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ABSTRACT
Complex fluid dynamics encompasses a large variety of
flows, such as fluids with non-Newtonian rheology, multi-
phase and multi-fluid flows (suspensions, lather, solid/fluid
interaction with floating objects, etc.), violent flows breaking
waves, dam-breaks, etc.), fluids with thermal dependencies
and phase transition or free-surface flows. Correctly modeling
the behavior of  such flows can be quite challenging, and has
led to significant advances in the field of  Computational
Fluid Dynamics (CFD). Recently, the Smoothed Particle Hy-
drodynamics (SPH) method has emerged as a powerful al-
ternative to more classic CFD methods (such as finite volumes
or finite elements) in many fields, including oceanography,
volcanology, structural engineering, nuclear physics and
medicine. With SPH, the fluid is discretized by means of  par-
ticles and thanks to the meshless, Lagrangian nature of  the
model, it easily allows the modeling and simulation of  both
simple and complex fluids, simplifying the treatment of  as-
pects that can be challenging with more traditional methods:
dynamic free surfaces, large deformations, phase transition,
fluid/solid interaction and complex geometries. In addition,
the most common SPH formulations are fully parallelizable,
which favors implementation on high-performance parallel
computing hardware, such as modern Graphics Processing
Units (GPUs). We present here how GPUSPH, an imple-
mentation of  the SPH method that runs on GPUs, can model
a variety of  complex fluids, highlighting the computational
challenges that arise in its applications to problem of  great
interest in volcanology.

1. Introduction
The ability to accurately model the behavior of  flu-

ids under the most diverse conditions is extremely im-
portant in both scientific research and applied industry,

and has led to the development of  Computational Fluid
Dynamics (CFD).

Traditional approaches to CFD have been based on
an Eulerian description of  the fluid, with fixed reference
grids (finite differences, finite volumes). These ap-
proaches are often computationally very efficient, but
may have issues with complex geometries, moving
boundaries or the tracking of  the free surface and of  in-
ternal interfaces (such as the boundaries between fluids
in multi-fluid simulations, or the front in phase transi-
tions). Lagrangian, mesh-based approaches such as fi-
nite elements can overcome some of  these issues, but
their application to highly dynamic flows such as dam-
breaks is limited due to the possible fragmentation of
the flow and the computationally expensive need for re-
meshing when the fluid undergoes large deformations.

These methods have been used to model and
study geophysical flows under specific conditions, such
as lava tubes [Filippucci and Dragoni 2013], channel
flows [Costa and Macedonio 2005], or other simple ge-
ometries [Fernandez Nieto and Narbona-Reina 2016].
In some cases, it is also possible to find analytical solu-
tions to the equations governing the flow [Tallarico and
Dragoni 1999], which can then be used in models still
relying on mesh-based approaches [Cappello et al.
2016]. However, many geophysical flows present char-
acteristics, such as multiple fluids or phases, non-New-
tonian or temperature-dependent rheology, violent or
otherwise highly dynamic behavior, which are chal-
lenging to model with the classical approaches.

An alternative to mesh-based method has recently
emerged in the form of  Lagrangian, mesh-free ap-
proaches. Among these, Smoothed Particle Hydrody-
namics (SPH) has found a large number of  applications



in many fields [Monaghan 2005] since its inception in 1977.
In SPH the problem is discretized by means of  particles
which act both as interpolation nodes and to carry phys-
ical information (mass, density, temperature, velocity, etc.)
about a small volume of  the fluid. The evolution of  the
properties of  each particle is therefore determined by a
discretized form of  the physical equations (Navier-Stokes
equations for the motion, thermal equation for the tem-
perature, etc.), so that the properties of  the fluid at any
point in space can be computed by a smoothed average
of  the properties of  the neighboring particles.

