COMPORTAMENTO DELLE ONDE DI RAYLEIGH IN UN MEZZO FIRMO-ELASTICO INDEFINITO

PIETRO CALOI

Supponiamo che il piano xy di una terna di assi cartesiani costituisca la superficie libera del mezzo; l'asse z sia rivolto verso l'interno del mezzo stesso.

Le equazioni generali dei piccoli moti in un corpo firmo-elastico isotropo e omogeneo sono le seguenti:

$$\varrho \frac{\partial^2 u}{\partial t^2} = \left\{ (\lambda + \mu) + (\lambda' + \mu') \frac{\partial}{\partial t} \right\} \cdot \frac{\partial \Omega}{\partial x} + \left(\mu + \mu' \frac{\partial}{\partial t} \right) \Delta_2 u
\varrho \frac{\partial^2 v}{\partial t^2} = \left\{ (\lambda + \mu) + (\lambda' + \mu') \frac{\partial}{\partial t} \right\} \cdot \frac{\partial \Omega}{\partial y} + \left(\mu + \mu' \frac{\partial}{\partial t} \right) \Delta_2 v \qquad [1]
\varrho \frac{\partial^2 u}{\partial t^2} = \left\{ (\lambda + \mu) + (\lambda' + \mu') \frac{\partial}{\partial t} \right\} \cdot \frac{\partial \Omega}{\partial z} + \left(\mu + \mu' \frac{\partial}{\partial t} \right) \Delta_2 w \qquad [1]$$

dove, λ , u sono le costanti di Lamé, λ' , u' i coefficienti dell'attrito interno di volume ed equivoluminale e ϑ esprime la dilatazione:

$$\vartheta = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{dz} \quad .$$
 [2]

u, v, w dipendono dal tempo attraverso e^{ipt} , essendo p la pulsazione. Pertanto

$$\begin{bmatrix} \lambda + \mu + i p (\lambda' + \mu') \end{bmatrix} \frac{\partial \vartheta}{\partial x} + (\mu + i p \mu') \Delta_{\mathfrak{g}} u + \varrho p^{2} u = 0$$

$$\begin{bmatrix} \lambda + \mu + i p (\lambda' + \mu') \end{bmatrix} \frac{\partial \vartheta}{\partial y} + (\mu + i p \mu') \Delta_{\mathfrak{g}} v + \varrho p^{2} v = 0$$

$$\begin{bmatrix} \lambda + \mu + i p (\lambda' + \mu') \end{bmatrix} \frac{\partial \vartheta}{\partial z} + (\mu + i p \mu') \Delta_{\mathfrak{g}} v + \varrho p^{2} w = 0.$$

[3]

Derivando rispetto ad x. y. z rispettivamente la 1^a , 2^a , e 3^a delle [3], e sommando membro a membro, si ha

$$\left(\Delta_{z}+h^{z}\right)\vartheta=0$$
, [4]

essendo

$$h^{z} = \frac{\varrho \, \mu^{z}}{\lambda + 2\mu + i \, p \, (\lambda' + 2\mu')}$$
[5]

Dividendo le [3] per $\mu + i p \mu'$ si ha

$$\frac{\lambda + u + ip(\lambda' + u')}{\mu + ipu'} \cdot \frac{\partial \theta}{\partial z} + \Delta_z u + \frac{\rho p^z}{\mu + ip\mu'} u = 0$$

Poniamo

$$k^2 = \frac{\varrho p^2}{\mu + ip\mu'} .$$
 [6]

Allora

$$\frac{\lambda + \mu + i p (\lambda' + \mu')}{\mu + i p \mu'} = \frac{h^z}{h^z} - 1$$

e le [3] divengono

$$\left(\Delta_2 + k^2\right) u = \left(1 - \frac{k^2}{h^2}\right) \frac{\partial \vartheta}{\partial x} \quad .$$
^[7]

Un integrale particolare delle [7] è costituito dalla soluzione

$$\mu = -\frac{1}{h^2} \frac{\partial \vartheta}{\partial x} \quad ; \quad v = -\frac{1}{h^2} \frac{\partial \vartheta}{\partial y} \quad ; \quad w = -\frac{1}{h^2} \frac{\partial \vartheta}{\partial z} \quad [8]$$

Se α , β , γ sono le componenti dello spostamento delle onde trasversali, sarà

$$\frac{\partial u}{\partial x} + \frac{\partial \beta}{\partial y} + \frac{\partial y}{\partial z} = 0$$
 [9]

e dalle [7] consegue

$$(\Delta_{2}+k^{2}) a=0$$
; $(\Delta_{2}+k^{2})\beta=0$; $(\Delta_{2}+k^{2})\gamma=0.$ [10]

Le componenti dello spostamento dipendono da x. y mediante la funzione $e^{i(tx+gz)}$, con f_x g numeri complessi. Si ha

$$\frac{\partial^2 \vartheta}{\partial x} = -j^2 \vartheta \quad ; \quad \frac{\partial^2 \vartheta}{\partial y^2} = -g^2 \vartheta \quad .$$

