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ABSTRACT
Fault plane solutions of  the September 18, 2011 Sikkim Himalaya
earthquake of  Mw 6.9 and its four aftershocks (Mw>4.0) are studied
by waveform inversion using the local broadband network data. The
solutions show pure strike-slip mechanisms; one aftershock show thrust
faulting with strike-slip component. Strike-slip mechanisms indicate
predominant transverse tectonics in Sikkim, in the eastern Himalaya
region, unlike predominant thrust tectonics in the western Himalaya.
The 2011 main shock occurred at a much deeper depth (~47 km) com-
pared to the shallower (<20 km) thrust events in the western Himalaya.
Further, analysis of  ground acceleration spectra reveals low stress drop
(14-38 bars) in agreement with the relatively long source duration and
small co-seismic slip of  the main shock as well as the aftershocks. We
interpret the low stress drop in terms of  lower energy release due to re-
activation of  the NNW-SSE trending Tista fault in contrast to that of
the Himalayan thrust tectonics. The low stress drop also indicates a
pre-existing brittle zone or fault zone at deeper depth or mantle depth.

1. Introduction
A powerful destructive earthquake of  Mw 6.9 at a

depth of  ~47 km (GCMT report), struck on Septem-
ber 18, 2011 in north-west Sikkim, at the border be-
tween India and Nepal (Figure 1). The earthquake was
widely felt in Sikkim, Assam, Meghalaya, northern
parts of  West Bengal, Bihar and parts of  other eastern
and northern regions of  India. The earthquake caused

severe damages to property and also caused 60 casual-
ties. This is the strongest instrumentally recorded earth-
quake in the Sikkim Himalaya during the last two
centuries [Pradhan et al. 2013]. The most significant sig-
natures of  the 2011 Sikkim earthquake are landslides
and landslide-induced loss of  life as well as damage to
the economy and infrastructure due to which the max-
imum intensity is reached to VII (MM scale) [Mahajan
et al. 2012, Sharma et al. 2013] Poor construction of  the
houses and the hilly landslide-prone terrain are believed
to be the main cause of  such extensive damage [e.g.,
INTACH 2012, Rai et al. 2012]. Al-together there were
292 aftershocks (Mw>1.0) reported by a local broad-
band close-spaced microearthquake network of  the Na-
tional Geophysical Research Institute (NGRI) [Ravi et
al. 2012], but the national network of  the India Meteo-
rological Department (IMD) as well as the global net-
work (USGS, NEIC) reported only four aftershocks
Mw≥4.0 (Figure 1). The IMD reported that the main
shock was preceded by a foreshock of  Mw 4.9 at 26 km
depth, on June 3, 2011 (Figure 1). 

The devastating 2011 Mw 6.9 Sikkim earthquake
highlighted the urgent need to reassess the seismotec-
tonic of  the region. Using past global seismological
data, GPS data, and the fault plane solutions of  the 2011
Sikkim earthquake, several authors have tried to review



the seismotectonics of  the Sikkim Himalaya [e.g. Ra-
jendran et al. 2011, Kayal et al. 2011, Thakur et al. 2012,
Dasgupta et al. 2013, Chopra et al. 2013, Pradhan et al.
2013, Paul et al. 2015, Baruah et al. 2014 and Mukul et
al. 2014]. The transverse tectonics on the steeply dip-
ping near vertical mantle reaching Tista fault zone was
suggested to generate the main shock. Finite fault
model analysis indicates that the surface level Peak

