LE SESSE DEL LAGO DI GARDA

PIETRO CALOI

PARTE PRIMA

SESSE CHE INTERESSANO L'INTERO LAGO

Le ipotesi che generalmente si fanno nelle teorie idrodinamiche delle sesse possono così riassumersi: lunghi bacini (canali) di larghezza e profondità variabili; componente laterale del movimento orizzontale, normale alla linea di valle, trascurabile, ciò che presuppone il moto orizzontale verificarsi soltanto parallelamente all'asse x, che, in corrispondenza della linea di valle, sta nel piano orizzontale costituito dalla superficie libera del lago in quiete. Queste ipotesi si ritengone praticamente soddisfatte se non si verificano brusche variazioni né in larghezza e profondità, né hungo la linea di valle.

Si ritiene inoltre che lo spostamento verticale η delle particelle d'acqua dipenda soltanto da x e dal tempo t; conseguentemente esse è uguale per tutte le particelle che si trovano, in un dato istante, in una sezione verticale S(x) del lago, normale all'asse x.

Per onde lunghe, rispetto alla lunghezza d'onda delle quali la profondità h del bacino sia piccola, l'accelerazione verticale si ritiene trascurabile. Conseguenza di questa ipotesi è che soltanto la pressione idrostatica risulta dinamicamente efficace; sono quindi da considerare soltanto le variazioni di pressione derivanti dalle variazioni di livello. Naturalmente, anche gli spostamenti orizzontali ξ sono uguali per tutte le particelle di una stessa sezione trasversale S(x).

Infine, la supposizione, generalmente realizzata nei bacini naturali, che ritiene i dislivelli p piccoli rispetto alle profondità h, comporta la soppressione del termine $u_s \frac{\partial u_s}{\partial x}$ nell'equazione idrodinamica fondamentale di Eulero; per cui l'equazione del movimento in un bacino generico assume la forma

$$\frac{\partial^2 \xi}{\partial t^2} = -g \frac{\partial u}{\partial x}$$
[1]

L'equazione di continuità esprime che l'eccedenza dell'acqua entrante su quella uscente dallo strato di spessore δx , compreso fra fe sezioni S(x) e $S(x + \delta x)$ genera il dislivello alla superficie dello strato stesso. L'equazione di continuità, se b(x) significa la larghezza variabile del bacino, misurata alla superficie libera, diventa

$$\eta = -\frac{1}{b(x)} \frac{\partial}{\partial x} \left[S(x) \vdots \right].$$
 [2]

La soluzione di queste equazioni conduce ad un problema ai limiti di 2. ordine; il quale, notoriamente, ha soluzioni soltanto per determinati autovalori di un parametro. Nel nostro caso, questi valori sono i periodi delle possibili oscillazioni libere.

G. Chrystal (¹) trasforma le equazioni [1] e [2] mediante l'introduzione delle variabili

$$u = \xi S(x)$$
 [3]

$$v = \int_{0}^{x} b(x) \, dx.$$
 [4]

u rappresenta il volume del liquido che attraversa la sezione S(x) in forza dello spostamento orizzontale ξ , mentre *v* esprime l'area, calcolata sulla superficie libera, della superficie limitata da quella sezione e dall'estremo x=0.

Si ha

e

$$\frac{\partial^2 u}{\partial t^2} = S(x) \frac{\partial^2 \xi}{\partial t^2}; \quad \frac{\partial u}{\partial v} = \frac{\partial u}{\partial x} \frac{dx}{dv} = \frac{1}{b(x)} \frac{\partial u}{\partial x};$$
$$\frac{\partial^2 u}{\partial v^2} = \frac{\partial}{\partial x} \left[\frac{1}{b(x)} \frac{\partial u}{\partial x} \right] \frac{dx}{dv} = \frac{1}{b(x)} \frac{\partial}{\partial x} \left[\frac{1}{b(x)} \frac{\partial [S(x)\xi]}{\partial x} \right].$$

Dalle (1), (2) consegue

$$\frac{\partial^2 \xi}{\partial t^2} = g \frac{\partial}{\partial x} \left[\frac{1}{b(x)} \frac{\partial [S(x) \cdot \xi]}{\partial x} \right].$$

Moltiplicando per S(x) e ponendo

$$S(x).b(x) = \sigma(v),$$

dove x risulta, per la [4], funzione di v, si ottengono le equazioni di movimento e di continuità sotto la forma

$$\frac{\partial^2 u}{\partial t^2} = g \,\sigma(v) \,\frac{\partial^2 u}{\partial v^2} \,; \qquad \qquad [5]$$

$$\eta = -\frac{\partial u}{\partial v} \,. \tag{6}$$

Se u è rappresentabile mediante la somma di una serie di semplici funzioni armoniche di t,

$$u = \sum_{i}^{\infty} U_{i}(v) \sin \omega_{i}(t \cdot t_{i}), \qquad \omega_{i} = \frac{2\pi}{T_{i}}$$

l'equazione di Chrystal assume la forma

$$\sigma(v) \frac{d^2 u}{dv^2} + \frac{4\pi^2}{gT^2} u = 0.$$
 [7]

La curva rappresentata dalla funzione $\sigma(v)$ fu detta da Chrystal curva normale del bacino d'acqua: essa ha per ordinate i valori di S(x).b(x) e per ascisse i valori di $\int b(x) dx$.

La determinazione delle oscillazioni libere nei laghi è quindi ricondotta alla risoluzione di un'equazione differenziale omogenea del second'ordine, con certe condizioni agli estremi. Chrystal ha risolto la [7] in molti casi particolari, nei quali la curva normale può identificarsi con una curva analitica o tratti raccordati di curve analitiche (curve paraboliche o biparabolihe, concave o convesse, quartiche, tratti rettilinei, ecc.).

Nel 1915 Proudman (²) risolse il problema — sesse libere, rappresentate dalla [7], e sesse forzate — in tutta la sua generalità, preseindendo dalla forma della curva normale, purché la forma e le dimensioni della sezione trasversale del lago mutino lentamente. Nel 1924 Matteuzzi (²) dimostrò che il problema può essere risolto elegantemente e in modo più rapido della soluzione proposta da Proudman, mediante un'equazione integrale di Volterra di seconda specie. All'atto pratico però queste soluzioni riescono molto faticose (il metodo di Proudman è stato applicato una sola volta: da Doodson e collaboratori (⁴) al lago di Ginevra). Data la natura del problema è preferibile ricorrere a soluzioni, forse meno rigorose, ma che riescono più agevoli, pur consentendo risultati attendibili. Fra queste merita particolare mensione il procedimento proposto da Hidaka (⁵), che applica il metodo delle variazioni di Ritz alla determinazione delle sesse di un lago.

Hidaka considera l'equazione di Chrystal [7], con le condizioni ai limiti

LE SESSE DEL LAGO DI GARDA

$$u(o) = u(a) = 0, \qquad [8]$$

dove a è l'area superficiale totale del lago. Sarà quindi

$$0 < v < a$$
.

La funzione $\sigma(v)$ ha la proprietà di annullarsi agli estremi del lago, così che è

$$\sigma(o) = \sigma(a) = 0.$$

Posto

 $z = rac{v}{a}$

ed espresso σ in funzione di z, la [7] si può scrivere

$$\frac{d^2u}{dz^2} + \frac{\lambda}{\sigma(z)} u = 0, \qquad [10]$$

con le condizioni ai limiti

$$u(0)=0, u(1)=0,$$
 [11]

e dove

$$\lambda = \frac{4\pi^2}{T^2} \frac{a^2}{g} \,. \tag{[12]}$$

La [10], con le condizioni [11], è soddisfatta solo da certi valori del parametro λ . L'integrazione della [10], soggetta alle condizioni [11], per un noto teorema del calcolo delle variazioni, è equivalente alla ricerca del valore stazionario dell'integrale

$$I(u) = \int_{0}^{1} \left[\left(\frac{du}{dz} \right)^{2} - \frac{\lambda}{\sigma(z)} \cdot u^{2} \right]^{2} dz. \qquad [13]$$

Siano $\Psi_{o}(z), \Psi_{1}(z), \cdots \Psi_{m}(z), m + 1$ funzioni soddisfacenti alle (11)

$$\Psi_i(0) = \Psi_i(1) = 0,$$
 (i=0, 1, 2, ... m) [14]

e sia *u* esprimibile con la serie finita

$$u = A_{o} \Psi_{o} + A_{i} \Psi_{i} + \dots + A_{m} \Psi_{m}.$$
 [15]

Poniamo, nel nostro caso,

$$\Psi_{\mathbf{i}}(\mathbf{z}) = \mathbf{z} \left(1 - \mathbf{z}\right) \mathbf{z}^{\mathbf{i}}, \qquad [16]$$

relazione che soddisfa alle condizioni [11]; avremo allora

$$u = \sum_{o}^{m} A_{i} z(1-z) z^{i}.$$
 [17]

Sostituiamo la [17] nella [13] e determiniamo le m+1 costanti Λ_{o_1} , $\Lambda_{1,...}$, Λ_m in modo che I(u) diventi un minimo, il che richiede che sia $\frac{\partial I}{\partial A_n} = 0$, $\frac{\partial I}{\partial A_n} = 0$,..., $\frac{\partial I}{\partial A_n} = 0$.