For the simulation of  complex fluids, SPH presents
a number of advantages over traditional mesh based meth-
ods, such as the implicit tracking of  the free surface and
of  any internal interface (such as solidification fronts) and
the lack of  restrictions in the geometry of  the fluid and
of  the containing geometries. The main downsides are
lower accuracy and, for the classical formulation, the use
of  a weakly-compressible rather than a fully incom-
pressible fluid model, such that the speed of  sound can
significantly limit the time-step size then used with explicit
time-stepping schemes. On the other hand, the standard
weakly-compressible SPH formulation has the benefit of
being completely parallelizable, since the evolution of
each particle at each time-step can be computed inde-
pendently from that of the others, which makes SPH quite
suitable for implementation on massively parallel hard-
ware, such as modern Graphics Processing Units [Hérault
et al. 2010].

In this paper we present some applications of
GPUSPH [Hérault et al. 2011, Bilotta et al. 2016], a GPU
implementation of  the SPH method specialized for the
modeling of  complex fluids in three dimensions. We in-
troduce first the equations governing the fluid motion and
heat exchange, the approach used to discretize them us-
ing SPH, and finally some applications including valida-
tion against standard analytical problems and qualitative
results in more sophisticated examples taken from ap-
plications of  GPUSPH to both industrial topics and geo-
physics, with a particular attention to volcanology. In the
application section we will highlight the computational
challenges faced by the model, and discuss the possible
approaches to resolve them.

2. Notation
Throughout this manuscript we use the following

conventions:
- Vectors will be written in bold;
- The reference coordinate system is Cartesian or-

thogonal with axes x1, x2 and x3;
- Latin indices denote coordinates;
- Greek indices denote particles;

- Physical quantities and mathematical expressions
follow the common SPH notation, summarized in
Table 1.

3. Governing equations of fluid flow and heat transfer
We model the dynamics of  fluids according to the

Navier-Stokes equations for continuity of  mass and
forces balance:

(1)

(where ρ is the density, u the velocity and D/Dt the
total derivative) and

(2)

(where P is the pressure, μ the dynamic viscosity, and F
represents external forces, such as gravity). The fluid is
assumed to be weakly-compressible, so that the pres-
sure can be obtained directly from the density, using
Cole’s equation of  state [Cole 1948, Batchelor 1974]:

(3)

where ρ0 is the at-rest density, γ is the polytropic constant
and c0 the speed of  sound. A weakly-compressible
regime is achieved if  c0 is at least an order of  magnitude
higher than the maximum velocity experienced during
the flow.
The thermal evolution is described by the heat equation:

(4)

where T is the temperature, cp the specific heat at con-
stant pressure, and k the thermal conductivity.
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Symbol Meaning Symbol Meaning

δ Dirac distribution Wβα W (xβα, h)

n outward normal fβα f (xβ) − f (xα)
x position P pressure
u velocity cp heat capacity

total derivative
operator k conductivity

τij Reynolds viscous
stress tensor emissivity

εij
strain
tensor g gravity

T temperature ρ density
h smoothing  length µ dynamic viscosity

∆p average inter-particle
spacing ν kinematic viscosity

xβα xβ − xα m mass
W smoothing kernel V volume

!
!t
+ui

!
!xi

∋

1
2
   !ui

!x j

+
!uj

!xi











Table 1. Mathematical notations.
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3.1.Viscosity models
Equation 2 only applies to Newtonian fluids, for

which the shear stress τ is proportional to the strain rate
ε⋅ . The dynamic viscosity is the coefficient of  propor-
tionality, and it may depend on local physical and chem-
ical properties of  the fluid (such as the temperature,
density, composition, etc.), but not on the shear stress
or strain rate themselves.

A fluid where the relationship between stress and
strain rate is not linear is known as non-Newtonian
fluid, and many fluids of  great interest in industrial ap-
plications, biology and geophysics are indeed non-New-
tonian. Among non-Newtonian fluids, there is a large
subset of  fluids (called generalized Newtonian fluids),
for which it is still possible to use the same form (Equa-
tion 2) of  the Navier-Stokes equations, provided that the
dynamic viscosity μ is replaced by an effective viscosity
function μeff  = μeff(ε

⋅) such that τ = μeff(ε
⋅)ε⋅.