La [4] diviene

 $\left(\!\frac{\partial}{\partial z^2} + h^2 - f^2 - g^2\right)\vartheta = 0$

Posto

$$r^2 = f^2 + g^2 - h^2$$
, [11]

$$\vartheta = Pe^{-rz} + Qe^{rz}, \qquad [12]$$

si ha

Ma r è generalmente numero complesso, r=r'+ir''; consegue

$$0 = Pe^{-r'z} e^{-ir''z} + Qe^{r'z} e^{ir''z}.$$

Vale solo il 1º termine del 2º membro, con esponente negativo. Pertanto Q=0. Prescindendo dal valore di P, espresso da $e^{i(pt+fx+gy)}$, potremo scrivere

$$\vartheta = e^{-rz} \qquad [13]$$

La soluzione particolare espressa dalle [8] diviene allora

$$u = -\frac{if}{h^2} e^{-rz} ; v = -\frac{ig}{h^2} e^{-rz} ; w = \frac{r}{h^2} e^{-rz}.$$
 [14]

Per i termini complementari, che pure devono contenere $e^{i(\mathbf{f} \mathbf{x} + \mathbf{g})}$ come fattori, le [10] divengono

$$\left(\frac{\partial^2}{\partial x^2} + k^2 - f^2 - g^2\right) a = 0 , \text{ ecc.}, \qquad [15]$$

per cui, come per la ϑ , supposta la perturbazione limitata ad uno strato superficiale.

$$\alpha = Ae^{-sz}$$
; $\beta = Be^{-sz}$; $\gamma = Ce^{-sz}$, [16]

dove '

$$s^2 = f^2 + g^2 - k^2.$$
 [17]

Poiché i coefficienti nelle [16] contengono, quali funzioni di x, y i fattori $e^{\frac{inx}{2}}$, $e^{\frac{igy}{2}}$, per la [9] i coefficienti delle [16] dovranno soddisfare alla relazione

$$if A + igB - sC = 0.$$
 [18]

I valori completi di u, v, w possono ora scriversi

$$u = -\frac{if}{h^2}e^{-rz} + Ae^{-ez} , v = -\frac{ie}{h^2}e^{-rz} + Be^{-sz} , w = \frac{r}{h^2}e^{-rz} + Ce^{-sz} ,$$
[19]

in cui A, B, C sono soggette alla [18].

Passiamo alle condizioni da soddisfare alla superficie libera. Per z=0 devono annullarsi le due tensioni tangenziali

$$T_{z} = \left(\mu + ip \mu'\right) \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}\right)$$
$$T_{t} = \left(\mu + ip \mu'\right) \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) .$$

Ricordando che u, v, w sono funzioni di x, y attraverso gli esponenziali e^{itx}, e^{igy} si ha

e analogamente per $\frac{\partial w}{\partial x}$ e $\frac{\partial u}{\partial z}$.

Per z=0 , $T_1 = T_2 = 0 \left[\mu + ip\mu' \neq 0, \cos a \text{ avvia, dovendo essere} \right]$ altrimenti $\mu = \mu' = 0$ è

$$sB = \frac{2igr}{h^2} + igC \quad , \quad sA = \frac{2ifr}{h^2} + ifC. \qquad [20]$$

Sostituendo le [20] nelle [18] și ha

$$if\left(\frac{2\,i\,fr}{h^2\,s} + if\frac{C}{s}\right) + ig\left(\frac{2\,i\,gr}{h^2\,s} + \frac{i\,g\,C}{s}\right) - sC = 0,$$

$$C\,(s^2 + f^2 + g^2)\,h^2 + 2r\,(f^2 + g^2) = 0$$
[21]

cioè

$$C(s^2+f^2+g^2)h^2 + 2r(f^2+g^2)=0.$$
 [21]

Sul piano z=0, si annulla pure la tensione normale

$$N_{a} = (\lambda + i p \lambda') \vartheta + 2 (\mu + i p \mu') \frac{\partial w}{\partial z}$$

Per la [5], e quindi per la [6],

$$\lambda + 2\mu + ip(\lambda' + 2\mu') = \frac{\rho \nu^2}{h^2} \quad ; \quad \lambda + ip\lambda' = (\mu + ip\mu') \left(\frac{h^2}{h^2} - 2\right)$$

Perciò

$$N_{z} = (\mu + ip \ \mu') \left\{ \left(\frac{h^{z}}{h^{z}} - 2 \right) \vartheta + 2 \frac{\partial w}{\partial z} \right\}$$

E'

$$\frac{\partial w}{\partial z} = -\frac{r^{z}}{h^{z}}e^{-z} - sCe^{-sz} .$$

La condizione $N_3=0$, corrispondente a z=0, tenendo conto della [13], dà k

$$^{2}-2h^{2}-2(r^{2}+h^{2}sC)=0$$

oppure, essendo per la [11]

$$r^{2} + h^{2} = f^{2} + g^{2} ,$$

$$h^{2} = 2(r^{2} + g^{2}) - 2h^{2}sC = 0.$$
[22]