Ora è

$$\frac{du}{dz} = \sum_{i=0}^{m} \left[(i+1)z^{i} - (i+2) z^{i+4} \right] A_{i},$$
$$\left(-\frac{du}{dz} \right)^{2} = \sum_{i=0}^{m} A_{i} \left[(i+1)z^{i} - (i+2)z^{i+4} \right] \cdot \sum_{i=0}^{m} A_{i} \left[(j+1)z^{j} - (j+2)z^{j+4} \right],$$

e quindi

$$\frac{\partial I}{\partial A_{j}} = \sum_{o}^{m} \left[\int_{0}^{4} \left\langle (i+1) z^{i} - (i+2) z^{i+4} \right\rangle \right] \left\langle (i+1) z^{j} - (j+2) z^{j+4} \right\rangle dz - \frac{1}{2} \int_{0}^{4} \frac{z(1-z)z^{i} z(1-z)z^{j}}{\sigma(z)} dz \right] \cdot A_{i} = 0. \quad [18]$$

$$(j = 0, 1, 2, ..., m)$$

Il primo integrale può essere agevolmente valutato. Si ha quindi $\sum_{j=1}^{m} \frac{(i+2)(j+2)}{i+j+3} = \frac{(i+2)(j+1) + (i+1)(j+2)}{i+j+2} + \frac{(i+1)(j+1)}{i+j+1} =$ $-\lambda \int^{4} rac{z^{2}(1-z)^{2} \ z^{1+j}}{\sigma(z)} \ dz \, \langle \overset{(*)}{\rangle} = \ 0 \ .$ [19]

L'integrale

$$\int_{0}^{z} \frac{z^{2}(1-z)^{2}z^{i+j}}{\sigma(z)} dz.$$
 [20]

va calcolato numericamente.

(*) Inspiegabilmente, Hidaka serive i primi due termini tra parentisi come segue: $\frac{i}{i+j-1} = \frac{i}{i+j-1} - \frac{i}{i+j} + \frac{i}{i+j}$. La stessa forma erronea viene ripresa da G. Neumann (6).

Hidaka dà quindi un procedimento atto a determinare la curva normale, qualora questa sia esprimibile in forma analitica esplicita. Poiché nell'applicazione che noi laremo ciò non è possibile, trascuriamo di accennarvi.

Dalla (19) consegne il sistema di m + 1 equazioni:

$$\left(\frac{1}{3}-I_{\mathfrak{o}}\lambda\right)A_{\mathfrak{o}}+\left(\frac{1}{6}-I_{\mathfrak{t}}\lambda\right)A_{\mathfrak{t}}+\left(\frac{1}{10}-I_{\mathfrak{c}}\lambda\right)A_{\mathfrak{c}}+\cdots=0$$

$$\left(\frac{1}{6}-I_{\mathfrak{t}}\lambda\right)A_{\mathfrak{o}}+\left(\frac{2}{15}-I_{\mathfrak{c}}\lambda\right)A_{\mathfrak{t}}+\left(\frac{1}{10}-I_{\mathfrak{s}}\lambda\right)A_{\mathfrak{c}}+\cdots=0$$

$$\left(\frac{1}{10}-I_{\mathfrak{c}}\lambda\right)A_{\mathfrak{o}}+\left(\frac{1}{10}-I_{\mathfrak{s}}\lambda\right)A_{\mathfrak{t}}+\left(\frac{3}{35}-I_{\mathfrak{t}}\lambda\right)A_{\mathfrak{c}}+\cdots=0.$$

L'eliminazione di A_0 , A_1 , A_2 ,... conduce all'annullamento del determinante dei coefficienti di A_0 , A_1 , A_2 ..., il che costituisce l'equazione dei periodi. In questa equazione è

$$I_{n} = \int_{0}^{1} \frac{z^{2}(1-z)^{2} z^{n}}{\sigma(z)} dz.$$
 [21]

La soluzione del problema per grossi valori di m diventa assai ardua. Hidaka dà la soluzione per m=1 e m=2.

Per m = 1 si ha

$$u = z(1-z)(A_0 + A_1, z)$$

$$\frac{1}{3} - I_0 \lambda = \frac{1}{6} - I_1 \lambda$$

$$= 0,$$

$$\frac{1}{6} - I_1 \lambda = \frac{2}{15} - I_2 \lambda$$

cioè, sviluppando,

$$(I_0I_2 - I_1^2)\lambda^2 - \left(\frac{2}{15}I_0 - \frac{1}{3}I_4 + \frac{1}{3}I_2\right)\lambda + \frac{1}{60} = 0.$$
 [22]

Per forme semplici della curva normale, la [22] è sufficiente per la sessa uninodale.

Per m=2 è

$$u = z(1-z) (A_0 + A_1 z + A_2 z^2)$$

e l'equazione dei periodi diviene

da cui sviluppando:

$$(I_0 I_2 I_4 - I_0 I_3^2 - I_1^2 I_4 + 2I_1 I_2 I_3 - I_2^3) - \left[\frac{3}{35}(I_0 I_2 - I_4^2) + \frac{1}{5}(-I_0 I_3 + I_4 I_2 + I_4 I_3) + \frac{2}{15}(I_0 I_4 - I_4^2) + \frac{1}{5}(-I_4 I_4 - I_4^2) + \frac{1}{5}(-I_4 I_4 - I_3^2)\right] \lambda^2 + \left(\frac{1}{700}I_2 - \frac{3}{350}I_4 + \frac{53}{2100}I_2 - \frac{1}{30}(I_3 + \frac{1}{60}I_4)\lambda - \frac{1}{10500} = 0.$$

$$[23]$$

Calcolati numericamente gli integrali I_0 , I_1 ,..., I_1 è facile risolvere la [23] rispetto a λ . Ai tre valori λ_1 , λ_2 , λ_3 the così si ettengono corrispondono, mediante la [12], i periodi delle sesse uni-, bi- e trinodali.

Caso m=3. — Come si è detto, Hidaka si limita a considerare il caso m=2. In pratica ciò può soddisfare alla precisione richiesta. Però, per curve normali molto complicate, può essere utile ricorrere al caso m=3: oltre ad una maggiore precisione per le sesse di più piccola nodalità, ciò consente pure la determinazione del periodo della sessa quadrinodale.

Per m=3, come si può facilmente verificare, l'equazione dei periodi diventa

$$\begin{array}{c|c} \frac{1}{3} - I_0 \lambda & \frac{1}{6} - I_1 \lambda & \frac{1}{10} - I_2 \lambda & \frac{1}{15} - I_3 \lambda \\ \\ \frac{1}{6} - I_1 \lambda & \frac{2}{15} - I_2 \lambda & \frac{1}{10} - I_3 \lambda & \frac{8}{105} - I_4 \lambda \\ \\ \frac{1}{10} - I_2 \lambda & \frac{1}{10} - I_3 \lambda & \frac{3}{35} - I_4 \lambda & \frac{1}{14} - I_5 \lambda \\ \\ \frac{1}{15} - I_3 \lambda & \frac{8}{105} - I_4 \lambda & \frac{1}{14} - I_5 \lambda & \frac{4}{63} - I_6 \lambda \end{array} \right| = 0.$$