The effective viscosity may still depend on other
physical properties of  the fluid. For our model we con-
sider the Herschel-Bulkley rheology, a generalized
Newtonian rheology characterized by a yield strength
τ0, a power law exponent n and a consistency index k
such that and

(5)

otherwise. As special cases of  the Herschel–Bulkley
rheology, we obtain:

Newtonian fluids for τ0 = 0, n=1 (in which case k
is the viscosity);
power-law fluids for τ0= 0, n≠1;
Bingham fluids for τ0 ≠ 0, n=1.
For an Herschel-Bulkley fluid, the effective viscos-

ity can be written [Zhu et al. 2005] as.  

(6)

for with and

(7)

4. Mathematical basis of Smoothed Particles Hydro-
dynamics

To solve numerically the Navier-Stokes and ther-
mal equations seen in section 3, we discretize their
right-hand sides using the Smoothed Particle Hydro-
dynamics method. In our presentation of  the method
and its application to fluid dynamics we follow Liu and
Liu [2003] and Monaghan [2005].

4.1. SPH discretization of  fields
Let us consider a field f defined on a domain Ω. By

definition of  Dirac’s delta distribution δ, the value as-
sumed by f at any location x

_
∈ Ω can be expressed, with

typical abuse of  notation, as

(8)

Let us now approximate Dirac’s delta with a fam-
ily of  functions W(.,h), parametrized by the length h,
and satisfying

(9)

and

(10)

where the limit is to be taken in the sense of  distribu-
tions.

These W functions are the smoothing kernels and
the parameter h is the smoothing length. By substituting
the smoothing kernel into (8) we get an initial approx-
imation of f as

(11)

We can further approximate the integral with a
summation of  a finite set of  particles x1,…,xα,…,xN
with volume Vα, obtaining:

(12)

where the summation is extended to all particles. How-
ever, if  the W are chosen with compact support, the
summation can be extended only to the particles in a
small neighborhood of  x

_
.

From equations (11) and (12), we observe that the
SPH approximation has two main sources of  error:

1. approximation of  the Dirac’s delta with the
smoothing kernels;

2. discretization of  the domain by means of  a fi-
nite set of  particles.

The first approximation vanishes as h→0, the sec-
ond error is controlled by the average inter-particle
spacing Δp and vanishes for Δp→0. Additionally, Δp must
tend to zero faster than h to ensure consistency for the
method. Most applications adopt a fixed ratio h/Δp
usually in the range [1.3,1.5].

4.2. SPH discretization of  gradients
The field discretization with SPH can be used to

reconstruct a field at any point given its values on a set
of  particles, but the same principle can also be used to
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discretize spatial gradients. To this end, we will assume
further that the smoothing kernels W have compact
support and radial symmetry, so that they only depend
on |x – x

_
|.

Let us consider the vector field constituted by
∇f(x); recalling equation (11) we can write

(13)

By applying Green’s theorem, we rewrite the right-
hand side obtaining

(14)

where Σ=∂Ω is the boundary of  the domain and n its
normal. Given the compact support for W, the first in-
tegral in (14) is zero if  x

_
is far from the boundary;

additionally, by symmetry of  W, we have
∇x W(x – x

_
, h) =-∇xW(x – x

_
, h), so that the discretized

version can be written as

(15)

This expression allows us to compute (an approx-
imation of ) the gradient of  the field f without having its
analytical expression, relying instead on the gradient of
the smoothing kernel. When applied to a particle β, the
equation takes the form:

(16)

where Wαβ=W(xα - xβ, h). This can be symmetrized
(thus helping preserve conservation properties of  the
analytical equations) by subtracting the gradient of  the
function identically equal to f(xβ), obtaining:

(17)

where xαβ = f(xα) - f(xβ).
Finally, we observe that due to the symmetry of  W,

its gradient can be written as:

(18)

where xαβ = xα - xβ.
It is therefore convenient to choose a kernel such

that
(19)

has an analytical expression, and given Fαβ = F(xαβ), we
can write ∇α Wαβ = xαβ Fαβ.