Eliminando C fra [21] e [22], otteniamo l'equazione per la quale il tempo di vibrazione (periodo) è determinato in funzione della

lunghezza d'onda e delle proprietà del solido. Si ha

$$C = -\frac{2r(f^{2} + p^{2})}{h^{2}(s^{2} + f^{2} + g^{2})} , \text{ e sostituendo in } [22],$$

$$\left\{k^{2} - 2(f^{2} + g^{2})\right\} \cdot \left\{s^{2} + f^{2} + g^{2}\right\} + 4rs(f^{2} + g^{2}) = 0,$$

oppure, per la [17] — per la quale $s^2+f^2+g^2=2(f^2+g^2)-h^2$

$$\left\{ 2(t^{2}+g^{2})-k^{2}\right\} ^{2}=4rs\,(f^{2}+g^{2}).$$
 [23]

Quadrando la [23] e introducendo i valori di r^2 e s^2 dati dalle [11], [17] abbiamo

$$\left\{ 2(f^2+g^2)-k^2 \right\}^4 = 16(f^2+g^2)^2 (f^2+g^2-h^2) (f^2+g^2-k^2).$$

Possiamo scrivere anche

$$k^{s} \left\{ 1 - 8 \frac{f^{2} + g^{2}}{k^{2}} + \left(24 - 16 \frac{h^{2}}{h^{2}} \right) \frac{(f^{2} + g^{2})^{2}}{k^{4}} - 16 \left(1 - \frac{h^{2}}{k^{2}} \right) \frac{(f^{2} + g^{2})^{3}}{k^{6}} = 0.$$
[24]

Dalle [19], ricordando le [20] e [21], si ha

$$u = -\frac{if}{h^2} e^{-rz} + \left[\frac{2ifr}{sh^2} + \frac{if}{sh^2} \left(-\frac{2r(f^2 + g^2)}{s^2 + f^2 + g^2}\right)\right] e^{-sz},$$

da cui

$$h^{z}u = if\left[-e^{-rz} + \left(\frac{2r}{s} - \frac{1}{s} - \frac{2r(f^{z} + g^{z})}{s - s^{z} + f^{z} + g^{z}}\right)e^{-sz}\right].$$

Fra parentesi quadra può seriversi $\frac{2r}{s}\left(1-\frac{f^2+g^2}{s^2+f^2+g^2}\right) = \frac{2rs}{f^2+s^2+g^2}$. Analogamente per h^2v . Perciò, in generale sarà — prescindendo dagli esponenziali —

$$h^{2}u = if \left\{ -\frac{2}{e^{-rz}} + \frac{2}{s^{2} + f^{2} + g^{2}} e^{-sz} \right\}$$

$$h^{2}v = ig \left\{ -e^{-rz} + \frac{2}{s^{2} + f^{2} + g^{2}} e^{-sz} \right\}$$

$$h^{2}w = r \left\{ -e^{-rz} - \frac{2(f^{2} + g^{2})}{s^{2} + f^{2} + g^{2}} e^{-sz} \right\}$$
[25]

Se consideriamo il moto soltanto in due dimensioni, e precisamente nel piano principale, possiamo porre g=0. La [21] diviene allora

$$1 - 8\frac{f^2}{k^2} + \left(24 - 16\frac{h^2}{k^2}\right)\frac{f^4}{k^4} - 16\left(1 - \frac{h^2}{k^2}\right)\frac{f^3}{k^3} = 0. \quad [24']$$

Per g=0, è inoltre v=0, e le [24] divengono

$$h^{z}u = if \left\{ -e^{-z} + \frac{2rs}{s^{2} + f^{2}}e^{-sz} \right\}$$
$$h^{z}w = r \left\{ -e^{-rz} - \frac{2f^{2}}{s^{2} + f^{2}}e^{-sz} \right\}.$$

E' ancora, sempre per g=0, e posto $\frac{f^2}{h^2} = \chi^2$ (radice della [24'])

$$r^{2} = f^{2} - h^{z} = k^{z} \chi^{2} - h^{z} = k^{z} \left(\chi^{2} - \frac{h^{z}}{k^{z}}\right)$$

$$s^{2} = f^{2} - k^{z} = k^{z} (\chi^{2} - 1)$$

$$2rs = 2k^{z} \left[\sqrt{\chi^{2} - \frac{h^{z}}{k^{z}}}\right] \sqrt{\chi^{2} - 1} ; s^{z} + f^{z} = 2f^{z} - k^{z} = k^{z} (2\chi^{z} - 1) ,$$

$$\frac{2rs}{s^{z} + f^{z}} = \frac{2\sqrt{\chi^{2} - \frac{h^{z}}{k^{z}}}}{2\chi^{z} - 1} ; s^{z} + f^{z} = 2f^{z} - k^{z} = k^{z} (2\chi^{z} - 1) ,$$

$$k = 5277^{2} + \frac{2}{2\chi^{z} - 1} ; s^{z} + f^{z} = \frac{2\chi^{z}}{2\chi^{z} - 1} ; s^{z} + f^{z} = \frac{2}{2\chi^{z} - 1} ; s^{z} + f^{z} + f^{z$$