Ground Acceleration (PGA) values near to source re-
gion might reach more than 0.3g [Raghukanth et al.
2012]. Ravi Kumar et al. [2012] made a detailed study of
the aftershocks recorded by the NGRI local network,
and concluded that the near vertical mantle reaching
Tista fault caused the main shock and aftershocks. A
rupture model using simulation of  near-field and far-
field accelerograms was presented by Joshi et al. [2012].
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Figure 1. Tectonic map of  the Sikkim Himalaya [after De and Kayal 2003] showing the epicentres of  EHB relocated earthquakes (1965–2007).
The 18 September 2011 main shock and four significant aftershocks (M≥4.0) are shown by red stars. The foreshock of  the earthquake is
shown by filled black star. The open black stars show the two damaging strong earthquakes (M≥5.9) with CMT fault-plane solutions. The
solution of  the 1988 earthquake is from Banghar (1991)based on first motion plot, and the waveform inversion solutions of  two smaller
events of  2002 are from Baruah et al. [2012a,b]. MCT: Main Central Thrust, MBT: Main Boundary Thrust, HFT: Himalayan Frontal Thrust,
and GL: Goalpara lineament. The blue line indicates the river system. The red beach ball indicates the GCMT solution while blue beach ball
indicates the solutions obtained in this study. The fault plane solutions of  the four aftershocks (named as 1, 2, 3, 4) are also shown as blue
beach ball. 



3

STUDY OF FAULT PLANE SOLUTIONS OF 2011 SIKKIM EARTHqUAKE

Chopra et al [2013] determined source parameters of
the main shock by strong ground motion modelling in
terms of  PGA.

In this study, we have determined fault plane solu-
tions of  the 2011 main shock and its four small after-
shocks (Mw 3.9-4.5) by waveform inversion using the
local broadband data of  the IMD national network. Al-
though the main shock GCMT was immediately re-
ported, but fault plane solutions of  the four small
aftershocks were not reported earlier. We have critically
examined these fault plane solutions of  the main shock
and the four selected aftershocks using the IMD per-
manent broadband network data, and we have also es-
timated the source parameters of  these events by
spectral analysis. These results, with their tectonic im-
plications are presented here.

2. Tectonic setting
The formation of  the Himalaya resulted due to the

continent–continent collision of  Indian plate with
Eurasian plate at ~50 Ma [e.g. Allegre et al. 1984, Bac-
cheschi and D’Amico 2014 and reference therein]. In
the Sikkim Himalaya, the major tectonic features are
the Main Boundary Thrust (MBT) and the Main Cen-
tral Thrust (MCT) parallel to the Himalayan trend, and
the NNW–SSE trending Tista and Gangtok lineaments,
the WNW–ESE trending Goalpara lineament and the
SW–NE trending Kanchanjangha lineament transverse
to the Himalayan trend [GSI 2000]. The MCT in the
Sikkim Himalaya has taken a curvilinear loop shape in-
dicating thicker sediments (Figure 1). A conceptual tec-
tonic model of  the Himalaya was first suggested by
Seeber et al. [1981] based on the known geology, geo-
physics and teleseismic hypocentral data. In this model,
the two active thrusts, the MBT and MCT, are con-
temporaneous in nature. However, Ni and Barazangi
[1984] has suggested that the MCT is dormant while
the MBT is active. The interface between the subduct-
ing Indian slab and the Himalayan sedimentary wedge
is named the “Plane of  Detachment” in the proposed
model [Seeber et al. 1981]. Further north, below the
MCT lies the “ramp”, referred to as “Basement Thrust
Front” (also known as Basal Detachement/Decollement or
Main Himalayan Thrust), that accumulates the tectonic
stress due to northward movement of  the Indian plate;
abrupt release is believed to be the main cause of  earth-
quakes on the plane of  detachment at a shallower
depth (0-20 km).

