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Abstract  
 
To systematically investigate short-term aftershock forecasts following moderate-to-strong 
earthquakes of North China so as to develop "operational" aftershock forecasting strategies tailored 
to regional seismic characteristics, we adopt the widely used Reseanberg-Jones (R-J) model and the 
Omi-R-J model to explore aftershock forecasting strategies of 24 earthquake sequences of North 
China, and use the N-test and T-test to evaluate the forecasting effectiveness. Early forecast results 
after mainshock show that the R-J model and the Omi-R-J model have an average effectiveness rate 
of 77.0% and 87.9% for the selected sequences, respectively. The R-J model has a lower ratio of 
forecasting "too low" numbers of earthquakes while the Omi-R-J has a rather low overall "failure 
rate". With the rapid development of monitoring network after 2008, the efficacy of earthquake 
sequence forecasting has improved significantly, with monitoring capability being an important 
factor constraining forecasting effectiveness. The possible scientific strategies for the aftershocks 
forecasting in North China include strengthening the construction of seismic networks and applying 
better algorithms for detecting or simulating aftershocks, giving priority to using the Omi-R-J model 
within a short period of time (within 2 hours) after the mainshock, and weigh the range of the actual 
number of future aftershocks by appling the R-J model and the Omi-R-J model simultaneously. 
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1. Introduction 

 
It is crucial to release the reliable and authoritative aftershock forecast information in time for earthquake 

tracking, relief, emergency management, and order maintenance in disaster areas after a moderate-to-strong 
earthquake [Reasenberg and Jones, 1989; Gerstenberger et al., 2005; Marzocchi and Lombardi, 2009; Woessner et al., 
2011; Nanjo et al., 2012; Ogata et al., 2013]. Moderate-to-strong earthquakes can cause great losses to life and 
property, which is in no small portion due to secondary disasters including aftershocks especially within three days 
after the mainshock, while the occurrence time of larger aftershocks varies from a few days to several months after 
the mainshock, and may even be as close as within one day after [Japan Meteorological Agency (JMA), 2009]. In the 
early stage after the mainshock, the drowning effect of the large surface wave amplitude of the mainshock and the 
superposition of signals from a large number of simultaneous aftershocks will reduce the seismic monitoring 



capacity in the region and even globally within several hours after the mainshock, presenting significant challenges 
for aftershock probability forecasting [Ogata, 1983; Utsu et al., 1995; Enescu et al., 2007; Iwata, 2008]. Therefore, 
the research on the scientific strategy of the aftershock forecasting in the early stage after mainshock is a realistic 
problem in a general sense.  

In the current Collaboratory for the Study of Earthquake Predictability (CSEP) program, the short-term aftershock 
forecasting model has seen rapid development [Schorlemmer et al., 2018]. More than 400 earthquake forecast models 
have been submitted to the four international testing centers of the CSEP program for “retrospective” and 
“prospective” research, [Jiang et al., 2015, 2017, 2018; Omi et al., 2015; 2016; Bi and Jiang, 2017; Han et al., 2017; 
Taroni et al., 2018; Ogata et al., 2018]. The Operational Aftershock Forecasting (OAF) conducted by the US Geological 
Survey (USGS) and the Global Earthquake Model (GEM) project represents an important application in earthquake 
forecasting strategies [Helmstetter et al., 2006; Console et al., 2010]. 

City clusters of North China are developing rapidly, and the coordinated development of the Beijing-Tianjin-
Hebei region and the construction of Xiong’an New Area are well underway. To ensure the smooth implementation 
of national strategies, it is necessary to upgrade security measures, such as seismic hazard assessment, which 
includes aftershock probability forecasting, as well as risk reduction. It is important to rely on modern technology 
at home and abroad, and mature regional applications and innovative research to effectively improve the technical 
capabilities of aftershock forecasting and risk management decisions. Technically, by testing in North China the 
internationally accepted and comparable R-J model [Reasenberg and Jones, 1989] and the Omi-R-J model [Omi et 
al., 2013, 2015, 2016] capable of using incomplete seismic records, we hope to derive knowledge about the suitability 
of these two aftershock forecasting models, in a bid to inform aftershock forecasting strategies of North China for 
the benefit of actual earthquake disaster prevention and relief work. 