5. SPH discretization of the fluid equations
We can apply the SPH discretization to the conti-

nuity Equation (1), obtaining

(20)

For the momentum (Equation 2) and thermal
(Equation 4) equations, we additionally need a dis-
cretization for the Laplacian, for which we follow
Brookshaw [1985], Morris et al. [1997] and Cleary and
Monaghan [1999]. The momentum equation then takes
the form: 

(21)

where μ̄αβ is the harmonic mean of μα and μβ, and
g = F/ρ, while the thermal equation becomes:

(22)

For non-Newtonian fluids, the viscosity μβ of  each
particle is computed before the actual forces, using the
specific rheological law, from the strain rate:

(23)

with the (∇u)β tensor computed in SPH form as:

(24)

The evolution of  temperature, density and veloc-
ity for each particle is finally obtained by numerical in-
tegration of  (20), (21) and (22) over time. GPUSPH uses
a predictor-corrector time integration scheme, which
can be described as follows, for a given time-step ∇t:

1. (in the non-Newtonian case) compute viscosities
μ(n) = μ(x(n), u(n), ρ(n), T(n))
2. compute accelerations
a(n) = a(x(n), u(n), ρ(n), T(n), μ(n)),
density derivatives
ρ
. (n) = ρ

.
(x(n), u(n), ρ(n), T(n)),

and temperature derivatives
T(n) = T(x(n), u(n), ρ(n), T(n)),
3. compute half-step intermediate positions, velocities,

densities and temperatures:

a)

b)

c)

d)

4. (in the non-Newtonian case) compute intermediate
viscosities
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μ(n*) = μ(x(n*), u(n*), ρ(n*), T(n*))

5. compute corrected accelerations

a(n*) = a(x(n*), u(n*), ρ(n*), T(n*), μ(n*)),
density derivatives
ρ
. (n*) = ρ

.
(x(n*), u(n*), ρ(n*)),

and temperature derivatives
T(n*) = T(x(n*), u(n*), ρ(n*), T(n*)),

6. compute new positions, velocities, densities and tem-
peratures:

a)

b)

c)

d)

Adaptive time-stepping can be used, in which case
the maximum allowed time-step is computed based on
constraints, similar to the Courant-Friedrichs-Lewy
conditions, derived from the sound speed, the forces
magnitude and the viscous and thermal diffusivity:

(25)

where cβ is the sound speed at density ρβ and the C1,
C2, C3, C4 stability constants in GPUSPH take the values
C1 = C2 = 0.3, C3 = 0.125 and C4 = 0.1. The effective
time-step is then computed as ∆t=minβ ∆tβ.

Some consideration can be done about applica-
tions involving highly viscous fluids, where the viscous
stability condition may become predominant. The de-
pendence on the square of  the smoothing length causes
in fact a stronger reduction of  the time-step as the res-
olution increases. This constitutes a relevant problem in
simulating geophysical flows, like lava, where large val-
ues of  viscosity are commonly involved, causing simu-
lation times to be very long.

6. GPUSPH applications and tests
We now show some applications of  the GPUSPH

platform, illustrating the wide range of  possible appli-
cations and the benefits of  the method. We will also
discuss the computational performance of  the model
in the different contexts. All simulations were run with
a smoothing length h=1.3∆p, which gives about 80
neighbors per particle. The kernel employed is the 5th
order smoothing kernel proposed by Wendland [1995],
defined by W(r, h) = W~ (r, h), which in a general d-di-
mensional space takes the form

(26)

the normalization constant in three dimensions is

(27)

The Wendland kernel has an analytical expression
for F = 1/r (∂W/∂r), given by F (r, h) = F~�(r, h), which
in d dimensions is

(28)

the normalization constant is given by

(29)

In what follows, particular emphasis will be given
on discussing simulation performances in reference to
the number of  particles, the allowed time-step length,
and the resulting ratio between simulation run-time
and simulated time. The simulations were all run on
one or more NVIDIA TITAN x Maxwell GPUs, as dis-
cussed in the details of  each problem.