Le [25'] si possono scrivere, introducendo gli esponenziali finora sottintesi,

$$\begin{cases} \frac{h^{z}}{k}u = i\chi\left\{-e^{-rz} + \frac{2\sqrt{\chi^{2} - \frac{h^{z}}{k^{z}}}}{2\chi^{2} - 1}e^{-\frac{h^{z}}{2\chi^{2} - 1}}e^{-\frac{h^{z}}{2\chi^{2} - 1}}}e^{-\frac{h^{z}}{2\chi^{2} - 1}}e^{-\frac{h^{z}}{2\chi^{2} - 1}}}e^{-\frac{h^{z}}{2\chi^{2} - 1}}e^{-\frac{h^{z}}{2\chi^{2} - 1}}e^{-\frac{h^{z}}{2\chi^{2} - 1}}}e^{-\frac{h^{z}}{2\chi^{$$

oppure

$$\frac{h^{z}}{h} u = i\chi \left\{ -e^{-rz} + \frac{2}{2} \frac{\left| \sqrt{\chi^{2} - \frac{h^{z}}{h^{2}}} \right| \sqrt{\chi^{2} - 1}}{2\chi^{2} - 1} e^{-sz} \right\},$$

$$\frac{i}{2} \frac{pt + \frac{p}{v_{s}} \frac{x}{\sqrt{1 + p^{2} \left(\frac{\mu'}{\mu}\right)^{2}}}}{\sqrt{1 + p^{2} \left(\frac{\mu'}{\mu}\right)^{2}}} \sqrt{\alpha + \beta p \frac{\mu'}{\mu} + i \left(\beta - \alpha p \frac{\mu'}{\mu}\right)}$$

$$\frac{h^{2}}{h^{3}} w = \sqrt{\chi^{3} - \frac{h^{2}}{h^{3}}} \left\{ e^{-rz} - \frac{2\chi^{2}}{2\chi^{2} - 1} e^{-sz} \right\},$$

$$\frac{i}{e} i \left\{ pt + \frac{p}{v_{s}} \frac{x}{\sqrt{1 + p^{2} \left(\frac{\mu'}{\mu}\right)^{2}}} \right\} \sqrt{\alpha + \beta p \frac{\mu'}{\mu} + i \left(\beta - \alpha p \frac{\mu'}{\mu}\right)} \right\}$$

$$[25''']$$

dove α , β sono la parte reale e il coefficiente dell'imaginario delle soluzioni della [24'], corrispondenti alle onde di Rayleigh e v, rappresenta la velocità delle onde trasversali nel mezzo considerato.

2. - Passiamo ora ai valori numerici.

Risolviamo a questo scopo la [24'], ricordando le espressioni di h^z e k^z e nell'ipotesi di Poisson. Si sa che $\lambda' = -\frac{2}{3} \mu'$. Posto $\frac{k^z}{t^z} = \varepsilon ,$

la [24'] diviene

 $\epsilon^{2} - 8\epsilon^{2} + (24 - 16\varphi)\epsilon - 16(1 - \varphi) = 0$, [24''] dove

$$\varphi = \frac{h^{2}}{h^{2}} = 3 \frac{9\left(\frac{\mu}{\mu'}\right)^{2} + 4p^{2}}{81\left(\frac{\mu}{\mu'}\right)^{2} + 16p^{2}} + i \frac{15p\frac{\mu}{\mu'}}{81\left(\frac{\mu}{\mu'}\right)^{2} + 16p^{2}},$$

e con le ulteriori posizioni:

$$\varepsilon = \psi + \frac{3}{3}$$
, $\varphi = 1 - \frac{j}{16}$

la [24"] si trasforma nell'equazione $\psi^3 + \left(j - \frac{40}{3}\right)\psi + \left(\frac{5}{3}j - \frac{448}{27}\right) = 0$.

La risoluzione della [24'''] è stata proposta al benemerito Istituto Italiano per le Applicazioni del Calcolo.

I risultati dei caicoli per vari valori del rapporto u/μ' di T, sono riportati nelle tabelle I, II e III. In esse $\gamma \in \delta$ sono la parte reale e il coefficiente dell'imaginario del rapporto $\frac{\hbar^2}{\hbar^2}$; $R\chi_1$, $I\chi_1$, $R\chi_2$, $I\chi_2$, $\alpha \in \beta$ la parte reale e il coefficiente dell'imaginario

Andamento del rapporto Z/H prescindendo dall'assorbimento: andamento analogo, fra gli stessi estremi, nel caso in cui si consideri l'assorbimento