 
 

2. Data and Method 
 
Distributed across the North China region (34~43oN, 108~125oE) are complex seismic belts such as the 

Zhangjiakou-Bohai, the Hebei plain, the Shanxi, and the Tanlu seismic belts, featuring strong tectonic activity, the 
development of faults and folds, various types of earthquake sequences, and frequent occurrence of seismic events, 
causing great losses to people’s lives and property. The region is prone to strong earthquakes, with historical data 
indicating more than 20 earthquakes of magnitude 7 or above. The 1976 Tangshan Earthquake in particular is the 
deadliest earthquake in the 20th century, destroying the entire city and left 242,000 people dead and 164,000 
seriously injured.  

For the study on the aftershock sequences of moderate-to-strong earthquakes in North China, we adopted the 
“National Unified Official Catalogue”1 provided by the China Earthquake Networks Center. We use Gardner-knopoff 
method [Gardner and Knopoff, 1974] to separate 10145 earthquake catalogues with completeness magnitude of 3.0 
and above in North China. After deleting the aftershocks, we obtained 2629 earthquake catalogues, 159 of which are 
above 4.5. In order to select the earthquake sequence, we use the method of the “natural boundary method” [Bi and 
Jiang, 2017, 2019] based on the combination of latitude-time plot, longitude-time plot and epicenter distribution 
map to select desired sequences. In addition, according to the calculation requirements of R-J model, a certain 
amount of aftershock events are needed in the earthquake sequence. Therefore, in the process of preliminary 
selection of earthquake sequence, we need not less than 60 earthquake events, and not less than 30 earthquake 
events above the completeness magnitude for parameter fitting.  

In the fitting process of the R-J model, to ensure the completeness of earthquake catalogs and the inclusion of 
a sufficient number of aftershocks in the calculation, we also use the “Magnitude-Rank” method [Huang, 2006; 
Jiang and Wu, 2011; Zhuang et al., 2012] to choose completeness magnitude of different sequence. The “Magnitude-
Rank” method is based on the sequence of earthquake occurrence time, and then the completeness magnitude is 
determined according to the distribution of magnitude and rank. In addition, in the process of parameter fitting, it 
is necessary to set the starting time of fitting C0, which is related to the cutoff magnitude Mc: the larger Mc, the 
smaller C0. By adjusting the relationship between the two parameters, we find out the values of Mc and C0 suitable 
for each seismic sequence, so as to ensure that enough earthquakes participate in the fitting and calculation. 

1 National Earthquake Cataloging System, http://10.5.160.18/console/exit.action, accessed November 22, 2018.
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According to the above selection rules, a total of 24 earthquake sequences in North China are selected, and their 
spatial distribution map is shown in Figure 1, and their mainshock parameters are shown in Table 1, together with 
the values of Mc and C0. Taking the MS5.6 Fengzhen earthquake in Inner Mongolia on August 13, 1981 as an example, 
Figure 2 gives a schematic diagram for the selection of this sequence. Iterating each seismic event step by step, the 
Omi-R-J method can obtain seismic detection rate changes over time during the study period. Figure 3 shows the 
distribution of the 50% seismic detection rate 𝜇(𝑡) of the MS5.6 Fengzhen earthquake in Inner Mongolia according 
to Ogata and Katsura (1993)’s model. To investigate the stability of the fitting process, detection rate distributions 
in 5 periods, namely, 0~0.10 days, 0~1.00 days, 0~3.00 days, 0~5.00 days, and 0~30.00 days after the mainshock, 
were separately investigated.  

Reasenberg and Jones [1989] developed the Reseanberg-Jones (R-J) model based on the “Omori-Utsu” formula 
[Omori, 1894; Utsu, 1961] as the intensity constraint and the G-R law [Gutenberg and Richter, 1944; Aki, 1965] as 
the frequency constraint for short-term forecasts of aftershocks. Therefore, the function of aftershock intensity 
whose magnitude is at or above M at time t in the earthquake sequence can be written as: 

 
𝜆(𝑡, 𝑀) = 10�OML⁺b���(�c⁻�)(𝑡 + 𝑐���)⁻�OML (1) 

 
In order to overcome the shortcomings of not fully utilizing a large number of small-magnitude earthquake 

events below the Mc, and inability to quickly and reliably estimate model parameters in the early stage of aftershock 
sequences, Omi et al. [2013] developed the “Omi-R-J model” which is based on the R-J model but incorporates some 
new technologies. Omi et al. [2013] used the expression of the detection rate function 𝑞(𝑀) provided by Ogata and 
Katsura [1993, 2006] to describe detection degrees of the incomplete parts of seismic records.  
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Figure 1. Seismicity distribution of 24 earthquake sequences in North China.
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Figure 2. Selection of 13 August 1981 Fengzhen, Inner Mongolia, MS5.6 earthquake sequence. (a) Latitude-time plot; (b) 
Longitude-time plot; (c) Epicenter distribution plot; (d) Magnitude-Rank plot. The yellow stars represent the 
mainshock and the black dots represent events in the selected earthquake sequence, the gray ones represents 
“background earthquake” in the earthquake sequence. The horizontal dashed line indicates the cutoff magnitude, 
Mc, while the vertical dashed line indicates the starting time of model fitting, C0.