6.1 High dynamic flows: Dam Break
The dam-break problem reproduces the breaking

of  a dam, a large body of  water that suddenly gets in
motion under gravitational effect and impacts the ob-
stacles it encounters (Figure 1). This example shows the
ability of  GPUSPH to model highly dynamic flows, and
makes it possible to appreciate the detail in the repro-
duction of  the free surface, including splashes and
droplets. The fluid density is ρ=1000 kg/m3 and the dy-
namic viscosity is μ = 10-4 Pa s. The simulation was run
using two GPUs, showing the capability to distribute
the computation across multiple domains, even with
domain partitions not parallel to the computational
axes [Rustico et al. 2012, 2014]. With a resolution of  170
particles per meter, about 500,000 particles are involved
in the simulation, resulting in a time-step of  10-4 s, and
a time ratio of  1:100 (one second of  simulated time
takes about 100 seconds of  simulation).

6.2 Non-Newtonian Fluids
As discussed in subsection 3.1, GPUSPH is able to

reproduce any rheology based on the Herschel–Bulkley
model. We present here a validation of  the implemen-
tation reproducing the Plane Poiseuille flow for a Bing-
ham fluid. The distance between the top and bottom
plane is 1m, and the domain is periodic in the flow and
transverse directions (Figure 2). The employed fluid has
consistency index k=0.1 Pa s, density ρ = 1 kg/m3 and
yield strength τ0=0.01 Pa, and is driven by an external
force conferring an acceleration a = 0.05 m/s2 result-
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ing in a Reynolds number of  0.225.
The convergence of  the numerical method (as dis-

cussed in section 4) is illustrated in Figure 3, showing

the convergence of  the velocity profile (Figure 3a) and
the decreasing error (Figure 3b) with increasing reso-
lution.
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Figure 1. Dam break with obstacle. Particles are colored by device.

Figure 2. Plane Poiseuille flow. Particles colored by material (left), velocity (middle) and ID (right).
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(b)Figure 3. Validation of  the GPUSPH model for the plane Poiseuille flow of  a Bingham fluid. a) Velocity profiles of  the Bingham Plane
Poiseuille flow. Dotted lines are the simulated solutions, the green solid one is the analytical solution. b) L1, L2 and L∞ error between
numerical and analytical velocity profiles, for increasing resolution.
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The performance at different resolutions is shown
in Table 2. We remark that the time-step in this case is
limited by the viscosity, and thus decreases with the
square of  the linear resolution. This leads to a signifi-
cant worsening of  the ratio of  simulated time to run-
time, as discussed at the end of  section 5, which in the
worst case reaches here as low as 50 minutes to simu-
late 1 second.

6.3 Thermodynamics: natural convection
We tested the interaction of  the thermal and me-

chanical models by simulating a thermal convection.
We consider a box containing the fluid, with adiabatic
walls, a heated bottom plate and a cooled top plate. As
effect of  the heating, the fluid gets in motion causing
the inception of  a Rayleigh-Bénard convective cell.

Additionally, the thermal model can be paired with
the momentum equation by introducing temperature-
dependent rheological parameters, as in Kaddiri et al.
[2012], which alters the behavior of  the convective cell
as shown in Figure 4. The bottom plate is at tempera-
ture Tb = 100 K and the top plate at Tt = 0 K. Consider-

ing a Pearson constant m = 10, the kinematic viscosity
at temperature T = Tb is νb = 20m2/s while at temper-
ature T = Tt is νt ≈ 10-3m2/s. The simulation is stable
despite the large ratio (five orders of  magnitude) be-
tween the minimum and maximum viscosity.

Again, the time-step is limited by the maximum
viscosity, so that with a resolution of  33 particles per
meter, resulting in about 55,000 particles and time-
step in the order of  10-5 s, the simulated to run-time
is nearly 1:400.