Based on local temporary network data, Kayal
[2001 and 2010] argued that the Himalayan shallow
thrust faulting earthquakes in the western Himalaya fits
fairly well with the most accepted conceptual tectonic

model, but the deeper (30-60 km) strike-slip faulting
earthquakes in the eastern Himalaya cannot be ex-
plained as plane of  detachment earthquakes. The focal
depth of  the recent well-recorded 1988 strong earth-
quake (Mw 6.9) at the Bihar-Nepal border foothills re-
gion was given at 50-60 km by different agencies such
as USGS, ISC and ERI. Furthermore, Monsalve et al.
[2006] reported deeper (30-60 km) source zones of
earthquakes in the foothills region; these results were
based on permanent digital network data of  Nepal,
central Himalaya. After the 1988 strong foothills earth-
quake in the region, the eastern Himalaya produced the
2011 strong Sikkim earthquake (Mw 6.9) further north
at the surface trace of  the MCT (Figure 1). The 1988
event as well as the 2011 strong earthquakes in this re-
gion, have given us the opportunity to understand the
earthquake processes better in the eastern Himalaya re-
gion. Unlike the 1988 foothills earthquake, the 2011
Sikkim Himalaya earthquake provided local broadband
network data that may shed new light to our under-
standing of  the eastern Himalaya earthquakes at the
Himalaya Seismic Belt (HSB) zone.

3. Data Analysis

3.1 Hypocenter Locations
In this study, the earthquake data recorded by the

broadband seismic network of  IMD in the North-east
India region are used for analysis. Each station is
equipped with tri-axial REFTEK 151B Broadband ve-
locimeters with a sampling rate of  100 Hz. Several lo-
cations have been reported for the main shock of  the
2011 Sikkim earthquake by different national and in-
ternational agencies (Table 1). The reported source
depth was the most uncertain parameter, ranging from
10 km to 50 km. We have reanalysed the hypocentral
parameters using nine local broadband station data of
the IMD. We used the HYPOCENTER programme of
Lineart et al. [1986] and a velocity model proposed by
Acton et al. [2011] for the region. The estimated loca-
tion errors are ±2.1 km and ±5.1 along the horizontal
and depth respectively, and the root mean square error
1.3 sec. The same programme is also used for locations
of  the aftershocks. 

3.2 Spectral Analysis 
Source parameters are studied by spectral analy-

sis. For spectral analysis, first we applied a base-line cor-
rection and a cosine taper to the vertical component of
the P-wave seismograms. We then transformed the
seismograms from velocity to displacement. We se-
lected a time window of  several seconds beginning just
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Table 1. Hypocentral and Focal parameters of  18th September, 2011 Sikkim earthquake and its foreshock and aftershocks.
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before the first arrival, usually 5 sec before the onset of
the first arrival, and calculated the amplitude spectrum
using Fast Fourier Transformation (FFT). All spectra
presented in this paper have been corrected for instru-
ment response and for attenuation using the results of
Thirunavukarasu et al. [2016] where q=100. We char-
acterised the spectra at a constant level A0 for the lower
frequencies, and with a fall-off  above the corner fre-
quency (fc). Earthquake source parameters are esti-
mated following the Brune [1970] model as modified
by Hanks and Wyss [1972]. 

In agreement with most used theoretical models
of  seismic sources, the far-field displacement Ω(f) can
be described by a -corner frequency model:

(1)

where, Ω0 is the low-frequency spectral level, fC is the
corner frequency, n is the high-frequency spectral fall-
off, and γ is a constant. If  γ=1, Equation (1) is the spec-
tral shape proposed by Brune [1970].

The average value of  corner frequency 〈fc〉 is ex-
pressed as follows:

(2)

where fci is the corner frequency at the ith station and N
is the number of  stations used in this study. The antilog
defines the inverse of  logarithm.

Source parameters (seismic moment, moment
magnitude, stress drop, and source radius) are then cal-
culated for the main shock and aftershocks. The seismic
moment (Mo) is estimated from the low-frequency level
(Ω0) using the relation of  Keilis-Borok [1959],

(3)

where, ρ=2700 kg/m3 is the density, Vp is the average P-
wave velocity, R is the source to receiver distance, and
Rθφis the a co-efficient accounted for the combined cor-
rection for radiation pattern, free surface amplification
and site effects. The root mean square average of  radia-
tion pattern co-efficient Rθφ=0.52 is used for all the
events [Boore and Boatwright 1984]. 