Sviluppando il determinante di quart'ordine si ottiene l'equazione in λ :

$$\alpha_4\lambda^4 + \alpha_2\lambda^3 + \alpha_2\lambda^2 + \alpha_4\lambda + \alpha_0 = 0, \qquad [24]$$

dove

$$\begin{split} a_{4} &= + I_{0}I_{3}I_{4}I_{5} - I_{0}I_{3}^{2}I_{6} + 2I_{0}I_{5}I_{4}I_{5} - I_{0}I_{5}^{2} - I_{0}I_{4}^{2} + \\ &+ I_{1}^{2}I_{5}^{2} - I_{1}^{2}I_{4}I_{5} + 2I_{4}I_{2}I_{5}I_{5} - 2I_{4}I_{3}I_{4}I_{5} - 2I_{4}I_{5}^{2}I_{5} + \\ &+ 2I_{4}I_{5}I_{4}^{2} - I_{2}^{2}I_{5} + 2I_{2}^{2}I_{5}I_{5} + I_{2}^{2}I_{5}^{2} - 3I_{2}I_{5}^{2}I_{4} + I_{5}^{4}; \\ a_{3} &= -\frac{4}{63} I_{5}I_{2}I_{5} + \frac{1}{7} I_{0}I_{2}I_{5} - \frac{3}{35} I_{0}I_{2}I_{5} - \frac{1}{7} I_{0}I_{5}I_{4} - \\ &- \frac{16}{105} I_{0}I_{5}I_{5} + \frac{1}{5} I_{0}I_{5}I_{5} - \frac{1}{5} I_{0}I_{4}I_{5} - \frac{2}{15} I_{0}I_{4}I_{5} - \\ &+ \frac{4}{63} I_{0}I_{5}^{2} + \frac{5}{21} I_{5}I_{5}^{2} + \frac{2}{15} I_{5}I_{5}^{2} + \frac{4}{63} I_{1}^{2}I_{4} - \frac{1}{7} I_{4}^{2}I_{5} + \\ &+ \frac{3}{35} I_{1}^{4}I_{6} - \frac{3}{63} I_{4}I_{2}I_{5} + \frac{1}{7} I_{4}I_{2}I_{5} + \frac{16}{105} I_{4}I_{2}I_{5} - \\ &- \frac{1}{5} I_{4}I_{2}I_{5} - \frac{34}{105} I_{4}I_{5}I_{4} + \frac{1}{3} I_{4}I_{5}I_{5} - \frac{1}{15} I_{4}I_{4}I_{5} - \\ &- \frac{1}{5} I_{4}I_{4}I_{5} + \frac{1}{3} I_{1}I_{4}I_{6} + \frac{1}{7} I_{4}I_{5}I_{5} - \frac{1}{15} I_{4}I_{4}I_{5} - \\ &- \frac{1}{3} I_{4}I_{5}^{2} + \frac{4}{63} I_{5}^{2} - \frac{1}{7} I_{5}^{2}I_{5} - \frac{16}{105} I_{5}^{2}I_{4} - \frac{2}{15} I_{5}^{2}I_{5} + \\ &+ \frac{1}{3} I_{2}^{2}I_{6} + \frac{5}{21} I_{5}I_{5}^{2} + \frac{7}{15} I_{2}I_{5}I_{4}I_{4} - \\ &- \frac{1}{3} I_{4}I_{5}^{2} - \frac{1}{3} I_{4}I_{5} - \frac{1}{3} I_{4}I_{5} + \frac{1}{3} I_{4}I_{5} - \\ &- \frac{1}{13} I_{4}I_{5}^{2} + \frac{4}{63} I_{5}^{2} - \frac{1}{7} I_{5}^{2}I_{5}I_{5}I_{4}I_{5} - \\ &- \frac{1}{3} I_{2}I_{5}I_{6} - \frac{1}{3} I_{5}I_{5}I_{5} I_{2}I_{5} + \\ &+ \frac{1}{3} I_{2}^{2}I_{6} + \frac{5}{21} I_{5}I_{5}^{2} + \frac{7}{15} I_{5}I_{5}I_{5}I_{4}I_{5} - \\ &- \frac{1}{3} I_{2}I_{5}I_{6} - \frac{1}{3} I_{5}^{2} + \frac{1}{3} I_{5}^{2}I_{6} + \frac{1}{3} I_{5}^{2}I_{5} - \\ &- \frac{1}{3} I_{2}I_{5}I_{6} - \frac{1}{3} I_{5}^{2} + \frac{1}{3} I_{5}^{2}I_{6} + \frac{1}{3} I_{5}^{2}I_{5} - \\ &- \frac{1}{3} I_{2}I_{5}I_{6} - \frac{1}{3} I_{5}^{2} + \frac{1}{3} I_{5}^{2}I_{6} + \frac{1}{3} I_{5}^{2}I_{6} - \\ &- \frac{1}{3} I_{3}I_{6}^{2} - \frac{2}{3} I_{3}I_{4}I_{5} + \frac{1}{3} I_{5}^{2}I_{6} + \\ &- \frac{1}{3} I_{5}I_{6}^{2} - \frac{1}{3}$$

$$\begin{aligned} \alpha_{2} &= + \frac{1}{2940} I_{0}I_{2} - \frac{4}{2205} I_{0}I_{3} + \frac{257}{66150} I_{0}I_{4} - \frac{2}{525} I_{0}I_{5} + \\ &+ \frac{1}{700} I_{0}I_{4} + \frac{4}{2205} I_{4}I_{2} + \frac{43}{22050} I_{1}I_{3} - \frac{131}{9450} I_{4}I_{4} + \end{aligned}$$

$$\begin{split} &+ \frac{2}{105} I_1 I_5 - \frac{3}{350} I_1 I_5 - \frac{1}{2940} I_1^2 + \frac{167}{9450} I_2 I_3 + \\ &+ \frac{19}{1890} I_2 I_4 - \frac{22}{525} I_2 I_5 + \frac{53}{2100} I_2 I_5 - \frac{193}{33075} I_2^2 - \\ &- \frac{577}{18900} I_3^2 + \frac{53}{1050} I_3 I_2 + \frac{23}{1050} I_3 I_5 - \frac{1}{30} I_4 I_5 - \\ &- \frac{33}{700} I_1^2 + \frac{1}{30} I_1 I_5 + \frac{1}{60} I_1 I_5 - \frac{1}{60} I_5^2; \end{split}$$

$$a_1 = -\frac{1}{771750} I_2 + \frac{1}{73500} I_2 - \frac{1}{13500} I_2 + \frac{143}{661500} I_3 - \\ &- \frac{229}{661500} I_1 + \frac{1}{3500} I_5 - \frac{1}{10500} I_6; \end{split}$$

Determinate le radici della [24], i valori dei periodi delle sesse si ottengono sostituendo a λ le radici ottenute nell'equazione

$$T = \frac{2\pi a}{\sqrt{\beta g}}, \qquad [25]$$

che deriva dalla [12].

L'ampiezza dello spostamento consegue dalla [6], che può anche essere scritta

$$\eta = -\frac{du}{dz} \cdot a \qquad [26]$$

Questa esige la determinazione di u espressa dalla [17]; e quindi di A_0 , A_1 ... Queste ultime si possono determinare dalle relative equazioni dei periodi, che variano al variare di m (m=0, 1, 2, 3...).

La localizzazione dei nodi si ha invece mediante l'annullamento di n:

$$\frac{du}{dz} = 0.$$
 [27]

Le sesse del lago di Garda.

Pochi sono finora gli studi sulle sesse fatti in Italia. Le ricerche di carattere teorico si limitano al citato lavoro di Matteuzzi.

