UEBER DAS SPEKTRUM SEISMISCHER WELLEN, DIE DURCH SPRENGUNGEN ERZEUGT WERDEN

H. MENZEL

Die Gesetzmässigkeiten des Spektrunus seismischer Wellen, die durch Sprengungen erzeugt werden, sind noch verhältnismässig wenig erforscht. Man weiss, dass das Spektrum der Mintrop-Welle sehr von der Entfernung des Seismographen vom Sprengpunkte abhängig ist. In kleinen Entfernungen ist die vorherrschende Frequenz sehr hoch - oft grösser als 100 Hz - während diese Welle in sehr grossen Entfernungen eine Frequenz von nur wenigen Hz besitzt. Bei den reflektierten Wellen beobachtet man im allgemeinen Frequenzen, die in einem nicht allzu grossen Bereich um 50 Hz liegen. Auch bei diesen Wellen kann man Veränderungen des Spektrums mit der Entfernung und mit der Tiefe der reflektierenden Schichten feststellen. Aus diesen Erfahrungstatsachen folgt, dass nicht nur die Vorgänge hei der Sprengung, sondern auch die bei der Fortpflanzung der Wellen in der Erde die Ausbildung des Spektrums der Wellen beeinflussen. Die folgenden Überlegungen befassen sich im Wesentlieben mit einigen Effekten, welche Veränderungen des Spektrums sprengseismischer Wellen zur Folge baben. Aber auch auf die Ausbildung des primären Spektrums durch die Vorgänge bei der Sprengung soll eingegangen werden.

Sucht man nach Erscheinungen, die eine Veränderung des Spektrums seismischer Wellen bewirken, so gerät man nicht durch einen Mangel an derartigen Effekten in Verlegenheit, sondern eher dadurch, dass es deren zu viele gibt. Wohl bekannt ist in dieser Hinsicht die Rolle, welche die Abweichung des von der Welle durchlaufenen Bodens von einem rein elastischen Medium spielt. Es ist aber nicht beabsichtigt, diese Dinge hier zu diskutieren. Die Erdkruste wird also im Rahmen dieser Arbeit als ein rein elastischen Medium behandelt werden. Damit soll allerdings nicht behauptet werden, dass Viskosität, innere Reibung oder elastische Nachwirkung für die Ausbildung der Spektren ohne oder auch nur von geringer Bedeutung seien. Das Ziel dieser Untersuchung ist nicht die vollständige Lösung

^{*} La traduzione in lingua italiana della presente Nota è riportata a pag. 433.

des Frequenzproblems, sondern die Vorhereitung dazu. Hier werden nur solche Effekte behandelt werden, die im rein elastischen Medium eine Veränderung des Wellenspektrums hewirken. Im Wesentlichen handelt es sich dahei nur um zwei verschiedene physikalische Erscheinungen: 1.) Interferenz. 2.) Energiezerstreuung durch Reflexion, Brechung und Beugung

Die Bedeutung der Interferenz für die Aushildung des Spek-

trums ergiht sich aus Umstande, dass dem die Sprengungen eini-Meter unterhalh ⊈e der Erdoherfläche durchgeführt werden. Es interferieren dann im tieferen Untergrunde zwei Wellen: Die diretke durch die Sprengung erzeugte Welle, und die an der Oberfläche reflektierte Welle, Je nach dem Gangunterschied dieser heiden Wellen in einem hestimmten Punkte werden dort bestimmte Frequenzbereiche des Spektrums

verstärkt, andere geschwächt werden. Nimmt man etwa an, dass der Sprengpunkt 15 m tief unter der Erdoherfläche liegt, und dass die Wellengeschwindigkeit in der ohersten Erdschicht 1500 m/s its, so beträgt der Gangunterschied in einem Punkte, der senkrecht unter dem Sprengzentrum liegt, 20 ms. Im Spektrum der Welle wird also der Frequenzbereich um 50 Hz verstärkt werden. Nun soll der Gangunterschied in einem Punkte P berechnet werden, welcher vom Epizentrum den Abstand x hat (s. Fig. 1.). Die reflektierende Ehene liege in der Tiefe H und sei parallel der Erdoberfläche. ζ sei das Sprengzentrum, ζ^* sein and der Erdoherfläche gespiegeltes Bild, B das Bild von ζ . B^* das von ζ^* , heide an der reflektierenden Ebene im Untergrunde gespiegelt. Ist v die Wellengeschwindigkeit, so herechnet man den Gangunterschied in P nach der Formel:

UFBER DAS SPEKTRUM SEISMISCHER WELLEN

$$\Theta = \frac{8Hd}{l_1 + l_2} \frac{1}{v} = 4 \frac{H}{l} \frac{d}{v}$$
[1]

wobei l das Mittel aus i, und ist lo ist. Aus Gl. [1] ergibt sich:

1.) Bei festem H und x verschieht sich im Spektrum der durch Interferenz verstärkte Frequenzbereich zu kleineren Werten, wenn die Tiefe des Sprengpunktes grösser wird.

2.) Bei festem d und x liegt der verstärkte Frequenzbereich bei kleineren Werten, wenn die reflektierende Ebene tiefer liegt.

3.) Bei festem *H* und *d* verschiebt sich der verstärkte Frequenzbercich zu grösseren Werten hin, wenn *x* anwächst.

Rein qualitativ sind diese drei Erscheinungen bei sprengseismischen Beobachtungen tatsächlich festzustellen. Eine quantitative Prüfung, die allein über Wert oder Unwert einer Theorie entscheiden kann, ist begonnen worden. Allerdings ist Gl. [1] noch viel zu primitiv, um die wirklichen Verhältnisse quantitativ wiedergeben zu können. Eine Verfeinerung hat vor allem dem Einfluss der sog. Verwitterungszone Rechnung zu tragen. Darüber wird später berichtet werden.

Der Hinweis darauf, dass der Frequenzbereich von etwa 50 Hz durch Interferenz verstärkt wird, genügt nicht, um das Vorberrschen dieser Frequenzen in den reflektierten Wellen zu erklären. Wenn nämlich dieser Frequenzbereich im primären Spektrum nur eine untergeordnete Rolle spielt, so ist es nicht leicht einzuseben, wie er durch Interferenz so weit verstärkt werden kann, dass er schliesslich dominiert. Es ist also eine wichtige Aufgabe, einige Überlegungen über die Verteilung der Frequenzen im primären Spektrum anzustellen. Für dieses Vorhaben liefert eine kürzlich veröffentlichte Arbeit von H. Morris (1) den besten Ansatzpunkt. Morris unterscheidet im Ablauf der Vorgänge nach Auslösen einer Explosion drei Stadien. Im ersten, sehr rasch verlaufenden Stadium, wird der Sprengstoff in ein sehr heisses und bochgespanntes Gas verwandelt, ohne dass die Wandung des Schussbohrloches merklich nachgibt. Im zweiten Stadium breitet sich eine Stosswelle kugelförmig unter Zertrümmerung des Gesteins im Medium aus, bis sie einen kritischen Radius R erreicht. Dieser "t dadurch gekennzeichnet, dass der Maximalbetrag der durch die Stosswelle im Gestein erzeugten elastischen Spannung so weit abgenommen hat, dass der weitere Vorgang - das dritte Stadium also nach den Gesetzen der Elastizitätstbeorie verläuft. Dieses dritte Stadium soll hier näher betrachtet werden. In einem nach allen Richtungen hin unbegrenzten, homogenen und isotropen elastischen Medium

sei eine kugelförmige Höhle vom Radius R vorhanden. Auf die Kugelfläche werde von innen her ein nach einem beliebigen Zeitgesetz Φ (t) verlaufender Normaldruck ausgeüht. Es soll die elastische Welle herechnet werden, welche von der Kugelfläche abläuft.