Figure 3. Catalogue completeness analysis of the Fengzhen MS5.6 earthquake aftershock sequence in Inner Mongolia on 
August 13, 1981. The colored curves indicate the results of the 50% detection rate calculated from data at 
different time periods (0~0.10 days, 0~1.00 days, 0~3.00 days, 0~5.00 days and 0~30.00 days) after the mainshock. 



The actually recorded probability density function can be written as: 
 
 

    (2) 
 

 
After obtaining parameters 𝛽, 𝜎 and 𝑉 and the dynamic changesof detection rate by the “state-space” model, 

where V is a hyper-parameter that controls the degree of smoothness of 𝜇(𝑡). The parameters 𝑝���, 𝑐��� and 𝑘��� from 
the Omori-Utsu (O-U) formula for aftershock decay and the parameter 𝛽 from the Gutenberg-Richter (G-R) formula 
for the magnitude-frequency relation (𝛽 = bln10) are constants to be estimated. Thereafter, the number of forecasting 
aftershocks in the magnitude range 𝑀>𝑀� and any time interval [t2, te] can be calculated using equation (1): 

 
 

(3) 

 

𝑃(𝑀|𝛽, 𝜇, 𝜎) =                =             = 𝛽𝑒⁻𝛽(𝑀‒�)⁺�²�²/²𝑞(𝑀|𝜇, 𝜎)
𝑒⁻𝛽𝑀𝑞(𝑀|𝜇, 𝜎) 

�⁺� 𝑒⁻𝛽𝑀𝑞(𝑀|𝜇, 𝜎)𝑑𝑀₋�
𝑒⁻𝛽𝑀𝑞(𝑀|𝜇, 𝜎) 

𝑒(⁻�𝑀+�²�²/²)/𝛽

𝑁=���   �� 𝜆(𝑡,𝑀)𝑑𝑡𝑑𝑀.�₂     ��
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S/N Date Time Mag. Long. Lat. Mc C0 Code

1 1973/03/11 16:40:08 4.9 116.170 31.370 1.5 0.0078 A

2 1974/04/22 08:29:19 5.5 119.320 31.450 1.2 0.0603 B

3 1975/02/04 19:36:04 7.3 122.700 40.700 4.0 0.1119 C

4 1976/07/28 03:42:53 7.8 118.180 39.630 4.0 0.0132 D

5 1979/07/09 18:57:23 6.0 119.250 31.450 1.5 0.0050 E

6 1980/08/02 03:10:42 5.1 113.950 36.050 1.3 0.0313 F

7 1981/08/13 11:01:57 5.6 113.420 40.500 1.5 0.0103 G

8 1981/11/09 02:01:04 5.8 114.970 37.430 2.4 0.0062 H

9 1984/05/21 23:38:54 6.2 121.600 32.480 2.4 0.0084 I

10 1989/10/19 01:01:34 5.8 113.820 39.950 3.0 0.0288 J

11 1991/03/26 02:02:38 5.8 113.850 39.970 1.2 0.0144 K

12 1991/05/30 07:05:55 5.6 118.270 39.680 2.4 0.0086 L

13 1995/10/06 06:26:53 5.4 118.330 39.670 1.6 0.0066 M

14 1996/12/16 05:36:33 4.5 116.500 40.170 1.2 0.2191 N

15 1998/01/10 11:50:39 6.3 114.300 41.100 2.2 0.0134 O

16 1999/05/15 16:11:17 4.6 113.500 39.520 1.3 0.0024 P

17 1999/11/01 21:25:13 5.6 113.920 39.920 2.3 0.0180 Q

18 2008/11/14 06:53:28 4.7 122.794 40.842 1.5 0.5454 R

19 2010/04/04 21:46:45 4.6 113.830 39.900 1.2 0.0018 S

20 2012/05/28 10:22:52 4.7 118.470 39.710 1.1 0.0029 T

21 2012/07/20 20:11:51 4.9 119.570 33.040 1.5 0.0580 U

22 2013/04/22 17:11:52 5.3 122.350 42.900 2.0 0.0617 V

23 2013/12/16 13:04:52 5.1 110.450 31.100 1.4 0.0181 W

24 2018/10/11 15:06:31 4.5 110.470 31.030 1.4 0.3498 X

Table 1. Mainshock parameters for the 24 selected earthquake sequences in North China 