Una prima sommaria esposizione della teoria di Chrystal si trova

Tubella I

Sezioni	32 500 × 1,0170 m	v 25× 10312 m~	ø		$\sigma(z)$ $10^6 m^3$	22(1-z)2 G(z) [10-4]	Λz	$\frac{M}{\frac{z^2(1-z)^2}{\sigma(z)}} \Delta z$	<u>М</u> • ~ 10- ²	<i>M</i> · z ²	<i>M</i> · ~3 10- ²	M * 21 10-2	M · z ⁵ 10 ⁻²	M · z ⁻⁵ 10- ²
	u	0	0.	0.00000	0.0		_	0.00000	0,00000	0.00000	0,00000	0,00001	6,00000	0.00000
2	0.6	1.3	0.00299	.00001	1115.9	0.0090	0.00299	0.00269	.00001	.00000	.00000	00000	,00000	.00000
3	1.1	7.7	.00536	.00003	1384.8	0.0217	.00237	.00514	.00003	.00000	. 00000	,00000	.00000	.00000
	1.2	25.8	.00961	.00009	1705.4	0.0510	.00425	16157	00290	00005	00000	00000	.00000	.00000
6	6.2	36.0	.02506	.00060	1478.9	0.4057	.00710	28805	00722	.00018	00000	.00000	00000	00000
1 7	8.2	\$6.1	.03209	.00096	1599.9	0.6000	.00703	.12180	,01351	.00013	10000	,00000	,00000	-0.5000
8	10.2	56.1	.03926	.00142	1644.4	0.8635	.00717	.61913	02431	,00095	.00001	.00000	.00000	,00000
	11.0	62.8 76.1	.04371	.00175	1695.1	1.0324	.00115	1.1311	02008	00312	000017	00001	.00000	.00000
	15.3	89.0	.06195	.00338	2610.3	1.2021	.00920	1.16282	.07203	00116	00028	00002	00000	.00000
12	17.1	103.1	.07177	.00111	3723.1	1.1926	.00982	1.17113	.08105	.00603	00013	00003	.00000	00000
13	19.2	116.5	.08109	.00555	2684.8	2.0672	.00932	1.92663	.15623	.01267	00103	.00008	.00001	.00000
	21.2	130.3	.09070	.00680	2388.0	2.8476	.00961	2.73051	21620	02201	00201	00019	00002	.00000
10	25.2	154.0	.10762	.00922	2106.0	3.7857	.00864	3.27081	35201	03788	00108	00011	.00005	00001
17	27.2	168.5	.11729	.01072	2818.2	3.8038	.00967	3.67827	13112	05060	00591	00070	00008	100001
18	29.2	182.1	.12676	.01225	2662.0	4.6018	.00917	1.35790	.55211	.07002	00888	.00113	,00011	.00002
19	31.2	196.5	.13678	.01394	2746.8	5.0750	.01002	a.0851a 6.01501	.69.55	13071	01301	+001.3	,00021	.00003
20	35.2	226.0	.15732	.01758	3019.9	5.8214	.00989	5.75736	90575	11219	02212	00353	00056	00009
22	37.2	241.3	.16797	.01953	3400.4	5.7434	.01065	6.11672	1.02713	17258	02899	00187	.00082	00011
23	39.2	256.3	.17841	.02119	4012.7	5.3556	.01044	5.39111	99752	.17797	.03175	.00566	.00101	00018
24	-41.2	273.2	.19017	.02372	1861.9	1.8757	-01176	5.73382	1.09010	20.36	03913	01373	.00113	.00027
20	15.0	313.3	20555	.02003	5679 6	5.1964	.01518	0.52591	1.12317	31037	06768	011.6	00322	00070
27	17.0	332.9	.23173	.03170	6562.0	1.8308	.01365	6.59101	1.52801	35109	08205	01901	.00111	00102
28	19.6	353.2	.24586	.03438	7524.8	1.5689	.01413	6,15586	1,58721	39021	.09594	.02359	.007.80	00113
29	51.0	375.9	.26160	.03732	7173.1	1.9939	-01580	7.89036	2.06159	.54022	14135	01717	,00968	.00253
30	55.5	197.0	-27009	.04005	8115.1 7193.6	1.9351	-01503	10 76025	3.16836	93292	27170	08089	01205	00555
32	57.1	115.3	.30997	.01575	7078.1	6.4636	.01552	10,03151	3.10947	96381	29876	09261	62871	00890
33	59.6	167.6	.32549	.04820	7309.7	6.5940	+01552	10,23389	3.33103	1.08422	35290	.11187	03739	01217
31	61.5	191.8	.31112	.05098	8337.7	6.1144	-01893	11.57456	3,98651	1.37303	17290	16288	.63610	.01932
3.5	63.5	519.8	.36183	.05332	7458.7	2.118.	-01711	12 11569	1.79059	1.80773	68215	25711	07119	03665
37	67.5	576.2	. 10109	.05770	11128.0	5.1851	-02374	2.30913	1.93719	1.98025	79426	31857	12778	05125
38	69.6	613.6	.12782	.05992	13058.8	4.5885	.02673	12.26506	5.21721	2.21187	96040	,11083	.17578	07520
3.9	71.6	656.8	.15719	.06159	13526.3	1.5531	-02937	13.37334	6.11116	2.79531	1.27800	58129	.26713	12213
40	45	738.3	.19360	.00248	6677.8	9.3561	+03011	19 26204	9 69358	1.98173	2 56021	31571	07619	34751
12	1 11.1	792.2	.55114	.06119	12270.8	1.9866	-03752	18,70972	10.31729	5.68936	3,13734	3006	95102	52608
13	81.1	810.1	.58478	.05896	12128.0	1.7111	.03334	15.81683	9.21937	5.10885	3,16299	1,81965	1,08161	63252
11	82.7	867.0	.60351	.05726	11262.4	5.0812	-01873	9,52271	5.71705	3,16840	2.09321	1.26327	.76240	16012
	83.8	889.1	.61889	.03303	10891.2	5.1078	-01538	- 21263	1.30100	3.00853	1,00222	1.1.1.190	71328	1-210
47	85.7	937.9	.05170	.05136	12226.3	1.2008	.01810	7,60315	1,96399	3.21079	2,11578	1,38131	90180	58875
18	86.7	963.9	.67096	.01874	13383.6	3.6118	.01810	6.59166	4.12274	2,96718	1,99106	1.33592	89635	60111
19	87.7	990.7	.68961	.01582	11880.1	3.0793	.01865	5.74289	3.96035	2.73110	1,88339	1.29881	,89567	61766
50	88.7	1021.6	.71112	.04220	15171.6	2.7276	.02151	5.8670.	3.17219	2,96693	2,10984	13711	2,06693	
59	90.5	1078.7	75087	.03500	1.1873.0	2.3531	.01907	1,18736	3.36912	2,53000	1.89970	12613	1.07106	80123
53	91.5	1107.2	.77071	.03123	11117.9	2.2074	.02053	1.37948	3.37531	2,60138	2,00491	1,51521	1.19090	91785
51	92.5	136.7	.79121	.02728	11495.1	2.3732	.01908	1.87218	3.85506	3.05028	2,11351	1,00900	1.51100	1,19556
- 55	93.5	1161.1	.81032	.02363	10113.4	2.2627	.02025	1.31723	3.19831	2.83178	2,29708	1,86137	1.50831	1.22221
0 - 5.7	91.0	193.2	85317	.01981	10083.5	1.9616	.02290	3.51538	3.02588	0.58219	2,20108	1,88112	1,60548	1.37023
58	96.6	1252.5	.87185	.01218	10710.2	1.1620	.02151	2.13576	1.86206	1.62311	1,11539	1.23101	1.07587	93809
59	97.7	1283.4	.89336	.00907	6699.5	1.3538	.02165	2,91202	2,60118	2,32106	2,07622	1,85481	1,65701	1.18031
60	98.7	1311.5	.91501	.00604	5616.7	1.0697	.02123	2.31590	2.11907	1.93897	1.77118	1.62339	1,18512	1,35917
6	99.8	1315.0	.93621	.00357	3771.8	0.9457	.01838	2.00772	1.87971	1.53986	1 36593	1.31259	1.11121	1.35215
63	101.9	1395.1	.95162	.00078	1551.3	0.5028	.01392	0.82912	0,80517	0.78191	0.75932	0.73738	71608	.69539
61	102.9	1115.1	.98503	.00021	756.0	0.2778	.01497	0.38670	0.38091	0,37521	0,36959	0.36106	.35861	35321
65	101	1136.6	1.00000	.00000	0.0	0.0000		0.00000	0.00000	0.00000	0,00000	0.00000	0,00000	0,00000
								3 36,97 187	171.32035	93,39320	57.82506	39,05257	28,11714	21.26242

nel volumetto « Limnologia » di G. P. Magrini (⁷), pubblicato nel 1907. Nel 1909 Francesco Vercelli (⁸) applicò il metodo Du Boys e uno dei metodi Chrystal (quello relativo alla curva normale biparabolica) al lago di Garda: ed è questo l'unico lavoro di applicazione delle teorie sulle sesse ad un lago italiano. Poco prima A. Defant (⁹) applicava ai lago di Garda un altro metodo proposto da Chrystal, quello che considera la curva normale come risultante dal raccordo di tratti rettilinei. Per le prime quattro sesse Vercelli ottenne i periodi 41,3^m: 22,97^m; 16,13^m; 12,51^m. Defant invece pervenne ai seguenti valori per le prime cinque sesse: 42,28^m; 28,00^m; 20,13^m; 14,83^m; 11,9^m. Il disaccordo era particolarmente sensibile nella sessa binodale, che Defant aveva calcolato in 28,00, conforme, secondo lui, alle osservazioni che davano una media di 28,5^m. Gli autori sostennero i propri punti di vista (^{10-ri}), finchè nel 1918, applicando al Garda un metodo di sua ideazione.

Fig. 1. – Sesse uninodali registrate a Riva (per 36 oscillazioni complete, periodo medio $T = 43^{w}$, 06; riduzione strumentale 1 a 5).