An average seismic moment 〈M0〉 from all of  the sta-
tions is determined from the average of  the logarithmic
values using the following relation [Archuleta et al. 1982]:

(4)

where, N is the number of  stations used.
The average source radius 〈 R(P)〉 is computed

using the modified Brune [1970] formula for P-wave
spectrum [Hanks and Wyss 1972]:

(5)

Similarly, stress drop is estimated using the fol-
lowing equation:

(6)

We calculated moment magnitude from seismic
moment following the definition of  Hanks and
Kanamori [1979]:

(7)

where M0 is measured in dyne.cm.
For each seismic event, we determined A0 and fc

and the corresponding source radius r and seismic mo-
ment M0 for each seismic station with signal-to-noise
ratio greater than 1. The final M0 and R are the average
of  these values. Stress drop, average displacement and
moment magnitude are then calculated from these av-
eraged M0 and R. The resulting source parameters for
the investigated earthquakes are summarized in Table 2 

3.3 Focal Mechanisms and Stress Drop 
Focal mechanisms are obtained by the moment ten-

sor inversions. We have used the Fortran-Matlab based
ISOA-GUI package developed by Sokos and Zahradnik
[2008] for moment tensor inversion. In this process, the
complete velocity records are used without selecting any
particular phases. The 3-component digital records are
first converted into displacement waveforms. The dis-
placement waveforms are then filtered between 0.01 and
9 Hz using four pole ban-pass Butterworth filters. The
high frequency components are excluded because it is
difficult to model high frequency components as it re-
quires a precise knowledge of  detailed sub-surface
crustal velocity model. Subsequently resampling of
records from a frequency of  100 Hz to 33 Hz is carried
having with transfer function of  the seismometer. Nec-
essary DC removal and Trend line removal are per-
formed. Green’s functions are then computed in the
complex spectral domain using the suitable crustal ve-
locity model of  Acton et al. [2011] pertinent to the re-
gion at a point source by Discrete Wavenumber (DW)
method [Bouchan 1981]. The Green’s functions are then
convolved with appropriate instrument response and
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source time function. While calculating the Green’s
functions, the position of  the epicentre are kept fixed.
The inversion scheme uses a frequency band of  0.02 to
0.11. A fine grid search of  the strike, dip and rake is per-
formed for the best depth and moment. The final vali-
dation of  the best fit solutions is accomplished by
comparing the observed and synthetic seismograms.
The 1D velocity model that is used may not be perfect
and a small time shift is required for maximum correla-
tion between the observed and synthetics [Marzooqi et
al. 2008]. In the inversion technique, the shift is not
known and it becomes a non-linear model parameter
which has to be inverted along with the moment tensor
and optimal source depth. To account for the horizontal
mislocation, the synthetics are shifted relative to the ob-
served by changing the origin time a few seconds be-
fore/after the origin time during the inversion. In this
study, the inversion is carried out for full moment ten-
sor. The preferred solution is obtained by a simple grid
search over the focal depth with certain steps and also
over the origin time between 1-2 sec. before/after the lo-
cation origin time, since the origin time trades off  with
focal depth. The solution that has a large percentage of
variance and double couple component is selected.

There is no doubt that the usage of  large station
data with good azimuthal coverage yield a reliable focal
mechanism solution. But in wave-form inversion tech-
nique, single station data or stations with less azimuthal
coverage are sufficient to get an accurate solution. Sev-
eral authors have undertaken comprehensive studies on
the focal mechanism solutions derived from single or

double station data e.g.: Rao [2009], Delouis and
Legrand [1999], Fojtíkova and Zahradnik [2014],
Zahradník et al. [2015] etc. In this study, we have used
three components broad-band seismograms of  nine
stations e.g., TAD, DHU, TRA, GAU, ZIR, JOR, MOK,
IMP, and DIB operated by IMD in the eight North-east-
ern states of  India (Figure 2). The epicentral distances
of  the stations are 21.78 km, 219.38km, 281.58km,
348.52km, 529.42km, 576.74km, 612.92km, 619.17km,

