical University in
Prague, Faculty of Electrical Engineering, Department
of Cybernetics, 2005.

[7] Svrček, A.: Selection and evaluation of robots-animates behav-
ior. Diploma thesis. Prague: Czech Technical University
in Prague, Faculty of Electrical Engineering, Depart-
ment of Cybernetics, 2005.

Ing. Karel Kohout
phone: +420 224 357 350
e-mail: kohoutk@fel.cvut.cz

Doc. Ing. Pavel Nahodil, CSc.
phone: +420 224 357 353
Fax: +420 224 353 677
e-mail: nahodil@felk.cvut.cz

Department of Cybernetics

Faculty fo Electrical Engineering
Czech Technical University in Prague
Karlovo náměstí 13
121 35 Prague, Czech Republic

50 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 47 No. 6/2007

Fig. 7: Use case – simulation analysis

Fig. 8: Use case – simulation analysis correct setup