Aus Symmetriegründen ist nur eine longitudinale, kugelsymmetrische Welle möglich. Legt man den Ursprung eines räumlichen Polarkoordinatensystems in den Mittelpunkt der Hohlkungel, so ist die Lösung des Problems nur von einer Raumkoordinaten, der Länge r

des Radiusvektors abhängig, und der Vektor σ der elastischen Verschiehung hat nur eine Komponente σ_r in Richtung des Radiusvektors. Es ist

$$\sigma = \text{grad } F(r, t)$$
 [2]

d. h.

$$\sigma_r = \frac{\partial F}{\partial r} \qquad [2 a]$$

Aus der Gleichung des Elastizitätstheorie:

$$\varrho \frac{\partial^2 \sigma}{\partial t^2} = (\lambda + 2\mu) \text{ grad div } \sigma - \mu \text{ rot rot } \sigma \qquad [3]$$

folgt dann für F die Differentialgleichung:

$$\varrho \frac{\partial^2 F}{\partial t^2} = (\lambda + 2\mu) \Delta F \qquad [3 a]$$

Dabei bezeichnet ρ die Dichte des Mediums, und λ und μ sind seine Lamésche Konstanten. Die Normalkomponente des Spannungstensors herechnet man durch:

$$N = (\lambda + 2\mu) \operatorname{div} \sigma - 4\mu \frac{1}{r} \sigma_r \qquad [4]$$

Das ergibt:

$$N = (\lambda + 2\mu) \Delta F - 4\mu \frac{1}{r} \frac{\partial F}{\partial r}$$
 [4 a]

Zu der Differentialgleichung [3 a] tritt nun noch die Randbedingung:

$$(\lambda + 2\mu) \Delta F - 4\mu \frac{1}{R} \frac{\partial F}{\partial r} + \Phi(t) = 0$$
, für $r = R$ [5]

Aus [3 a] folgt die Lösung:

$$F = \frac{1}{r} H(r - v t)$$
[6]

wohei

$$v = \frac{1}{\sqrt{\frac{\lambda + 2\mu}{\varrho}}}$$
 [7]

gilt, und H eine zunächst noch helichige Funktion ist. Aus [6] und [5] erhält man:

$$\frac{A+2\mu}{R}H''(R-vt) - \frac{4\mu}{R^2}H'(R-vt) + \frac{4\mu}{R^3}H(R-vt) + \Phi(t) = 0$$
[8]

Setzt man R - vt = z und $\Phi(t) = \Psi(z)$, so kann man H aus der gewöhnlichen Differentialgleichung

$$\frac{\lambda + 2\mu}{R} H''(\xi) - \frac{4\mu}{R^2} H'(\xi) + \frac{4\mu}{R^3} H(\xi) = -\Psi(\xi) \qquad [8 a]$$

hestimmen. Die Lösung ist:

$$H(r-vt) = \frac{i}{4} \frac{h^{\circ}}{\varrho v} \frac{\lambda+2\mu}{\sqrt{\mu(\lambda+\mu)}} \int_{0}^{v} \left[e^{\sigma_{1}\left(t-\frac{r-R}{v}-\tau\right)} - e^{\sigma_{2}\left(t-\frac{r-R}{v}-\tau\right)} \right] \Phi(\tau) d\tau$$
[9]

Die Grössen σ_1 und σ_2 berechnet man aus:

$$\sigma_4 = \frac{v}{R} \left(-\frac{2\mu}{\lambda + 2\mu} - 2i \frac{j' \overline{\mu(\lambda + \mu)}}{\lambda + 2\mu} \right) , \quad \sigma_2 = \frac{v}{R} \left(-\frac{2\mu}{\lambda + 2\mu} - 2i \frac{j' \overline{\mu(\lambda + \mu)}}{\lambda + 2\mu} \right)$$
[10]

Das Auftreten der e -Funktion mit komplexem Argument im Integranden von [9] bedeutet, dass die Bodenbewegung in jedem Punkte einen Anteil entbält, der als eine gedämpfte Eigensebwingung bezeichnet werden kann. Die Frequenz dieser Eigenschwingung ist:

$$\omega = 2 \frac{v}{R} \sqrt{\frac{\mu(\lambda + u)}{\lambda + 2\mu}}$$
[11]

und ihre Dämpfungskonstante

$$\varepsilon = 2 \frac{v}{R} \frac{\mu}{\lambda + 2\mu}$$
[11 b]