and 634.34km respectively. The distances are compati-
ble with the ISOLA software for local data (epicentral
distances ≤1000km). A best waveform match between
observed and synthetic seismograms of  18th September,
2011 Sikkim earthquake are shown in Figure 3. Seismic
moment 1.2e+026 dyne-cm (Mw 6.7) is obtained
through averaging the seismic moments from all the
components of  the recording stations. Finally a preferred
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STATION LAT (°N) LONG (°E)
ELEVATION

(meter)

Epicentral
distance
(km)

Mw
Mo

(dyne.sec)
fc

STRESS
DROP
(bars)

SOURCE
RADIUS
(km)

Dhubri
(DHU) 26.02 89.99 205 219.38 5.66 3.84E+24 0.18 20.06 10.45

Dibrugarh
(DIB) 27.467 94.911 90 634.34 6.19 2.44E+25 0.11 22.89 12.19

Guwahati
(GAU) 26.193 91.691 88 348.52 5.87 8.00E+24 0.29 35.39 14.63

Imphal
(IMP) 24.831 93.947 792 619.17 5.65 3.66E+24 0.28 14.55 15.79

Jorhat
( JOR) 26.74 94.25 205 576.74 5.86 7.77E+24 0.3 38.04 14.47

Mokokchung
(MOK) 26.321 94.526 1353 612.92 5.68 4.17E+24 0.13 29.15 13.12

Tadon
(TAD) 27.31 88.602 1348 21.78 6.22 2.64E+25 0.13 19.13 44.71

Tura
(TRA) 25.55 90.33 305 281.58 5.81 6.39E+24 0.10 20.2 13.41

Ziro
(ZIR) 27.526 93.85 1600 529.42 5.65 3.72E+24 0.26 31.47 13.73

Table 2. Spectral parameters of  18th September, 2011 Sikkim earthquake.

Figure 2. Distribution of  seismic stations of  IMD that were used
in the waveform inversion of  the 2011 Sikkim Himalaya earth-
quake (red star). 
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solution is obtained (red beach ball) based on maximum
correlation between source position and time-shift (Fig-
ure 4). It can be seen that the preferred solution (red
beach ball) differs from the nearby solutions in terms
of  DC percentage and correlation value (Figures 4, 5).
As illustrated in Figures 4 and 5, it is ascertained from
the correlation value that the preferred solution is well
correlated at a depth of  47 km for a time-shift of  0.6 sec

having a DC% of  90. This result is in conformity with
the results of  GCMT data. Similarly, we have deter-
mined the focal mechanism solutions of  the four after-
shocks using the same technique. The final results are
illustrated in Table 1.

In order to check the stability of  our solutions we
also applied the CAP waveform inversion technique
[Zhu and Helmberger 1996, D’Amico et al. 2010]. Using

STUDY OF FAULT PLANE SOLUTIONS OF 2011 SIKKIM EARTHqUAKE

Figure 3. Matching of  observed and synthetic seismograms for the Darjeeling-Sikkim Himalaya earthquake of  18th September, 2011.
The red colour indicates the synthetic and the black color indicates observed seismograms. Respective amplitudes are also shown on the
left hand side of  each station, along with the variance reduction between the waveforms on right hand side.



this method, it is possible to separate the entire records
into body waves and surface waves and model them sep-
arately avoiding influence by shallow crustal hetero-
geneities [D’Amico et al. 2010, 2011]. The CAP method
minimizes the misfit between the observed and synthetic
seismogram using a grid search to obtain the best mo-
ment magnitude, source depth and focal mechanism
[Zhu and Helmberger 1996]. It has been proven to be a
stable and reliable method for computing moment ten-
sor solution for small and moderate events [D’Amico et
al. 2010, 2011, 2012, 2013, 2014, 2016; D’Amico 2014,
Orecchio et al. 2016]. In this case, uncertainties of  focal
mechanisms and depths were estimated by the methods
and the statistical approaches described by Bevington
and Robinson [2003]. In general, we found that the un-
certainties associated with the focal mechanism solution
parameters are in the order of  a few degrees.