Defant (¹²) ottenne per le sesse uninodale e binodale i valori 39,8^m e 22,65^m rispettivamente; e fu quindi costretto a constatare che l'onda di 28,6^m non poteva essere la binodale. Egli attribuì il risultato erroneo della sua prima ricerca al metodo di Chrystal, di cui si era valso. In un prossimo lavoro, avremo modo di provare che l'errore non era da attribuirsi al metodo ma ad un coefficiente sbagliato sfuggito a Chrystal nello sviluppo della sua teoria relativa a laghi con curve pormali rettilinee; fu tale svista che condusse Defant a quei valori errati. Nello stesso errore incapparono anche i giapponesi Nakamura e Honda nello studio delle sesse del lago Hakoné (Giappone).

Le osservazioni fatte da Valentin e Teglio attribuiscono alla se-sa uninodale del lago di Garda il periodo medio di 43^m (¹³⁻¹⁴). La media dei valori osservati da Vercelli è di 42.3^m, mentre Defant nello spoglio

di 222 serie, consistenti in 5494 oscillazioni complete, ottenne un valore medio di 42.92^m, avendo osservato anche molti valori intorno ai 44^m. Possiamo quindi ritencre come uguale a 43^m il valore più probabile osservato per la sessa uninodale del Garda (fig. 1). I valori del periodo della sessa binodale presentano una estesa gamma fra i 20^m e i 25^m. La giustificazione di questa variazione piuttosto ampia sarà data in un prossimo lavoro.

Poichè il valore del periodo della sessa uninodale ottenuto da Vercelli (41,3^m) e, più ancora, quello trovato da Defant con il suo metodo (39.8^m) risultano sensibilmente inferiori a quello osservato, ho ritenuto non inutile applicare il metodo di Hidaka al lago di Garda. Data la complessità della curva normale relativa a quesio lago, solo un metodo che prescinda dalla forma di tale curva può infatti consentire di ottenere valori maggiormente approssimati. Oltre ai periodi e alla posizione dei nodi, avremo modo di calcolare anche la suddivisione delle ampiezze per tutta la lunghezza del lago, in corrispondenza delle prime quattro sesse.

Resta poi la questione relativa all'oscillazione di 30^m circa, che viene registrata nella parte settentrionale del lago e a Peschiera; ma di essa ci occuperemo in seguito.

In questa prima parte del lavoro mi sono valso, per i calcoli, dei dati ottenuti da Vercelli suddividendo il lago in 65 sezioni trasversali sopra una carta batimetrica al 50.000. La linea di valle nella parte meridionale del lago fu da Vercelli ritenuta media fra le linee di fondo massimo dei bacini di Desenzano e di Peschiera,

I dati tratti dal lavoro di Vercelli sono contenuti nelle colonne seconda e terza della tabella I, e si riferiscono alle grandezze x (ascisse) e v (superficie parziali).

Per il calcolo dell'integrale [20] Hidaka dà un procedimento che, consentendo di esprimere analiticamente $\sigma(z)$, permette una rapida integrazione. Nel nostro caso però, tale procedimento non può essere applicato, data la complessità della curva normale del Garda, quale risulta dalle determinazioni di Vercelli; pertanto, dovremo ricorrere all'integrazione numerica, tenendo presenti le condizioni agli estremi, corrispondenti a z=0, z=1.

Come risulta dalla tabella I, il calcolo ha dato per gli integrali i seguenti risultati:

 $I_0 = 3,8697487; I_1 = 1,7132035; I_2 = 0.9339320; I_3 = 0.5782506; I_4 = 0.3905257; I_5 = 0.2811714; I_6 = 0.2126242.$ [28]

Periodi. -- Traseurando il caso m=0, per m=1 dalla [22] si ha

$$6790159\lambda^{\circ} - 2562092\lambda + 166667 = 0$$

da cui

 $\lambda_1 = 0.8355, \lambda_2 = 2.9377$

Osserviamo ora che la superficie totale del lago è u=371432930 m²; inoltre g=9,807 m/sec². Data l'unità di misura prescelta (M), dalla [23] si ha per le sesse uninodale e binodale, rispettivamente:

 $T_{+} = 42^{\text{m}},97$; $T_{2} = 22^{\text{m}},92$.

Per m=2, dalla [23] e per le [28] si ha

$$7048126\lambda^{3} - 6670760\lambda^{2} + 1648038\lambda - 95238 = 0$$

che risolta dà per λ i valori

 $\lambda_1 = 0.08355$, $\lambda_2 = 2752$, $\lambda_2 = 5.877$.

Dalla [25] conseguono per le sesse uninodale, binodale e trinodale rispettivamente

$$T_1 = 42^{m}.95$$
 , $T_2 = 23^{m}.67$, $T_3 = 16^{m}.2$

Nel caso m=3, dalla [24] — dove si tenga conto delle a_i (i=0, 1, 2, 3, 4) — e ricordando le [28], si ottiene

$$4100\lambda^4 - 7907\lambda^3 + 4751\lambda^2 - 9905\lambda + 54 = 0$$

le cui radici sono

$$\lambda_1 = 08354$$
, $\lambda_2 = 2755$, $\lambda_3 = 5760$, $\lambda_4 = 9935$.

La [25] dà allora per le sesse unidodale, binodale, trinodale e quadrinodale

$$T_1 = 42^{\text{m}}97$$
, $T_2 = 23^{\text{m}}66$, $T_3 = 16^{\text{m}}365$, $T_4 = 12^{\text{m}}46$.

Determinare i periodi delle sesse di nodalità più elevata sarebbe praticamente impossibile con il metodo di Hidaka.

In genere appare superfluo proseguire la ricerea delle sesse di nodalità superiore a 3 o a 4. Quando lo si ritenga opportuno, può servire molto bene allo scopo il metodo delle *approssimazioni quartiche*, dovuto a Chrystal (¹⁵). Nell'esposizione, mi limiterò allo stretto recessario per la comprensione del metodo.

La curva normale sia una quartica della forma

$$\sigma = h(1 - v^2/a^2)^2$$

quartica concava. Per semplicità sarà supposto, come di consueto nella teoria di Chrystal, che il lago abbia larghezza uniforme e sezione trasversale rettangolare così che l'espressione per la profondità è

$$h(1-x^2/a^2)^2$$
 (*)

a essendo la distanza fra l'origine 0 e l'estremo A (fig. 2). L'origine 0

è scelta sulla verticale del punto più profondo, dove essa incontra la superficie del lago. Sia il lago quartico (concavo) tronco e sia PQ = i; in P e Q si ha x=p, x=q. Sia d la profondità in 0, e r, s rispettivamente le profondità in P. Q. Allora dall'espressione (*) per le profondità si deduce

$$p = a\sqrt{1 - \sqrt{r/d}}, q = \mp a\sqrt{1 - \sqrt{s/d}}; l = a\sqrt{1 - \sqrt{r/d}}$$

$$\pm \sqrt{1 - \sqrt{s/d}} = a\gamma, \text{essendo}$$

$$\gamma = \sqrt{1 - \sqrt{r/d}} \pm \sqrt{1 - \sqrt{s/d}}, \quad [29]$$

dove il segno superiore corrisponde al caso della figura, in cui P e Q sono da bande opposte rispetto ad O. In questo caso l'equazione differenziale [7] si muta nella

$$\frac{d^2 P}{dx^2} + \frac{4 \pi^2}{T^2} \frac{1}{(a^2 - x^2)^2} \frac{P}{gh} = 0.$$

essendo

$$h(x) z = u = P \sin nt$$
, con $n = \frac{2\pi}{T}$,

e

$$h(x) = h(a^2 - x^2)^2$$

esprimendo la profondità ad una distanza a dall'origine.

Chrystal, seguendo un metodo di Stokes, perviene alla soluzione

$$\xi h(a^2 - x^2)^2 = u = \mathcal{A}(a^2 - x^2)^{4/2} \sin \left\langle \frac{v\pi}{k} \left(\lg \frac{a+x}{a-x} - \lg \frac{a+p}{a-p} \right) \right\rangle$$
$$\sin n_x(t\tau) , \ \eta = -\frac{\varepsilon u}{\varepsilon x} \ ;$$

in cai è --- y avendo il valore espresso dalla [29] ---

$$T_{\rm v} = 2\pi l/\gamma \cdot \sqrt{gd \left(4v^2\pi^2/k^2 + 1\right)}$$
[30]

$$k = \lg \left\{ \frac{1 + \sqrt{1 - \sqrt{r/d}}}{1 - \sqrt{1 - \sqrt{r/d}}} \middle| \frac{1 \mp \sqrt{1 - \sqrt{s/d}}}{1 \pm \sqrt{1 - \sqrt{s/d}}} \right\}$$

Si nota subito che quando i punti P e Q tendono di più in più alle infinitamente poco profonde estremità teoriche A e A', i periodi di tutte le sesse tendono di più in più ad uguagliarsi nel comune valore $\pi l / \sqrt{gd}$ come risulta dalla [30], dove k tende all'infinito e γ a 2. Tale periodo è definito da Chrystal periodo della sessa anomala.