3. Fitting of Sequence Parameters 
 
It is essential to obtain stable model sequence parameters before investigating corresponding strategies for 

aftershock probability forecasting [Jiang et al., 2017, 2018; Bi and Jiang, 2017]. For the parameters 𝐾���, 𝑐��� and 
𝑝��� of the R-J model, we can use the maximum likelihood method to fit the Omori-Utsu formula, and use the Fisher 
information matrix to estimate the standard deviation of these parameters [Ogata, 1983]. The parameter b-value and 
its standard deviation can be calculated using the maximum likelihood method [Aki, 1965] and the methods given 
by Shi and Bolt [1982], respectively.  

In order to study the continuous change of the R-J model parameters, we used a series of time windows with fixed 
starting points but increasing length to select earthquake sequences and perform model parameter fitting. The 
setting of the starting time C0 and the ending time (sequence duration time or starting time of forecasting) 𝑡₂ of 
these time windows is shown in Tables 1 and 2, respectively. Among them, 𝑡₂ generally increases gradually from 0.05 
day after the mainshock to 5.00 days in steps of 0.05 day, but in order to ensure that the time windows contain a 
sufficient number of earthquakes, the forecast starting point of t2 for each earthquake sequence is slightly different, 
see Table 2. Taking the Zhangbei MS6.3 earthquake in Hebei Province on January 10, 1998 as an example, Figure 
4(a1), (b1), (c1), (d1) provide the values of 𝑝���, 𝑐���, 𝐾��� and 𝑏��� obtained by fitting these parameters versus 
sequence duration, which indicates relatively sharp changes in the early stage of the sequence but gradual 
stabilization in later stages. 
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Figure 4. Parameters of R-J model and Omi-R-J model against the duration time (since the mainshock occurred) in fitting 
the Zhangbei MS6.3 earthquake in Hebei Province on January 10, 1998. (a1)~(d1) represent R-J model parameters 
𝑝���, 𝑐���, 𝐾��� and 𝑏��� respectively; (a2)~(d2) represent Omi-R-J model parameters 𝑝���, 𝑐���, 𝑘��� and 𝑏��� 
respectively. The cut-off magnitude is set as Mc = ML2.5 in model fitting, the starting time is C0=0.0134 day and 
the ending time in the fitting process (sequence duration) increasing from 0.05 day to 30.00 days at the time step 
of 0.05 day. The gray area shows the range of the standard deviations of the parameters shown in each subgraph. 



The parameters of the Omi-R-J model were fitted using Bayesian estimates given by Omi et al. [2013]. Specifically, 
the Newton’s iteration and the expectation maximum (EM) algorithm were used to optimize the hyperparameters 
𝛽, 𝜎, V and 𝜇(t), respectively, while the maximum likelihood method is used to estimate the parameters 𝑝���, 𝑐���, 
and 𝑘���. Different from the traditional R-J method, the Omi-R-J method utilizes all aftershock events recorded 
after the earthquake, and performs parameter fitting immediately (within 2 hours) after the earthquake, requiring 
only a small number of aftershock events to obtain seismic sequence parameters. Taking the Zhangbei MS6.3 
earthquake in Hebei Province on January 10, 1998 as an example, we fitted the model parameters, and selected 
three time periods with relatively sharp changes in the early stage, namely, 0~0.10 days, 0~1.00 days, 0~2.00 days 
(Figure 5). As Figure 5 shows, the model parameters at early sequence duration 𝑡₂ = 0.10 day after the mainshock 
were 𝛽��� = 1.838±0.244, 𝑘��� = 0.014±0.044, 𝑝��� = 1.006±0.133, 𝑐��� = 0.080±0.094; the model parameters at 
sequence duration 𝑡₂ = 1.00 day were 𝛽��� = 1.476±0.170, 𝑘��� = 0.039±0.038, 𝑝��� = 1.008±0.115, 𝑐��� = 0.052±0.031; 
the model parameters at sequence duration 𝑡₂ = 2.00 days were 𝛽��� = 1.440±0.136, 𝑘��� = 0.052±0.045, 𝑝��� = 
0.975±0.123, 𝑐��� = 0.066±0.044, where 𝛽��� value was obtained by 𝛽��� = ln(10) × 𝑏���. 