The spectral parameters are estimated by fitting
every P-wave displacement spectrum with theoretical
general model for displacement spectra as expressed by
Equation (1). The waveform analysis tools in seismology

SeismoGRAPHer by Abdelwahed [2012] is used to esti-
mate the spectral parameters. In this technique the Mar-
quard Linearized Least-square method is used to solve
the non-linear problem [Press et al. 1989]. The best fits of
the observed displacement spectra to the theoretical one
at a number of  stations are plotted in Figure 6. The av-
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Figure 4. Plot of  correlation vs time-shift, source depth and focal mechanism for the multiple source inversion for 18th September, 2011
Darjeeling-Sikkim earthquake. The largest correlation was obtained for source depth 47 km and 0.6 sec time shift. The preferred solu-
tion is depicted by a red beach ball.

Figure 5. Correlation plot for the inversion results of  18th Septem-
ber, 2011 Darjeeling-Sikkim earthquake. Scales for DC% and cor-
relation are shown on the right.

AFTERSHOCK Mw
Mo

(dyne.sec)
fc

(Hz)

STRESS
DROP
(bars)

SOURCE
RADIUS
(km)

1 4.51 8.77E+22 0.37 11.31 4.43

2 4.35 4.78E+22 0.37 10.47 3.96

3 4.86 3.62E+23 0.26 17.95 10.49

4 3.9 8.87E+21 0.21 20.2 2.68

Table 3. Average Source parameter values of  the aftershocks of  18th September, 2011 Sikkim earthquake.
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erage value of  corner frequency, stress drop and source
radius are 0.19 Hz, 25.65 bars, 16.94 km, respectively.
From our calculation it is seen that for stations with epi-
central distance >200km, the value of  Mw estimated
from spectral analysis is lower than the Mw value esti-
mated from waveform inversion. This discrepancy may
be due to the attenuation factor considered in the calcu-
lation of  spectral parameters. It is noted that Chopra et
al. [2013] estimated the spectral parameters 2011 Sikkim
earthquake by using different accelerograph records.
The reported values of  corner frequency, seismic mo-
ment, stress drop and source radius were 0.12 Hz, 115
bars, 9.68 km, respectively, which are consistent with our
results, except the stress-drop value. In addition to these,
we have estimated the spectral parameters of  all the four
aftershocks which also show low value of  stress-drop
(Table 3). 

4. Discussion and Conclusions 
The most widely accepted tectonic model to un-

derstand the Himalayan large earthquakes has been the
steady state tectonic model envisaged by Seeber et al.
[1981] and Ni and Barazangi [1984]. This model sug-
gested that in the Himalayan Seismic Belt (HSB), earth-
quakes between the MBT and MCT are confined above
the plane of  detachment. However, several authors
[e.g. Mukhopadhyay and Dasgupta 1988, De and Kayal
2003, Baruah et al. 2014] have reported that in the plane
of  detachment, shallow thrust faulting earthquakes as
envisaged in the HSB tectonic model, are not evident in