Quello che a noi qui interessa di mettere in risalto, ai fini dello scopo prefissoci, è che i rapporti dei periodi dipendono solo da una costante, propria del lago. Posto infatti

$$\varrho = k \, l/\tau \, \sqrt{gd} \tag{31}$$

$$\varepsilon = k^2 / 4\pi^2 \qquad [32]$$

la [30] diviene

$$T\mathbf{v} = \mathbf{o}/\mathbf{v}^2 + \mathbf{\varepsilon}$$
 [33]

e perciò

$$T_{\rm v}/T_{\rm t} = \sqrt{(1+\epsilon)/(v^2+\epsilon)} \qquad [34]$$

In generale, i periodi più lunghi delle sesse di un lago sono noti con sufficiente approssimazione. Se essi si suppongono dati, le equazioni

$$\varepsilon = (v^2 \ \frac{T_v^2}{T_1^2} \ - \ 1) \ / \left(1 \ - \ \frac{T_v^2}{T_2^2}\right), \quad \varrho = T_v \ \sqrt{v^2 + \varepsilon}$$
[35]

consentono di ottenere ε , ϱ , note le quali la [33] permette il calcolo dei periodi delle sesse di nodalità più elevata. Per grandissimi valori di v (grandi rispetto ad ε), la [33] può seriversi

 $T_{\rm v} = \rho/{\rm v};$

da cui consegue che i periodi delle sesse di più alta nodalità si approssimano ad una serie armonica.

Fatto p. es. y = 2, poiché (caso m = 3), $T_1 = 42^m, 97$, $T_2 = 23^m, 66$, daile [35] si ha

$$\epsilon = 305265$$
, $\rho = 49,09245$,

e quindi dalla (33),

$$T_{a} = 16^{m},09; T_{4} = 12^{m},16; T_{5} = 9^{m},76; T_{a} = 8^{m},15; T_{7} = 6^{m},99; T_{8} = 6^{m},12...$$

dove i valori di T_{\pm} e T_{\pm} pressochè coincidono con quelli ottenuti con il metodo di Hidaka (caso m=3).

Nodi. — Per la determinazione delle lince nodali delle oscillazioni libere vale la [27]. Occorre quindi determinare prima l'espressione di *u*. Limitiamoci ai casi m=2 e m=3. Per m=2, i valori dei rapporti $\frac{A_1}{A_0}$, $\frac{A_2}{A_0}$ conseguono da una coppia delle tre equazioni

$$\left(\frac{1}{3} - I_0 \lambda \right) A_0 + \left(\frac{1}{6} - I_1 \lambda \right) A_1 + \left(\frac{1}{10} - I_2 \lambda \right) A_2 = 0$$

$$\left(\frac{1}{6} - I_1 \lambda \right) A_0 + \left(\frac{2}{15} - I_2 \lambda \right) A_1 + \left(\frac{1}{10} - I_0 \lambda \right) A_2 = 0$$

$$\left(\frac{1}{10} - I_2 \lambda \right) A_0 + \left(\frac{1}{10} - I_3 \lambda \right) A_1 + \left(\frac{3}{35} - I_4 \lambda \right) A_2 = 0$$

Serviamoci, p. es., delle equazioni

$$\begin{pmatrix} \frac{1}{3} - I_0 \lambda + \left(\frac{1}{6} - I_1 \lambda\right) \frac{A_1}{A_0} + \left(\frac{1}{10} - I_2 \lambda\right) \frac{A_2}{A_0} = 0 \\ \frac{1}{10} - I_2 \lambda + \left(\frac{1}{10} - I_3 \lambda\right) \frac{A_1}{A_0} + \left(\frac{3}{35} - I_4 \lambda\right) \frac{A_2}{A_0} = 0 \\ [36]$$

Poichè per la sessa uninodale $\lambda = 0.08355$, con i valori di L. 1_1 , 1_2 , 1_3 , 1_4 che figurano tra le [28] risolvendo si ha

$$\frac{A_1}{A_2} = -43148 \quad ; \quad \frac{A_2}{A_0} = +00625.$$

Nel caso m=2 è

$$u = A_0 z (1-z) \left(1 + \frac{A_1}{A_0} z + \frac{A_2}{A_0} z^2 \right).$$

da cui, derivando rispetto a z e ricordando che nei nodi du/dz=0, si ottiene

$$4 \frac{A_{2}}{A_{0}} z^{2} + 3\left(\frac{A_{1}}{A_{0}} - \frac{A_{2}}{A_{0}}\right) z^{2} + 2\left(1 - \frac{A_{1}}{A_{0}}\right) z - 1 = 0$$
[37]

Avremo pertanto, con i valori già calcolati per Λ_1/Λ_0 e Λ_2/Λ_0 ,

 $02500z^{3} - 1.31319z^{2} + 2,86296z - 1 = 0$

Delle tre radici di questa equazione, una sola è compresa fra 0 e 1 — valori entro i quali può variare z —; essa è

 $z_1 = 0.43560$

L'uninodo corrisponde quindi, come risulta dalla tabella 1, alla sezione trasversale 38,265, e trovasi ad una distanza da Riva pari a 70,13 unità della carta, cioè sul terreno, pari a km 35,661.

Il valore di λ corrispondente alla sessa binodale è (per m=2)

 $\lambda = 0,2752$. La [36] dà $\frac{A_1}{A_0} = -3.2926$ e $\frac{A_2}{A_0} = +1,7321$. per cui ta [37] diviene

$$6,9284z^{3}-15,0741z^{2}+8,5852z-1=0$$

Delle tre radici di questa equazione, una è maggiore dell'unità: le altre due sono

$$_{2}z_{1} = 156285$$
 , $_{2}z_{2} = 69991$.

Le linee nodali della sessa binodale corrispondono perciò alle sezioni trasversali 20.895 per il binodo Nord e 49,48 per il binodo Sud; e distano da Riva km 17,792 e km 44.84 rispettivamente.

E passiamo alla sessa trinodale corrispondente a $\lambda = 0.5877$ (sempre nel caso m=2). Dalla [36] si ottiene $\frac{A_1}{A_0} = -5,8968, \frac{A_2}{A_0} = 6,7136$, che sostituiti nella [37] danno

$$26\,8544z^3 - 37\,8312z^2 + 13\,7936z - 1 = 0$$

la quale ammette le radici

$$z_1 = 0.09607$$
, $z_2 = 0.44833$, $z_3 = 0.86432$.

I nodi della sessa trinodale corrispondono quindi alle sezioni trasversali 14,65 pentil trinodo Nord, 38.7 per il trinodo medio e 57.59 per il trinodo Sud, mentre le distanze rispettive da Riva sono di km 11,408: 36,104 e 48,913

Caso m = 3.

In questo caso è

$$u = A_0 z (1-z) \left(1 + \frac{A_1}{A_0} z + \frac{A_2}{A_0} z^2 + \frac{A_3}{A_0} z^3 \right),$$

e poiché nei nodi è du dz=0, si deduce

$$5\frac{A_{a}}{A_{o}}z^{4} + 4\left(\frac{A_{z}}{A_{o}} - \frac{A_{z}}{A_{o}}\right)z^{a} + 3\left(\frac{A_{t}}{A_{o}} - \frac{A_{z}}{A_{o}}\right)z^{2} + 2\left(1 - \frac{A_{t}}{A_{o}}\right)z - 1 = 0.$$
[38]

D'altronde, per m=3 vale il sistema

$$\begin{split} & \left(\frac{1}{3}-I_0\lambda\right)A_0 + \left(\frac{1}{6}-I_t\lambda\right)A_t + \left(\frac{1}{10}-I_z\lambda\right)A_z + \left(\frac{1}{15}-I_z\lambda\right)A_z = 0\\ & \left(\frac{1}{6}-I_t\lambda\right)A_0 + \left(\frac{2}{15}-I_z\lambda\right)A_t + \left(\frac{1}{10}-I_z\lambda\right)A_z + \left(\frac{3}{105}-I_t\lambda\right)A_z = 0\\ & \left(\frac{1}{10}-I_z\lambda\right)A_0 + \left(\frac{1}{10}-I_z\lambda\right)A_t + \left(\frac{3}{35}-I_t\lambda\right)A_z + \left(\frac{1}{14}-I_z\lambda\right)A_z = 0\\ & \left(\frac{1}{15}-I_z\lambda\right)A_0 + \left(\frac{3}{105}-I_z\lambda\right)A_z + \left(\frac{1}{14}-I_z\lambda\right)A_z + \left(\frac{4}{63}-I_b\lambda\right)A_z = 0. \end{split}$$