For the Omi-R-J model, the parameters were fitted as close as possible to the start of the earthquake. In the 0.05 
days after the mainshock, only the Liyang MS5.5 earthquake in Jiangsu on April 22, 1974, and the Shunyi MS4.5 
earthquake in Beijing on December 16, 1991 have only one aftershock in their sequences 0.05 day after the 
mainshock, with simulation starting from 0.10 day and 0.15 day after the earthquake respectively, while the starting 
times of the other 22 events were all set to begin from 0.05 day. Same as the R-J model, the simulation time increases 
at a time step of 0.05 day in multiple time periods to 30 days. Figure 4(a2), (b2), (c2), (d2) provide the values of 𝑝���, 
cORJ, 𝑘��� and 𝑏��� of the Zhangbei MS6.3 earthquake in Hebei Province on January 10, 1998 versus sequence duration. 
Compared with the R-J model parameters, Omi-R-J model parameters in the early stage manifest smoother changes.  

 
 

4. Statistical test of forecast results 
 
We used the N-test [Kagan and Jackson, 1995; Schorlemmer et al., 2007; Zechar, 2010] as adopted in CSEP for 

earthquake number verification to determine the deviation of the forecasting number of earthquakes by the R-J 
model and the Omi-R-J model from the actual number of earthquakes. We use 𝑁���� to represent the number of 
forecasted aftershocks and 𝑁��� to represent the actual number of aftershocks. In the simplified processing of zechar 
(2010), the “too low” and “too high” in the actual number of aftershocks 𝑁��� is tested by the scores 𝛿1 and 𝛿2, 
respectively. 
 
               𝛿₁ = 1 ‒ 𝐹((𝑁��� ‒1)|𝑁����) (4) 
 

𝛿₂ = 𝐹(𝑁���|𝑁����) (5) 
 
 

The effective significance level 𝛼��� = 0.025 was used to unilaterally test the N-test results. 𝛿1 < 𝛼��� indicates 
“too low” numbers of forecasted aftershocks, while 𝛿2 < 𝛼��� indicates “too high” numbers of forecasted aftershocks. 

As an example, Figure 5(d), (e) and (f) show the forecasts at three “turning points” by the Omi-R-J model for 
0.10~1.10 days, 1.00~2.00 days, and 2.00~3.00 days after the earthquake. As can be seen, the number of actual 
earthquakes in the three time periods fall within the 95% confidence interval of the forecasts, indicating relatively 
high forecasting efficacy. As an example, we provide the test results of the forecasting efficacy of the R-J and Omi-
R-J models in predicting the future 1-day aftershock probability of Zhangbei MS6.3 earthquake in Hebei Province 
on January 10, 1998 with sequence duration time t2=2.00 (Figure 6). Figure 6(a), (c) and (b), (d) respectively show 
the test score δ1 and δ2 of N-test for aftershock occurrence rate forecasting of the two models, indicating relatively 
good forecasting efficacy in this time period, with the test results of the Omi-R-J model being significantly better 
than that of the R-J model. 

The R-J and Omi-R-J models require a certain number of events for aftershock forecasts due to data quality 
constraints and other factors for each earthquake sequence. To systematically evaluate the forecasting efficacy for 
early aftershocks (within 5.00 days after mainshock) of earthquake sequences of North China since 1970, we 
performed sliding forecasts in multiple time slips (Tables 2 and 3) starting as close as possible to the occurrence time 
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of earthquake within 0.05~5.00 days, and conducted “quantitative” efficacy evaluation of forecast results as shown 
in Tables 2 and 3. The corresponding N-test results of the two models are shown in Figure 7, where the red color 
blocks represent the results when 𝛿1<0.025 and 𝛿2<0.025, the slash time period represents the time period that 
cannot participate in the calculation because of insufficient data, and the blank area indicates that no earthquake 
event of or above the cut-off magnitude has occurred in the forecasting period. As the N-test cannot be performed 
if no actual events have taken place, to ensure objective evaluations, this paper does not include situations with zero 
actual occurrence despite a forecasted probability of earthquakes. 

For complex earthquake sequences, forecasting “failures” were observed even with the well-accepted R-J model 
and Omi-R-J model. As Table 2, Table 3 and Figure 7 suggest, in all time periods involved in the calculation, the R-
J model is more effective than the Omi-R-J model with respect to having “too low” numbers of forecasted events, 
while the Omi-R-J model considerably outperforms the R-J model in respect to having “too high” numbers of 
forecasted events. The Omi-R-J model also shows considerably better outcomes in terms of overall failure rates. 