 $\mu/\mu'=30.sec^{-1}$

TABELLA I

Q.	0	·43073	61661.	·036995	·018455	·009223	·003688	·001845	-0009221	·000461	-000307	·000154	0
υ	2.107160	1.31484	1.19269	1.18317	1.18305	1.18302	1.18301	1.18301	1.18301	1.183013	1.183013	1.183013	1.183013
1 ₂ 2	0	.17225	-21611	·081.116	·049849	·029414	-013223	·006803	003431	-001721	001148	+12000.	e
R1,2	.730406	.67763	.51639	.35377	·33487	·32450	·31871	·31747	·317.11	·317018	·317001	·316991	·316987
ی ایر 1 ا	0	$- \cdot 016281$	$- \cdot 026357$	$- \cdot 031569$	-024725	-016800	-008185	004287	-002172	-001091	$- \cdot 000727$		0
$R\chi_1^{a}$.162435	·16713	·17669	·21911	·23360	·24284	·24833	·24954	-24988	-249970	-249987	166642.	·250000
ø	0	·173696	·207800	-074972	·038452	·019351	·007754	·003878	·001939	·0009696	·0006464	-0003232	c
7	. 750000	.656700	-526762	·347291	·336913	·334234	.333478	·333369	·333342	.333336	.333334	·333334	•33333
T sec	0.0	0.05	1.0	0.5	1	5	22	10	20	40	09	120	8

iu/μ'=50.sec ⁻	đ	0	0.24660	0.11377	0.022155	0.011067	0.005533	0.002213	0.001107	0.000553	0.000277	0.000184	0.000922	0
	σ	2.10716	1.20188	1.18508	1.18308	1.18303	1.18302	1.18301	1.18301	1.18301	1.183013	1.183013	1.183013	1.183013
TABELLA II	1 2 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0	0.22255	0.16923	0.056856	0.033941	0.019096	0.008129	0.004112	0.002063	0.001032	0.000688	0.000344	0
	$R\chi_2^2$	0.730406	0.56133	0.42859	0.33882	0.32662	0.32045	0.31766	0.31716	0.31703	0.316998	0.316992	0.316989	0.316987
	1×2 1×1	0	-0.023705	-0.032201	-0.026742	-0.018841	-0.011540	-0.005106	-0.002601	-0.001307	-0.000654	-0.000436	-0.000218	0
	$R\chi_1^2$	0.162435	0.17337	0.13836	0.23030	0.24090	0.24667	0.24935	0.24983	0.24996	0.249989	0.249996	0.249999	0.250000
	¢	0	0.207064	0.177381	0.045969	0.023199	0.011627	0.004654	0.002327	0.001164	0.000582	0.000388	0.000194	0
	~	0.750000	0.564626	0.432401	0.338468	0.334629	0.333658	0.333385	0.33346	0.333337	0.333334	0.333334	0.333333	0.333333
	T sec	0.0	0.05	0.1	0.5	1	3	5	10	20	40	09	120	8

α 9	2.107160 0	3 1.18508 0.11377	30 1.18341 0.055707	41 1.18303 0.011067	96 1.18302 0.005533	79 1.18301 0.002766	12 1.183013 0.001107	53 1.183013 0.000553	32 1.183013 0.000277	16 1.183013 0.000138	44 1.183013 0.0000922	72 1.183013 0.0000461		1.183013 0
17.2 17.2	0	+0.1692	0.1075	0.0339	0.0190	0.0100	0.0041	0.0020	0.0010	0.0005	0.0003	0.0001		0
$R_{L_2}^{a}$	0.730406	0.42859	0.37170	0.32662	0.32045	0.31801	0.31716	0.31703	0.316998	0.316990	0.316989	0.316988		0.316987
یر 1 بر	0	-0.032201	-0.033808	-0.018841	-0.011540	-0.006300	-0.002601	-0.001307	-0.000654	-0.000327	-0.000218	-0.000109		0
$R\chi_1^2$	0.162435	0.18886	0.20844	0.24090	0.24667	0.24901	0.24983	0.24996	0.249989	0.249997	0.249999	0.250000		0.250000
æ	0	0.177381	0.107938	0.023199	0.011627	0.005817	0.002327	0.001164	0.000582	0.000291	0.000194	0.0000970		0
7	0.750000	0.432401	0.363475	0.334629	0.333658	0.333415	0.333346	0.333337	0.333334	0.333333	0.333333	0.333333	ł	0.333333
T sec	0.0	0.05	0.1	0.5	1	61	r.c	10	20	40	60	120		8

della 1^a, 2^e e 3^a radice dell'equazione di Rayleigh rispettivamente. Per $T \longrightarrow \infty$. qualunque sia il valore di μ/μ' , si ha

$$\gamma \longrightarrow \frac{1}{3}$$
, $\chi_{4}^{2} \longrightarrow \frac{1}{4}$, $\chi_{2}^{2} \longrightarrow \frac{3 - \sqrt{3}}{4} = 1,316988,$
 $\alpha \longrightarrow \frac{3 + \sqrt{3}}{4} = 1,183013$

che sono — i tre ultimi — i valori delle radici dell'equazione classica di Rayleigh per $\sigma=0,25$.

Per $T \longrightarrow 0$, qualunque sia il valore di μ/μ' , si ha

$$\gamma = -\frac{3}{4}$$
, $\chi_1^2 = - 0.162435$, $\chi_2^2 = - 0.730406$, $\alpha = - 2,107160$.