I rapporti $\frac{A_{e}}{A_{0}}$, $\frac{A_{e}}{A_{0}}$, $\frac{A_{a}}{A_{0}}$ possono essere determinati con le seguenti tre equazioni:

$$\begin{pmatrix} \frac{1}{3} - I_0 \lambda + \left(\frac{1}{6} - I_1 \lambda\right) \frac{A_4}{A_0} + \left(\frac{1}{10} - I_2 \lambda\right) \frac{A_2}{A_0} + \left(\frac{1}{5} - I_3 \lambda\right) \frac{A_3}{A_0} = 0 \\ \frac{1}{10} - I_2 \lambda + \left(\frac{1}{10} - I_3 \lambda\right) \frac{A_4}{A_5} + \left(\frac{3}{35} - I_4 \lambda\right) \frac{A_5}{A_0} + \left(\frac{1}{14} - I_5 \lambda\right) \frac{A_2}{A_0} = 0 \\ \frac{1}{15} - I_3 \lambda + \left(\frac{3}{105} - I_4 \lambda\right) \frac{A_4}{A_0} + \left(\frac{1}{14} - I_5 \lambda\right) \frac{A_2}{A_0} + \left(\frac{4}{63} - I_6 \lambda\right) \frac{A_3}{A_0} = 0.$$

$$\begin{bmatrix} 39 \end{bmatrix}$$

Per la sessa uninodale è $\lambda = 0.08354$. Dalla [39], ricordando le [28], consegue

$$\frac{A_1}{A_0} = -19506 , \frac{A_2}{A_0} = -54971 , \frac{A_3}{A_0} = +36062 ,$$

perciò la (38) diviene

 $1.80310z^{4}-3.61132z^{5}+1.06395z^{2}+2.39012z-1=0,$

L'unica radice compresa fra 0 e 1 (le sole che valgono per il nostro problema) è

 $z_1 = -43183$

La sezione trasversale corrispondente all'uninodo è 38,14: la distanza da Riva dello stesso, km 35,534.

Per la sessa binodale è $\lambda = 0.2755$. Dalla [39] consegue

$$\frac{A_1}{A_0} = -3.4605$$
, $\frac{A_2}{A_0} = +2.3085$, $\frac{A_3}{A_0} = -.4247$,

e la (38) diventa

 $2,1235z^{1}-10,9328z^{5}+17,3070z^{2}-8,9210z+1=0,$

che ammette le due soluzioni comprese fra 0 e I

$$_{a}z_{1} = 15351$$
, $_{a}z_{a} = 70203$.

Le sezioni trasversali corrispondenti ai due nodi sono 20,615 per il binodo Nord e 49,58 per il binodo Sud, le distanze da Riva essendo di km 17,503 per il primo e di km 44,890 per il secondo.

La sessa trinodale corrisponde a $\lambda = 0.5760$. Dalle [39] si ha

$$\frac{A_1}{A_2} = -6,73805, \frac{A_2}{A_2} = +10,5504, \frac{A_3}{A_2} = -3,7162,$$

e la (38) diviene

$$18,5810z^{1}-57,0664z^{5}+51,8655z^{2}-15,4761z+1=0,$$

che ha le seguenti tre radici comprese fra 0 e 1:

$$z_1 = 0.08826$$
, $z_2 = 42019$, $z_3 = 84463$.

Abbiamo pertanto: trinodo Nord coincidente con la sezione trasversale 13.75 e distante da Riva km 10.526; trinodo medio coincidente con la sezione trasversale 37.71 e distante da Riva km 35,086; trinodo Sud coincidente con la sezione trasversale 56,61 e distante da Riva km 48,400.

Per la sessa quadrinodale si è trovato $\lambda = 0.9935$. La [39] da allora

$$\frac{A_1}{A_0} = -9,555; \frac{A_2}{A_0} = +23,534; \frac{A_3}{A_0} = -16,390.$$

mentre la [36] si serive

$$81,950z^4 - 159,696z^3 + 99,267z^2 - 21,110z + 1 = 0,$$

fe cui radiei sono

 $z_1 = 0.0548$, $z_2 = 3.1126$, $z_3 = 6.1798$, $z_4 = 92398$.

Consegue: quadrinodo Nord coincidente con la sezione trasversale 14.36 e distante da Riva km 3,165; quadrinodo medio Nord coincidente con la sezione trasversale 32,1 e distante da Riva km 29,310; quadrinodo medio Sud coincidente con la sezione trasversale 46,73 e distante da Riva km 43,441; quadrinodo Sud coincidente con la sezione trasversale 60.42 e distante da Riva km 50.423.

Riassumiamo nella :abella che segue i risultati delle ricerche compiute fino ad oggi sulle sesse del Garda.

			Г _і т	Т. т	Т _а т	Т. т	T ₅ m	T _a m	T ₇ m	T _s m
Valori	osservati	(Valentin-Teglio)	42.5-43	22.5-23						
1)	53	(Vercelli)	42.3	22.6	15.7	12.2	10.1	9	7.3	6.3
))	1)	(Defant)	43.0	21.80	15.0	12.1	9.9	8.8	7.3	_
	calcolati	(Vercelli)	41.3	22.97	16.13	12.51	10.2	8.63	7.47	5.5
))	я	1)			15.51	11.71	9.39	7.84	-6.72	5.8
5))	(Defant)	39.8	22.65						
Ð	Э	(Caloi)	42.97	23.66	16.36	12.46				
))))))			16,09	12.16	9.76	8.15	6.99	6.1

TABELLA II

Il nuovo valore per il periodo della sessa uninodale — che è la fondamentale fra le sesse di un lago — risulta coincidente con la media dei valori osservati. Il valore calcolato per la sessa binodale appare lievemente superiore a quello osservato. In realtà però, come già si è detto, i valori osservati per la sessa binodale abbracciano una gamma assai estesa, che va da 20^{m} ca. a 24^{m} ca.: gamma troppo vastaper ritenerla campo di variazione di un solo tipo di oscillazione libera. Proveremo infatti in un prossimo lavoro l'esistenza di un secondo tipo di sessa binodale, che interessa soltanto il bacino occidentale del Garda (Desenzano-Riva), avente un periodo di 21^{m} ca. Ciò spiega come la media dei valori osservati possa apparire, per la sessa binodale interessante l'intero lago, un po' inferiore al valore calcolato. Di fatto negli esempi di registrazione riportati ael citato

lavoro di Vercelli, sono numerosi ed ampli i gruppi d'onde con periodo di 24^m. Osservazione analoga per la sessa trinodale.

A dire il vero, uno studio sistematico delle osservazioni relative alle sesse del Garda non è stato ancora compiuto, quelli precedenti essendo relativi ad una sola stazione d'osservazione (Riva o Desenzano, con qualche registrazione di Salò o Toscolano) e ad epoche diverse. Un simile lavoro risulterà di grande interesse, anche per il controllo delle linee nodali e delle ampiezze degli spostamenti relativi.

Ecco le distanze da Riva dei nodi di alcune sesse, secondo i colcoli di Vercelli, di Defant e mici.

	Uninodo	Bine	odo	1	rinod	.,		Quad.	inodo	
ascisse	1.1.1	2 ^{<i>X</i>} 1	2 ^x 2	3 ^x 1	3 <i>x</i> 2	₃ x ₃	${}_{4}{}^{\mathbf{\Lambda}}{}_{1}$, ۲ ₂	4 <i>x</i> 3	\.X.
Vercelli	km 35.85	17.80	44,95	9,66	33.56	47.80				
Defant	32.5	16.5	42.2							
Caloi $\begin{cases} m=3\\m=2 \end{cases}$	35.53 35,66	17.51	44.89 44.84	$\frac{10.53}{11.44}$	35.09 36.10	48.40 48.91	8.165	29.31	43-44	50.42

LE SESSE DEL LAGO DI GARDA

Fig. 4.

Si noterà come i nodi non risultino simmetricamente disposti nei confronti della lunghezza del lago: essi appaiono più o meno spostati verso Sud, a causa delle basse, allargate sezioni meridionali del fago.