As the fitting and calculation of the R-J model is impossible in the early stage of certain sequences, and given 
relatively poor results of early stage forecasts in statistical test, the actual forecasting efficacy of the R-J model may 

Jinmeng Bi et al.

8

Figure 5. Future 1-day aftershock forecasting for the Zhangbei MS6.3 earthquake sequence using the Omi-R-J model in 
Hebei Province on January 10, 1998. Plots (a), (b) and (c) show the comparison of magnitude-cumulative 
frequency between forecasts (red lines) and actually observed aftershocks (black dots), and their 95% 
confidence interval (pink area). Subplots (d), (e), and (f) show the cumulative forecasting values (red curves) 
and actual observed values (black curves) when M>2.45 and at the 95% confidence interval (red dashed lines). 
The starting times of forecasts is marked by a black vertical dashed lines, and the ending times is the right edge 
of the picture. Three plots in each line refer to the different test periods (0.1,1.1), (1,2) and (2,3), respectively.
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Figure 6. N-test for the short-term forecasting results of the Zhangbei MS6.3 earthquake sequence, in Hebei Province on 
January 10, 1998. (a) 𝛿1 results of the N-test for future 1-day forecasting of R-J model; (b) δ2 results of the N-test 
for future 1-day forecasting of R-J model; (c) δ1 results of the N-test for future 1-day forecasting of Omi-R-J 
model; (d) δ2 results of the N-test for future 1-day forecasting of Omi-R-J model. All of the above results show 
the situations when t2=2.00 days, Mc=ML2.5.

Figure 7. N-test results for the two models for future 1-day aftershock forecasting of the earthquake sequence of North 
China. (a) 𝛿1-score of R-J model. (b) δ2-score of R-J model. (c) δ1-score of Omi-R-J model. (d) δ2-score of Omi-R-
J model. The blue color block represents the period when the forecasting is valid at 95% confidence level. The red 
color block represents the result of δ1<0.025 or δ2<0.025, i.e. the forecasting period of failure. The blank area 
indicates that no earthquake event of or above cutoff magnitude has occurred in the forecasting period. And the 
slash area represents the time period that cannot participate in the calculation because of insufficient data.



be overestimated. To further compare forecast performances between the two models, we analyzed 10 sequences 
in the same forecasting periods of the two models. By comparison, the R-J model is more effective than the Omi-
R-J model with respect to having “too low” numbers of forecasted aftershocks, while the Omi-R-J model has 
significantly higher overall efficacy than the R-J model. Therefore, utilizing the R-J and Omi-R-J models by focusing 
on the bottom line thinking of “no more than” and “no less than” the corresponding forecasting earthquake number 
respectively may present practical value to post-earthquake relief in North China. Detailed evaluations of the 
efficacy for each earthquake sequence are given in Tables 2 and 3. 

To further explore contributing factors for forecasting failures, we analyzed changes in the seismic network’s 
monitoring capacity before and after 2008. The average failure rate of the R-J model turned from 27.0% before 
2008 to 7.7% after, while that of the Omi-R-J model turned from 13.3% before 2008 to 8.9% after. We conducted 
fitting to better show the relationship between occurrence time and failure rate (Figure 8). As Figure 8 shows, 
with increased monitoring capacity over time, both models have witnessed improved forecasting capacity, which 
is more pronounced for the R-J model than the Omi-R-J model, also indicating smaller impact of the incomplete 
records of early aftershocks on the latter. Similar conclusions were made by Jiang et al. [2018] by randomly 
“deleting” small magnitudes. Thus, at the early stage after the mainshock when numerous aftershocks are 
unobserved due to dense overlapping of seismic waves, the Omi-R-J model has more practical usefulness. The 
development of monitoring technologies for improved monitoring capacity may be a key factor to raising 
aftershock forecasting efficacy. 

Jinmeng Bi et al.