the Sikkim Himalaya and its foot-hills region. The
Moho in the Sikkim Himalaya has been interpreted by
de la Torre et al. [2007] to lie at 40–80 km depth. The
earthquakes at 20–40 km depth between Main Hi-
malayan Thrust and the Moho contain several strike–
slip earthquakes [de la Torre et al. 2007], which suggest
the presence of  strike–slip faults in the region that ex-
tend below MHT or the basal decollement (basal de-
tachment) of  the Sikkim Himalayan wedge. Mukul et
al. [2014] suggested that both MHT and Lesser Hi-
malayan Duplex (LHD) as active structures in Sikkim
Himalaya. They emphasized that the Darjeeling–
Sikkim area, may be releasing accumulated strain
through frequent moderate and micro earthquakes and
the seismicity in general appears to be located between
MCT and MBT. Furthermore, they suggest shortening
in the area accommodated along active east-west trend-
ing faults in LHD in Tista Half  Window (THW). This
view is supported by the presence of  a thrust compo-
nent in the focal mechanism solution of  one of  the af-
tershocks of  2011 Sikkim earthquake. The mainshock
with dextral strike-slip movement may be related with
the incessant Duplex activity of  the weaker well foli-
ated meta-sedimentary rock sequences of  the region,
combined with the active convergence of  Indian and
Eurasian plates. 

In the present study, a plan and sectional view of  a
part of  the Darjeeling–Sikkim–Tibet Himalayan wedge
[modified after Mottram et al. 2011, Mukul et al. 2014]
shows the indicative dextral strike-slip movement (Fig-
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Figure 6. Observed spectrum for different stations using Brune (1970) model for the 2011 Sikkim earthquake of  Mw 6.9.



ure 7) beneath the MHT which might have occurred due
to relative motion between converging plates resulting in

stress accumulation within the plates as well as along
their common boundary [e.g. Mukul et al. 2010]. 
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Figure 7. (a) 3D cross-section view (after Mottram et al. 2011) & (b) Sectional view of  a part of  the Darjiling–Sikkim–Tibet Himalayan
wedge with the Lesser Himalayan Duplex (LHD) (modified after Mukul et al. 2014) along with the tentative strike slip motion underneath
the basal detachment is shown. SKT: South Kalijhora Thrust; MCT: Main Central Thrust; RT: Ramgarh Thrust; MBT: Main Boundary
Thrust; MFT: Main Frontal Thrust; STD: South Tibet Detachment; LHS: Lesser Himalayan Series; GHS: Greater Himalayan Series.
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The GCMT solution of  the 2011 Sikkim earth-
quake in the eastern Himalaya shows that it occurred at
greater depth (~ 47 km) by strike-slip mechanism (Fig-
ure 1). A similar strike slip solution is obtained in this
study using local broadband network data with an esti-
mated depth of  47 km (Figure 1). We have also exam-
ined fault plane solutions of  the four significant
aftershocks (Mw 3.9- 4.5) using the local network data.
The waveform inversion results show that three after-
shocks occurred by strike-slip mechanisms and one by
thrust faulting with strike slip component. Additionally,
fault plane solutions of  the past two medium to strong
earthquakes (1965 and 1980) in main shock epicenter area
also show dominantly strike slip solutions (Figure 1). In all
these solutions of  the 2011 main shock, aftershocks and
the past events (1965 and 1980), the NNW-SSE striking
nodal plane is comparable with the Tista fault. 

The agreement between the different solutions has
also been numerically checked by applying the Kagan
[1991] method [D’Amico et al. 2011 and reference
therein]. The Kagan angle measures the rotation that
should be applied to one earthquake source double-
couple to make it coincident with another one. The
agreement is very good between being in the order of
85-90%. The small differences among the solutions can
be attributed to a combination of  several factors for ex-
ample the use of  different velocity model, or different
frequency bands. However, we are confident that the
final focal mechanisms obtained in this study are ro-
bustly determined.

The geologically mapped Tista lineament (GSI
2000) was reported as Tista fault by Kayal et al. [2011]
and Baruah et al. [2014]. It may also be noted that the
1988 strong earthquake (Mw 6.9) in the foot-hills re-
gion also shows strike slip mechanism with an esti-
mated depth 55-60 km (Figure 1) [Banghar 1991]. A
NW-SE transverse fault, termed the West Patna fault,
was inferred to be the causative fault for this strike slip
earthquake (GSI 2000).