Distribuzione delle ampiezze. - Le ampiezze sono date dalla [26]. Ci limiteremo al caso m=3. Si ha allora senz'altro

$$\eta = a A_{b} + 5 \frac{A_{a}}{A_{b}} z^{i} + 4 \left(\frac{A_{a}}{A_{b}} - \frac{A_{a}}{A_{b}} \right) z^{i} + 3 \left(\frac{A_{i}}{A_{b}} - \frac{A_{a}}{A_{b}} \right) z^{i} + 2 \left(1 - \frac{A_{i}}{A_{b}} \right) z - 1$$

Per la sessa uninodale del Garda avremo

	0	1			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-		-		-	-	-	-
	sessa quudrinoda		0.133	861.	-250	- 319	378		601	112	1.0	- 184	124	058	.022	101.	- 189				000	510	200	203	433	160	[0]	151	410	745	- 1.044	- 1.411		
	sessи trinodale		0.248	161	HI.		020	121	200	386	117	172	-136	. 495	661.	161	480	- +53	115	369	112	067	120		152	282	- 430	582		- 854	696	- 1.096		
ى:	sessa bir o lale		- 0,436	111.	. 116		121	5113 5113	012	100	236	202	.172	111.	101.		.027	020	190.	- 106	641· -	195	426	323	359	101	- 440	823.	508	- 534	- 555			-
	sossa uninodale		01210	- 1375	1057	0585	6200*	taut	1409	1011	- 2112	2638	2881		3282			3893	4690	12.62		2004.	0005	5079	- 5919	- 5367					0109	6159		
x	km		31.273	32.290	33,307	31.324	59.392	101-00	38.138	39.510	11.392	42.053	42.612	13.070	43.578	180.12	44.595	19.101	45.511	610.95	920-44	12 212	101010	48.613	19.121	49.680	50.189	50.748	51.308	51.816	52.325	52,884		
Inol	zəg		34	33	36	25	200	10		: :	43	11	12	16	11	42	46	02	10	22		1	3	125	200	20	60	61	62	63	64	65		
	sessa quadrinodale		- 1.000	938	890	1111	1025	100	315	254	.137	- 036	190.	IH	- 212	-261		202	-365		274.		101	- 416	386	- 354	- 312	- 264	201		010		059	-
	sessa trinodale		1.000	126.	616.	959		110.	0.97	418	- 317	227	136	056		077	133	. 190	- 210	286	975	100		436	452	. 158	.458	. 450	133	100		- 312	302	
.ر. ر	sessa binodale		- 1.000		953	016	C12.	101.	1010	642	112 -	- 511	415	385		276	- 223	-	- 126	010.	120	010	101	- 143	- 193	231	- 268	302	335			408	123	
	sessa uninodale		- 1.0000		9872	6926	9508	1000	2100	8938	8709	- 8187	- 8243	8010	1222		7348	7106	. 6869			10102	2286	5297	1927	- 4619	- 4291	3956	3585		2831	2487	- 2147	-
×	km		0.000	.305	.539	1.068	2.130	0110	5,187	5.848	6.763	7.780	8.848	9.763	10.730	11.746	12.814	13.831	14.848	10.865	10.000	18 016	19 933	20.950	22.171	23.188	24,205	25,222	26.239	27.205	28.222	29.188	30.307	-
inoi	zəs		1	e1 :	. 24	÷ 1	0 4	- 1-	• 00	6	10	11	12	13	11	12	9	11	25 0	61	10	10	1 6	10	25	26	2.2	100	29	30	31	32	33	-

 $\eta = a \mathcal{A}_0 (1,80310z^4 - 3,61132z^3 + 1,06395z^2 + 2,39012z - 1)),$

per la hinodale

 $\eta = -a A_0 (2, 1235z^4 - 10, 9328z^3 + 17, 3070z^2 - 8, 9210z + 1),$

per la trinodale

 $\eta = -\pi A_0 (18,5810z^4 - 57,0664z^3 + 51,8655z^4 - 15,4763z + 1),$

e, infine, per la quadrinodale

 $\eta = -aA_{0} (81,950z^{2} - 159,696z^{3} + 99,267z^{2} - 21,110z + 1),$

Facendo variare z nelle quattro precedenti equazioni, si ha l'andamento dell'ampiezza per le quattro sesse considerate. I risultati del calcolo sono contenuti nella tabella III, in cui è $\zeta = \eta/aA_{\alpha}$

Le figg. 3 e 4 danno una rappresentazione grafica dell'andamento dell'ampiezza delle prime quattro sesse.

Si noterà che nella parte Sud del lago le sesse uninodale e binodale presentano un'ampiezza che è circa i 6/10 di quella che si verifica nella parte Nord, dove il lago, anche se più profondo, è però in compenso molto stretto. La sessa trinodale si presenta agli estremi pressochè con la stessa ampiezza, mentre la quadrinodale ha a Sud un'ampiezza che è circa una volta e mezza quella che si verifica a Nord; e ciò si spiega con il notevole spostamento verso Sud dei nodi di questa sessa, superiore a quello delle altre sesse, già molto accentuato.

Roma - Istituto Nazionale di Geofisica - marzo 1946.

RIASSUNTO

In questa prima parte del lavoro dedicato alle sesse del Garda vengono determinati i periodi delle sesse interessanti l'intero lazo, mediante l'estensione di un metodo di Hidaka, che consente di prescindere dalla forma della "curva normale" del lago. I periodi così ottenuti (42^m, 96; 23^m, 66; 16^m, 36; ...), specie quello della sessa fondamentale, si mostrano più conformi alle osservazioni di quelli dati da precedenti ricerche.

Si determinano poi i nodi e l'andamento delle ampiezze in corrispondenza delle prime quattro sesse, mettendo in evidenza la notevole disimmetria distributiva di dette grandezze, dovuta alla particolore

configurazione del lago, che nella parte meridionale presenta la massima estensione e la minima profondità.

BIBLIOGRAFIA

⁽¹⁾ CHRYSTAL G.: On the hydrodynamical Theory of Seiches. Transactions of the Royal Society of Edinburgh, XLI (1905), XLN (1906), XLNI (1907-8).

(2) PROUDMAN J.: Free and forced longitudinal Tidat Motion in a Lake. Proceedings of the London Monthematical Society — Second Series — XIV (1915).

(³) MATTEVZI L.: Sulla determinazione delle « seiches » forzate e delle sesse libere mediante un'equazione integrale di Volterra di seconda specie. Rend. Acc Naz. dei Lincei, el. sc. fis., mat. e nat. XXXIII, s. 5. (1924).

(4) Doopson A. T. e collaboratori: Theoretical Determination of the Longitudinal Sciences of Lake Geneva 5, Transactions of the Royal Society of Edinburgh. L11, (1917-1921).

(*) HIDAKA K.: Application of Ritz's Variation Method to the Determination of Sciches in a Lake 5. The Memoirs of the Imperial Marine Observatory, VI. 2. (1936).

(⁶) NEUMANN G.: Eigenschwingungen der Ostsee, Ans der Archiv der Deutschen Seewarte und des Marineobservatoriums, 61, (1941).

(7) MAGRINI G. P.: Limnologia, Manuali Hoepli (1907).

(8) VERCELLI F.; Le teorie idrodinamiche delle sesse... Mem. 1st, Lombardo Sc. e Len, XXI. (1909).

(*) DLEANT A.; Ueber die stehenden Seespiegelschwankungen (Seiches) in Riva am Gardasee. Sitzungsberichte der K. Akademie der Wissenschaften — Wien Mathematisch. Naturwiss. — KL. CXVII. Abt. II. (1908).

⁽¹⁰⁾ DEFANT A.: Le sesse del lago di Garda, Nuovo Cim, XX, 35, (1910).

(¹¹) VERCELLI Γ.: Risposta alla Nota del Dott. Defant « Sulle sesse del lago di Garda ». Nuovo Cim. XX, 357. (1910).

(12) DELVNT A.: Neue Methode zur Ermittlung der Eigenschwingungen (Seiches) von abgeschlossenen Wassermassen (Seen, Buchten usw.). Ann. der Hydroge, usw., XLVI, II, (1918).

(15) MAGRINI G. P.: I recenti studi sulle sesse e le sesse dei laghi italiani. Biv. geogr. ital., XII, 291, (1965).

(14) TEGLIO A.: Le sesse del lago di Garda. Rend. Acc. naz. Lincei, XIV. el, sc. fis., mat. e pat., (1905).

(¹⁵) CHRYSTAL G.: Proceedings of the Royal Society of Edinburgh, N. 2, 627, (1903-1905): Transactions della stessa Società, XLL, 613,