10

Table 2. N-test of short-term aftershock occurrence rate forecasted by R-J model

Code
Period  

after the  
mainshock

Forecasting 
Magnitude

Number of 
time-steps

𝛿1-Score 𝛿2-Score 𝛿1+𝛿2 Score

𝛿1<0.025 Ratio 𝛿2<0.025 Ratio Failure 
frequency Ratio

A 0.05-5.00 1.5 100 0 0 77 77.0% 77 77.0%

B#* 2.80-5.00 1.5 45 0 0 0 0 0 0

C# 0.05-5.00 4.0 92 0 0 43 46.7% 43 46.7%

D* 0.90-5.00 4.0 92 6 6.5% 81 88.0% 87 94.5%

E# 0.05-5.00 1.5 94 0 0 27 28.7% 27 28.7%

F#* 1.65-5.00 1.5 57 0 0 0 0 0 0

G 0.05-5.00 2.0 100 0 0 27 27.0% 27 27.0%

H 0.05-5.00 2.0 100 0 0 12 12.0% 12 12.0%

I* 1.45-5.00 3.0 82 0 0 29 35.4% 29 35.4%

K#* 0.10-5.00 2.0 88 0 0 17 19.3% 17 19.3%

L# 0.65-5.00 2.0 94 7 7.2% 0 0 7 7.2%

M#* 1.00-5.00 2.0 41 0 0 16 39.0% 16 39.0%

N* 2.80-5.00 1.5 45 0 0 0 0 0 0

O 0.05-5.00 2.5 100 0 0 12 12.0% 12 12.0%

Q#* 1.50-5.00 2.5 49 0 0 3 6.1% 3 6.1%

S# 0.05-5.00 1.5 38 0 0 0 0 0 0

T# 0.05-5.00 1.5 78 9 11.5% 7 9.0% 16 20.5%

U# 0.05-5.00 1.5 88 1 1.1% 5 5.7% 6 6.8%

W#* 1.80-5.00 1.5 57 0 0 2 3.5% 2 3.5%

* forecasting slip periods with no earthquakes occurrence.

# which do not start from 0.05 day.
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Table 3. N-test of short-term aftershock occurrence rate forecasted by Omi-R-J model 

Code
Period  

after the  
mainshock

Forecasting 
Magnitude

Number of 
time-steps

𝛿1-Score 𝛿2-Score 𝛿1+𝛿2 Score

𝛿1<0.025 Ratio 𝛿2<0.025 Ratio Failure 
frequency Ratio

A 0.05-5.00 1.5 100 13 13.0% 2 2.0% 15 15.0%

B#* 0.10-5.00 1.5 99 2 2.0% 19 19.2% 21 21.2%

C# 0.05-5.00 4.0 92 1 1.1% 0 0 1 1.1%

D* 0.05-5.00 4.0 100 13 13.0% 64 64.0% 77 77.0%

E# 0.05-5.00 1.5 94 0 0 0 0 0 0

F#* 0.05-5.00 1.5 81 18 22.2% 0 0 18 22.2%

G 0.05-5.00 2.0 100 4 4.0% 0 0 4 4.0%

H 0.05-5.00 2.0 100 10 10.0% 0 0 10 10.0%

I* 0.05-5.00 3.0 100 13 13.0% 0 0 13 13.0%

J#* 0.05-5.00 3.0 89 13 14.6% 0 0 13 14.6%

K#* 0.05-5.00 2.0 89 0 0 10 11.3% 10 11.3%

L# 0.05-5.00 2.0 97 10 10.3% 7 7.2% 17 17.5%

M#* 0.05-5.00 2.0 51 0 0 0 0 0 0

N* 0.15-5.00 1.5 98 3 3.1% 0 0 3 3.1%

O 0.05-5.00 2.5 100 3 3.0% 0 0 3 3.0%

P#* 0.05-5.00 1.5 58 2 3.4% 5 8.6% 7 12.0%

Q#* 0.05-5.00 2.5 68 0 0 1 1.5% 1 1.5%

R#* 0.05-5.00 1.5 94 2 2.1% 0 0 2 2.1%

S# 0.05-5.00 1.5 38 0 0 0 0 0 0

T# 0.05-5.00 1.5 78 17 21.8% 0 0 17 21.8%

U# 0.05-5.00 1.5 88 0 0 2 2.3% 2 2.3%

V#* 0.05-5.00 2.0 89 0 0 6 6.7% 6 6.7%

W#* 0.05-5.00 1.5 83 22 26.5% 0 0 22 26.5%

X#* 0.05-5.00 1.5 59 2 3.4% 0 0 2 3.4%
* and # represent the same meaning as in Table 2.

Figure 8. The relationship between the forecasting failure rate and the onset time of the mainshock. The blue-green dots 
represents the failure of the R-J model for each earthquake sequence, the purple-red real point represents the 
failure of the Omi-R-J model for each earthquake sequence, and the blue-green and purple-red dashed lines 
represent the fitting curves of R-J model and Omi-R-J model respectively.