6.4 Multi-Fluid and multi-phase flows
GPUSPH allows the simultaneous simulation of

several fluids, each one with its own rheological and
thermal properties. SPH is quite appropriate for these
kind of  problems, since interfaces between two fluids
are implicitly tracked.

Multiple liquids
Figure 5a illustrates a multi-fluid problem based

on a lava-lamp: two fluids with opposite conditions in
terms of  density, rheology and thermal expansion co-
efficient are contained within an adiabatic box with
heated bottom and cooled top. The red fluid has den-
sity ρ1=2 kg/m3, Bingham rheology with τ0 = 0.001 Pa,
consistency index depending on the temperature as
k(T) = exp(-2T) and thermal expansion coefficient
α1 = 0.6 K-1, while the blue one has ρ2 = 1 kg/m3, New-
tonian rheology with kinematic viscosity μ2=1 m2/s
and α2 = 0.1 K-1. At a resolution of  33 particles per
meter, about 30,800 particles are involved with a time-
step in the order of  10-4 s, and using a single GPU the
obtained time-ratio is 1:10.
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(a) (b) (c)

Figure 5. Multi-phase flows. a) Lava lamp with particles colored by fluid type. b) Rising bubble as example of  gas-fluid interaction. c) Spill-
way of  the Goulours dam as example of  solid-fluid interaction.

Resolution Particles ∆t (seconds) Time ratio

16 particles/m 6.1 · 103 5.5 · 10−5 1 : 20

32 particles/m 4.1 · 104 1.4 · 10−5 1 : 170

64 particles/m 3.0 · 105 3.5 · 10−6 1 : 3000

Table 2. Performance of  plane Poiseuille flow for a Bingham
fluid.



Liquid/Gas interaction
For multi-phase flows with liquid and gas phases,

the entire system can be modeled using SPH. An ex-
ample with an air bubble rising in water (1:1000 den-
sity ratio) is illustrated in Figure 5b, showing the
fracture of  the bubble surface towards the end of  the
ascension. As explained in detail in Bilotta [2014], for
liquid/gas simulations where the compressibility does
not play a major role, it is necessary to give the less
dense fluid a higher sound-speed, so that both fluids
are at the same quasi-compressible regimen. Due to
this phenomenon, such multi-fluid simulations suffer
from a time-step limitation dictated by the sound-
speed of  the less dense fluid. In the raising bubble ex-
ample, a simulation with 16 particles in the bubble
diameter requires over 500,000 particles, and the re-
sulting time-step is in the order of  10-6 s. The time-
ratio over 1:7400. It should be noted that in this case
the time scale of  the entire simulation is short, so that
the impact of  the high time-ratio is less significant than
in larger-scale simulations.

Liquid/Solid interaction
For the fluid/solid interaction, GPUSPH com-

putes the forces and torque acting on each moving ob-
ject from the interaction of  the boundary particles
modeling the object with the neighboring fluid parti-
cles. The actual object dynamics, including object/ob-
ject and objects/terrain interaction, is then handled by
the ODE library (Smith, 2007). An example application
is shown in Figure 5c, with floating tree trunks trans-
ported on the spillway of  the Goulours Dam, on data

provided by EDF [Bilotta et al. 2014]. Water density is
ρw=1000 kg/m3, whereas ρt=0.7ρw. Like in the stan-
dard dam-break case, this is a highly dynamic problem,
but we now introduce a strong interaction with moving
objects (the trunks) and complex geometries (the ir-
regular floor of  the spillway). The entire simulation
consists of  over 2,500,000 particles (inter-particle spac-
ing of  0.2 m), and the time-step (controlled by the
sound speed of  water) is in the order of  10-4 s. With a
single GPU, we achieve a time ratio of  about 1:500.
This is due partly to the large number of  particles, and
partly to the use of  the semi-analytical boundary model
[Mayrhofer et al. 2015] for the fluid/terrain interaction,
which requires a larger influence radius and thus a
higher number of  neighbors per particle.