3. — Risolta la [24'], come da paragrafo 2. mi sono proposto di pervenire ai valori delle altre grandezze che entrano nel problema (assorbimento, rapporto delle ampiezze verticali e orizzontali, ampiezza, velocità), limitatamente alle soluzioni corrispondenti alle onde di Ravleigh propriamente dette.

Cominciamo dal rapporto degli spostamenti verticale e orizzontale in superficie.

a) Prescindendo dall'assorbimento; b) Tenendo conto dell'assorbimento

Posto, nell'esponenziale della [25""]

$$a = a + \beta p \frac{\mu'}{\mu}$$
, $b = \beta - a p \frac{\mu'}{\mu}$,

avremo

$$\sqrt{\frac{1}{a+ib}} = \pm \left(\sqrt{\frac{1}{a^2+b^2}+a} + i \right) \sqrt{\frac{1}{a^2+b^2}-a}$$
 so $b > 0$
$$\sqrt{\frac{1}{a+ib}} = \pm \left(\sqrt{\frac{1}{a^2+b^2}+a} - i \right) \sqrt{\frac{1}{a^2+b^2}-a}$$
 so $b < 0.$ [26]

Sia ancora

$$U = \sqrt{\frac{\sqrt{a^2 + b^2} + a}{2}} \quad , \quad V = \sqrt{\frac{\sqrt{a^2 + b^2} - a}{2}} \quad , \quad W = \frac{U}{v, \sqrt{1 + \left(p, \frac{u'}{v}\right)^2}}$$

e inoltre

$$-\chi + 2\frac{\chi \left| \sqrt{\chi^{2} - \frac{h^{2}}{k^{2}}} \right| \sqrt{\chi^{2} - 1}}{2\chi^{2} - 1} = -R + iS$$

$$\sqrt{\chi^{2} - \frac{h^{2}}{k^{2}}} - \sqrt{\chi^{2} - \frac{h^{2}}{k^{2}}} \cdot \frac{2\chi^{2}}{2\chi^{2} - 1} = -R' + iS',$$
[28]

poiché nei casi considerati è sempre b < 0, vale la 2^a delle [26]. la quale ha significato fisico solo con il secondo membro preceduto dal segno —. Pertanto, per z=0, possiamo scrivere

$$\frac{h^{2} u}{k} = \left\{ \begin{bmatrix} R \sin \underline{p}(t + Wx) - S \cos p(t + Wx) \\ +i \begin{bmatrix} -R \cos p(t + Wx) - S \sin p(t + Wx) \end{bmatrix} \right\} e^{-\frac{Vpx}{v_{s}}} - \frac{Vpx}{\frac{1 + p^{2}\left(\frac{u'}{u}\right)^{2}}{\frac{h^{2} w}{k}} = \left\{ \begin{bmatrix} -R^{2} \cos p(t + Wx) + S^{2} \sin p(t + Wx) \end{bmatrix} + \frac{[29]}{\frac{Vpx}{v_{s}}} - \frac{Vpx}{\frac{Vpx}{v_{s}}} \right\}$$

$$= \left\{ \begin{bmatrix} -R^{2} \sin p(t + Wx) + S^{2} \cos p(t + Wx) \end{bmatrix} \right\} e^{-\frac{Vpx}{v_{s}}} - \frac{Vpx}{\frac{Vpx}{v_{s}}} + \frac{[29]}{\frac{Vpx}{v_{s}}} \right\}$$

Fatte le posizioni

$$\frac{h^2}{k^2} = \gamma + i \,\delta \quad ; \qquad [30]$$
$$A = \sqrt{\frac{1}{\alpha^2 + \beta^2 + \alpha}} , B = \sqrt{\frac{1}{\alpha^2 + \beta^2 - \alpha}} ; C = \sqrt{\frac{1}{\alpha^2 + \gamma^2 + (\delta - \beta)^2 + (\alpha - \gamma)}}$$

TABLLLA IV

0.112730 0.015735 0.128436 0.031275 0.007893 0.0003000.003155 0.001584 5 0.0 0.0 0.511948 0.671752 0.362432 0.674.762 0.612.25 0.674027 0.674597 0.674733 0.674789 0.674789 0.674790 In µ/µ'=50.sec⁻¹ 0.0048660.021923 0.0042920.002154 0.001086 0.000430 0.0003910.000092Y. 0.0 0.0 0.34446 0.440592 0.459621 0.459692 0.457721 0.459681 0.459703 0.459703 0.459703 0.459703 0.45970127 0.0428020.133627 0.104331 0.026133 0.010966 0.0043820.002191 0.00127 S 0.0 0.0).3624320.480210 0.573083 0.683131 0.6726860.674722 0.674736 0.674361 0.674774 0.674790 12I µ/µ'=30.sec⁻¹ 0.006684 0.055691 0.0488300.0001030.002103 0.001775 0.0004820.000255 2 0.0 0.0 0.501569 0.344446 0.477688 0.462257 0.459677 0.4598630.459727 0.459703 0.459 - 330.459701 2 300 0.05 .1. 0.0 0.1 0.5 10 5 1 0.5 2 20 10 120 99