In addition, the T-test (Student’s) method in CSEP was used to explore the relative merits of the two models. 
The T-test method can be expressed as the calculation of the average “information gain per earthquake” (IGPE) 
of model A relative to the model B in the confidence interval [Imoto, 2007]: 

 
 

(6) 
 

 
where 𝑁 is the total number of “target earthquakes”, and ln𝐿� and ln𝐿� are the likelihood functions of model 𝐴 and 
model 𝐵, respectively. 

For calculations of the space grid, we adopted the same simplified method as Jiang et al. [2017], that is, directly 
using forecasting numbers of earthquakes in corresponding time windows. Based on the IGPE calculation method 
and the T-test, this study evaluated the forecasting efficacy of the Omi-R-J model relative to the R-J model for the 
sequences of 17 identical forecasting periods in North China according to their respective magnitudes. Test results 
at 95% confidence interval are shown in Figure 9. T-test results suggest that the Omi-R-J model significantly 
outperforms the R-J model for 88.2% (15/17) of the sequences. 

IGPE(𝐴,𝐵) = 
ln𝐿� ‒ ln𝐿� 

𝑁
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Figure 9. T-test results of the Omi-R-J model against the R-J model for aftershock forecasting of the earthquake sequence 
in North China, with different “target magnitudes”. The black dots and horizontal lines represent the information 
gain per earthquake and the 95% confidence interval respectively, the number of observed earthquakes is shown 
above the T-test results.



5. Conclusion and Discussion 
 
To explore forecasting strategies for early aftershocks in North China, we have conducted a systematic 

comparative study of the widely used R-J model and the Omi-R-J model, which is capable of fully using large 
numbers of incomplete small-magnitude events in the early stage of the aftershock sequence, for 24 earthquake 
sequences in North China. We have arrived at the following conclusions by performing continuous sliding and 
fitting of multiple time windows, aftershock occurrence rate forecasting, and efficacy evaluation by the N-test 
and T-test: 

1.  Both the R-J model and Omi-R-J model prove rather effective for the early stage of sequences in the North 
China region, although the Omi-R-J model is generally better than R-J model, including the IGPE results given 
by T-test and the lower failure rate shown by N-test. Thus, it may be useful for post-disaster relief in North 
China to develop aftershock forecasting strategies that capitalize on the relative advantages of the R-J model 
and the Omi-R-J model in terms of relatively “low ratio of having ‘too few’ forecasted numbers of earthquakes” 
and “low total failure rate”.  

2. We analyzed changes in the seismic network’s monitoring capacity before and after 2008 and we found that 
the average failure rate of the R-J model dropped from 27.0% before 2008 to 7.7% after; while that of the Omi-
R-J model dropped from 13.3% before 2008 to 8.9% after. This decline suggests considerable improvement in 
forecasting efficacy for earthquake sequences with the rapid growth of the seismic network following 2008, and 
that monitoring capacity is a key factor constraining forecasting efficacy. Considering that seismic network 
in China has improved significantly around 2008, especially the increase in the number of seismic stations and 
the quality of instruments, further enhancement of seismic monitoring capabilities in the future is still an 
important factor to improve the short-term aftershock forecasting capabilities in North China. 

 
Immediate access to relatively stable model parameters is essential to improving forecasting capacity within a 

short time following strong earthquakes, while the missing aftershock sequences resulting from “submerged” small 
earthquake waveforms in the early stage may be one major factor affecting the stability of model parameters. In 
replenished early aftershock sequences datasets, tentative practices have been adopted to gain access to stable 
parameters after earthquakes, such as using “matched filtering” to pick up more repetitive aftershock events [Peng 
et al., 2006], a temporal point process with time-independent marks [Zhuang and Wang, 2016; Zhuang et al., 2017], 
etc. The results of this paper reveal the substantial impact of seismic monitoring capabilities on aftershock forecasting 
performance, therefore, the development of these new technologies provides another way to increase the potential 
of aftershock forecasting efficiency compared to investing in more seismic stations. The Omi-R-J model, which is 
formed by technical improvements based on the traditional R-J model, allows a large number of incomplete small-
magnitude earthquakes to participate in aftershock forecasting, further exerting the stability of model parameters 
fitting and the reliability of aftershock forecasting results. The application of these technologies has practical 
significance for formulating more scientific and reliable aftershock forecasting strategies in North China. 
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