6.5 Lava flows
Lava flows are highly complex flows exhibiting

non-Newtonian rheology with temperature dependent
viscosity and phase transition [Cappello et al. 2011].
The details of  the rheology and its dependency on the
physical and chemical properties of  the lava are still
under active research, and both analogical and numer-
ical experiments are needed to improve our knowledge
of  lava rheology [Del Negro et al. 2005]. We illustrate
here two proofs of  concept cases of  the application of
GPUSPH for the simulation of  lava flow emplacement.

Figure 6 shows the pouring of  molten lava on a
sloping ground, a typical set-up used to test the rheo-
logical properties of  lava in analogical experiments: the
ability to reproduce the same conditions is crucial to
advance our knowledge of  lava flows, since compar-
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(a) (b)

Figure 6. Simple lava flow emplacement. a) Simulated molten lava flow emplacement. b) Analogical experiment for molten lava flow em-
placement, courtesy of  USGS.
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isons between numerical solutions and experimental
data [Dietterich et al. 2015] allow both improvements
to the numerical model and in an inversion process to
better determine which kind of  rheology better repro-
duces the experiment. The dynamical viscosity of  the
lava depends on the temperature following the Vogel-
Fulcher-Tammann equation [Cordonnier et al. 2015],
with coefficients determined experimentally [H. Diet-
terich, private communication]:

(30)

where T is the temperature expressed in Kelvin and the
density is ρ = 2350 kg/m3.

Thermal radiation is modeled as described in
Bilotta et al. [2016], using heat capacity cp=1600 J/(
kg∙K) and thermal emissivity ϵ=0.96.

A further step in our ongoing research is shown
in Figure 7, illustrating a simple case of  lava-water in-
teraction. In this case, the sharp decrease in tempera-
ture caused by the contact with water results in a
different emplacement compared to the lava flow be-
havior in absence of  water. In our preliminary tests,
simulations have been conducted with a viscosity that
is 10 times lower than the experimental viscosity, due
to computational constraints. Indeed, the main limi-
tation in performing lava simulations is constituted by
very long simulation times due to the high viscosity

of  lava, especially in the cooling phase. The high val-
ues of  viscosity can determine time-steps in the order
of  10-7 s or lower.

Considering a resolution of  16 particles per
meter, each of  the simulations above involved about
300,000 particles, with an effective time ratio of  over

1:150,000 (about two days for one simulated second)
running on a cluster with four GPUs. Using the ex-
perimental law would have led to nearly one month
of  computational time to simulate a single second.

7. Conclusions and future work
We have shown how GPUSPH constitutes a very

versatile fully three-dimensional platform for CFD, en-
abling the simulation of  natural flows of  Newtonian
and non-Newtonian fluid with constant as well as tem-
perature-dependent rheology.

The fully explicit nature of  the SPH numerical
method allows efficient parallelization on current
high-performance parallel computing hardware such
as GPUs, and can even scale to multiple GPUs. On the
other hand, the explicit integration scheme can be-
come a limiting factor in the simulation of  highly vis-
cous fluids, for which the time-step decreases with the
square of  the spatial resolution, quickly leading to very
long simulation times.

In the application of  GPUSPH to lava flows this
can be of  crucial importance, particularly in the cool-
ing phase, where the viscosity of  lava can grow by
more than two orders of  magnitude.

A solution to this issue, which we are currently
working on, is the use of  a semi-implicit integration
scheme, in which the inviscid part of  the Navier-
Stokes equation is integrated with the explicit scheme

currently in use, whereas the viscous contribution is
computed with an implicit scheme. While this incurs
the need to solve a large, sparse implicit system, it pro-
vides significant benefits in computational times,
while also improving the stability of  the numerical
method.
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Figure 7. Lava flows simulations with GPUSPH. a) Lava-water interaction. b) Comparison between lava-water interaction and dry em-
placement.
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