$$D = \sqrt{\frac{\sqrt{(a-\gamma)^2 + (\delta-\beta)^2 - (a-\gamma)}}{2}} : E = \sqrt{\frac{(a-1)^2 + \beta^2 + a-1}{2}},$$

$$F = \sqrt{\frac{1}{(a-1)^2 + \beta^2 - a+1}}; g = CE + DF, h = CF - DE;$$

$$K = \frac{g\left(a - \frac{1}{2}\right) + \beta h}{\left(a - \frac{1}{2}\right)^2 + \beta^2}, J = \frac{\left(a - \frac{1}{2}\right)h - \beta g}{\left(a - \frac{1}{2}\right)^2 + \beta^2};$$

$$L = \frac{a\left(a - \frac{1}{2}\right) + \beta^2}{\left(a - \frac{1}{2}\right)^2 + \beta^2}, M = -\frac{0.5\beta}{\left(a - \frac{1}{2}\right)^2 + \beta^2};$$

N = AK - BJ, O = BK + AJ; P = CL + DM, Q = CM - DL, conseque (per $\beta < \delta$)

$$\begin{split} \chi = A + i B \ , \ \sqrt{\chi^2 - \frac{h^2}{k^2}} &= C - i D \ , \ \sqrt{\chi^2 - 1} = E + i F \ , \\ \sqrt{\chi^2 - \frac{h^2}{k^2}} \ \sqrt{\chi^2 - 1} &= g + i h \ ; \ 2 \ \frac{\sqrt{\chi^2 - \frac{h^2}{k^2}} \cdot \sqrt{\chi^2 - 1}}{2\chi^2 - 1} = K + i J \ ; \\ \frac{2\chi^2}{2\chi^2 - 1} &= L + i M \ , \ \chi^2 \ 2 \ \frac{\sqrt{\chi^2 - \frac{h^2}{k^2}}}{2\chi^2 - 1} = N + i O \ , \\ \sqrt{\chi^2 - \frac{h^2}{k^2}} \ \cdot \ \frac{2\chi^2}{2\chi^2 - 1} = P + i Q . (*) \end{split}$$

Pertanto

R = A - N, S = O - B; R' = P - C, S' = -(Q + D). Ovviamente, la parte reale delle [29] è data da

$$\frac{h^2 u}{k} = \left\{ -R \sin p(t + Wx) - S \cos p(t + Wx) \right\} e^{-\frac{Vpx}{v_s} \left| \sqrt{1 + p^2 \left(\frac{\mu}{\mu}\right)^2}} \right.$$
$$\frac{h^2 w}{k} = \left\{ -R^2 \cos p(t + Wx) + S^2 \sin p(t + Wx) \right\} e^{-\frac{Vpx}{v_s} \left| \sqrt{1 + p^2 \left(\frac{\mu}{\mu}\right)^2}} \right.$$

(*) Per $\beta > \delta$ è $\sqrt{\chi^2 - \frac{h^2}{h^2}} = C + i D$, g = CE - DF, h = CF + DE, P = CL - DM, Q = DL + CM.

TABELLA V

$\mu'\mu' = 100.sec^{-1}$	ų.o		8	12.804	4.8424	0.2382	0.06000	0.01503	0.002407	0.000602	0.000165	0 0000476	1210000.0	0.0000043	. 0
	7'R		8	sv · 6102.1	1.0322 • »	0.92452 · »	0.9207 · "	0.9197 • »	0.91945 · »	0.91942 · »	a · 19194	0.9194 · »	0.9194 · »	a · 19194	0.9194 · »
.s-e-1	kα		8 11 01	611.21	9101-0	0.4626	0.11910	0.03250	0.00741	0.001203	0.000301	0.0000752	0.0000317	0.0000083	
$\mu/\mu' = 50.5$	ζ/R		× 202 1	*A	6 . C107.1	0.93953 • »	0.9245 • »	0 9207 · »	0.9195 · »	0.91945 • »	0.919415 • »	0.919405 · »	0.9194 · »	0.9194 · »	a · 1919.0
0,sec-1	ά.	\$	10 530	GFE 9	00005 U	0.12228	0.1950	0.04977	0.008013	0.002000	0.000502	0.0001303	0.0000563	0.0000123	0
μ/μ' ==3	2/II		160.6	· · · · · · · · · · · · ·	e tront	(. Z016-0	0.9335 · »	0.9229 · »	0.9200 · »	0.91955 · »	0.91944 · »	0.91941 · »	a · 19191 · »	a · 1619.0	0.9194 · »
Т	sec	e e	0.05	1.0		e.0	1	61	10	10	20	10	09	120	8

Nella Tabella IV sono contenuti i valori R, R', S, S', per vari valori di T, in corrispondenza di $u/\mu'=30 e \mu/\mu'=50$. Da essa risulta che, esclusi i periodi più piccoli (di poco interesse per le ende di Rayleigh propriamente dette), S e S' assumono valori via via decrescenti, tendenti allo zero: trascurabili comunque nei confronti di quelli di R, R'.