The source parameters that are estimated from the
displacement spectra of  the broadband seismograms
show that the stress drop of  the main shock and after-
shock sequence has a low value, ranging from 14-38
bars. Similar observation is reported in geodetic mea-
surements by Pradhan et al. [2013]. They have inferred
an average coseismic displacement of  ~11 mm at
Phodong and ~9 mm at Taplejung station near the
main shock epicentre. It is important to note that low
stress drop in other parts of  the world are interpreted
as the result of  re-rupturing after short healing times
[Kanamori et al. 1993, Berberian et al. 1999]. Here, this
argument, however, may not hold true because no

large earthquake is reported in the Sikkim Himalaya
during the recorded history except two medium mag-
nitude earthquakes, one in 1965 (mb 5.8) and the other
in 1980 (mb 6.0) respectively. The eastern Himalayan
seismicity differs from that of  the western Himalaya.
The western Himalayan earthquakes are shallow and
occur by thrust mechanisms, whereas the Sikkim Hi-
malayan or eastern Himalayan earthquakes are deeper
and occur by strike slip mechanisms. Several authors
[e.g. Mukhopadhyay 1984, Engdhal et al. 1998, Kayal
2001 and 2010, De and Kayal 2003, Monsalve et al. 2006
and Baruah et al. 2014] reported that the earthquakes
occur in the upper half  of  the crust but much activity
is also observed in the lower crust and at the crust-man-
tle boundary beneath Sikkim and western Nepal. The
aftershocks recorded by the local microearthquake net-
work in the Sikkim Himalaya show a vertical structure
down to 50 km depth [Ravi Kumar et al. 2012]. This
structure is comparable with the Tista fault, which is a
mantle reaching vertical fault [Kayal et al. 2011, Baruah
et al. 2014]. The 2011 main shock occurred on this ver-
tical structure by strike slip mechanism in a lower fric-
tion condition than those shallow thrust faulting
Himalayan earthquakes on the plane of  detachment in
the western Himalaya. In the eastern Himalaya, the
long NE and NW trending transverse structures/faults
from foredeep to the high Himalaya, or even beyond
(Figure 1), may predate the birth of  the Himalaya, pro-
ducing intersecting patterns, and accommodating the
plate convergence by conjugate shear failure on some
of  these faults [e.g. Mukhopadhyay 1984, Dasgupta et
al. 1987, Kayal et al. 2011]. Such shear failures may be
explained by oblique transverse faulting to the direc-
tion of  regional compression as it is happening in the
eastern Himalaya. The mantle reaching Tista fault that
existed before the two plates came into collision, reac-
tivated in contrast to the thrust kind of  slip of  Hi-
malayan seismic belt; this may cause lower stress drop.
Presence of  transverse structures in different parts of
the Himalayan arc, including the Sikkim Himalaya, in-
dicates that the deformation in the long arc is not at all
continuous [e.g. Pandey et al. 1999]. Receiver function
estimates to the Moho shows that the entire crust be-
neath the Sikkim Himalaya is seismogenic and the seis-
micity is diffused in nature [Acton et al. 2011]. The
diffused seismicity may be due to the presence of  more
than one seismogenic fault in the Main Himalayan
Thrust system, either out-of-sequence and or reacti-
vated faults [Mukul et al. 2014]. While the GPS study
indicates that the rate of  convergence in the Sikkim Hi-
malaya and the western part of  Bhutan is about
12mm/year, out of  which 5 mm/year of  aseismic slip

STUDY OF FAULT PLANE SOLUTIONS OF 2011 SIKKIM EARTHqUAKE



is being accommodating at the north of  the Tista lin-
eament [Mukul et al. 2014]. Moreover, the variable b-
value in the range of  (0.74-1.18) in the Sikkim Himalaya
region suggests heterogeneities in the lithosphere
[Mishra et al. 2010], which in turn probably makes it
favourable for low-friction conditions. Earthquakes due
to deep-rooted transverse tectonics in the study region
seem to indicate new trends to be followed for the plate
tectonics study of  India-Eurasia plate conversion.
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