Pertanto, il rapporto dell'ampiezza del movimento verticale a quella del movimento orizzontale, da un valore prossimo all'unità 1,052 per periodi pressoché nulli, tende rapidamente al valore 1.47 che le compete nella classica teoria di Rayleigh in mezzi puramente elastici; tanto più rapidamente, quanto maggiore è il rapporto μ/μ' .

La Tabella V contiene i risultati dei calcoli per i valori 30, 50 e 100 del rapporto μ/μ' , al variare del periodo. Si nota subito che, da un valore teoricamente infinito per T=0, la velocità delle onde di Rayleigh in un mezzo firmo-elastico tende al valore che essa assume in un mezzo puramente elastico col tendere del periodo all'infinito, e tanto più rapidamente quanto maggiore è il valore del rapporto μ/μ' .

Questo risultato era già stato ottenuto nel lavoro precedente; resta quindi confermato una sorta di effetto della firmo-viscosità sulla propagazione delle onde superficiali, che appare come propagazione unomala.

5. — Veniamo infine all'assorbimento di un mezzo firmo-elastico. Il coefficiente di assorbimento è

$$k_{0} = \frac{p}{v_{s} \sqrt{1 + p^{2} \left(\frac{\mu'}{\mu}\right)^{2}}} \cdot \frac{1}{\sqrt{\frac{1}{2}a^{2} + b^{2} - a}} = \frac{p}{v_{s} \sqrt{1 + p^{2} \frac{{\mu'}^{2}}{\mu^{2}}}}$$
$$\cdot \sqrt{\frac{\sqrt{(a^{2} + \beta^{2})\left(1 + p^{2} \frac{{\mu'}^{2}}{\mu^{2}}\right) - a - \beta p \frac{\mu'}{\mu}}}{2}}$$

Fatto v, =3.3 km/sec, velo; cità media delle onde trasversali nello strato superficiale terrestre, e assegnati a μ/μ' i valori 30, 50, 100 rispettivamente i calcoli hanno fornito, per periodi diversi, i valori riportati nella Tabella V.

A periodi nulli corrisponde quindi un assorbimento infinito, il quale resta comunque elevatissimo per piccoli periodi, conforall'osservazione : memente per periodi dell'ordine 20° g per u/u'=50 (che è il valore più prossimo a quelli forniti dall'osservazione), il coefficiente di assorbimento diviene dell'ordine di 0.0003. che è appunto quello generalmente osservato.

L'attrito interno giustifica quindi pienamente le caratteristiche osservate per le onde superficiali, le quali nella teoria di Rayleigh

erano considerate come persistenti. Ritengo sia questo uno dei risultati più notevoli della ricerca.

Roma — Istituto Nazionale di Geofisica -- Luglio 1918.

RIASSUNTO

La ricerca oggetto di questo lavoro, ha condotto ai seguenti risultati: la velocità di propagazione delle onde di Rayleigh in un mezzo firmo-elastico, da un valore infinito per periodi nulli, tende rapidamente, per periodi crescenti, al valore che le compete in mezzi puramente elastici, tanto più rapidamente quanto maggiore è il valore del rapporto μ/μ' (μ costante di Lamé, μ' coefficiente d'attrito interno equivoluminale); la firmo-elasticità determina una sensibile riduzione della componente verticale del moto, riduzione che è tanto maggiore quanto più piccoli sono il rapporto $\frac{u}{u'}$ e il periodo proprio dell'onda: per onde originanti con grossi periodi l'azione dell'attrito interno sul rapporto delle ampiezze è pressocché nulla e il mezzo si comporta come puramente elastico. La firmo-elasticità può variare il rapporto delle ampiezze Z/H da un valore prossimo all'unità (1,05) a 1,41, valore che la teoria Rayleigh-Lamb assegna a quel rapporto per $\sigma = 0.25$.

La ricerca ha consentito inoltre di chiarire teoricamente un altro aspetto delle onde superficiali finora rimasto insoluto. Nella classica teoria di Rayleigh, le onde che portano il suo nome sono considerate come libere, persistenti, non soggette ad assorbimento da parte del mezzo. Ora, l'osservazione prova che l'assorbimento è fortissimo pei i periodi più piccoli e tende a decrescere rapidamente per raggiungere il valore di circa e^{-0,0003}</sup> per periodi dell'ordine di 20°. La nuora teoria prova che in un mezzo firmo-elastico (con un rapporto $\frac{\mu}{\mu'} = 50$ sec ⁻¹, conforme alla media dei valori osservati) ciò è pienamente dimostrato. Ed è sintomatico che le fondamentali caratteristiche delle

onde di Rayleigh trovino così completa giustificazione in un mezzo indefinito non stratificato.

BIBLIOGRAFIA

(1) RAYLEIGH LORD: On waves propagated along the plane surface of an elastic solid - Scientific Papers. II. pagg. 441-447.

(²) LAMB H.: On the propagation of tremors over the surface of an elastic solid - Philosophical Transactions, CCIII. A. 1901.

(3) CALOI P.: Sulle onde di Rayleigh in un mezzo elastico, firmo-viscoso indefinito - Pontificia Academia Scientiarum, Acta, X, 1946.