Um Gl. [9] näher zu studieren, muss man die Funktion $\Phi(t)$ kennen. Leider weiss man zur Zeit noch nichts Genaues über diese Funktion, es wird aber eine gewisse Annäherung an die Wirklichkeit darstellen, wenn man mit der Annahme:

$$\Phi(t) = 0 \qquad -\infty < t < 0 \Phi(t) = a t e^{-\alpha t} \qquad fir \qquad 0 \le t < \infty \qquad , \quad \alpha > 0$$

$$[12]$$

rechnet. Aus [12], [9], [6] und ([2 a] folgt dann:

$$\sigma_{r} = \frac{a R^{2}}{2! \sqrt{\mu (\lambda + \mu)} [(\alpha - \varepsilon)^{2} + \omega^{2}]^{2}} \frac{1}{r} \cdot \left(\left\{ \frac{v}{r} - \varepsilon \right\} [(\alpha - \varepsilon)^{2} - \omega^{2}] + 2\omega^{2} (\alpha - \varepsilon) \right\} e^{-\varepsilon (t - \frac{r - R}{v})} \sin \omega \left(t - \frac{r - R}{v} \right) + \omega [(\alpha - \varepsilon)^{2} - \omega^{2} - 2 \left(\frac{v}{r} - \varepsilon \right) (\alpha - \varepsilon)] e^{-\varepsilon (t - \frac{r - R}{v})} \cos \omega \left(t - \frac{r - R}{v} \right) - \frac{((v - \varepsilon)^{2} - \omega^{2}] + 2\omega^{2} (\alpha - \varepsilon)}{v} e^{-\varepsilon (t - \frac{r - R}{v})} \cos \omega \left(t - \frac{r - R}{v} \right) - \frac{((v - \varepsilon)^{2} - \omega^{2}] + 2\omega^{2} (\alpha - \varepsilon)}{v} e^{-\omega (t - \frac{r - R}{v})} e^{-\alpha (t - \frac{r - R}{v})} - \frac{((\alpha - \varepsilon)^{2} - \omega^{2} - 2(\frac{v}{r} - \varepsilon)(\alpha - \varepsilon)) [1 + (\alpha - \varepsilon)(t - \frac{r - R}{v})] e^{-\alpha (t - \frac{r - R}{v})} \right)}{[13]}$$

Die heiden ersten Terme der Gl. [13] stellen die sich durch das Medium fortpflanzende gedämpfte Eigenschwingung, die heiden letzten Terme die Fortpflanzung der Störung dar. Amplitude und Phase der Eigenschwingung sind von r ahhängig. Daher verändert sich das Bild der Schwingung von Punkt zu Punkt. Gilt allerdings $r \ge n$ so ist der Schwingungsverlauf nahezu räumlich konstant.

Die numerische Auswertung von Gl. [13] erfordert Annahmen üher λ , μ , v. R, α und α . Näherungsweise kann man $\lambda = \mu$ setzen. Für die Geschwindigkeit im Diluvium kann man mit einiger Berechtigung v = 1,6m/ms annehmen. Die Grösse R ist von der Sprengstoffmenge ahhängig. Es ist schwer, für diesen Wert eine sichere Ahschätzung zu erlangen, da wir noch zu wenig darüher wissen. Unter normaler Verhältnissen wird R in einem Wertehereich von einigen decm bis zu wenigen m liegen. Es werde hier R = 1 m angenommen. Man erhält dann:

$$\omega = 1,51 \text{ ms}^{-4}$$
 [14 a]

d. h.

$$\mathbf{v} = \frac{\omega}{2\pi} = 240 \, H_{\rm z} \qquad [14 \, \rm h]$$

und

$$\epsilon = 1,067 \text{ ms}^{-4}$$
 [14 e]

Infolge der Unsichrheit in der Annahme von R, können o und E so-

UEBER DAS SPEKTRUM SEISMISCHER WELLEN

wohl halb so gross, wie auch doppelt so gross sein. Das Verhältnis ω/ϵ wird aber durch diese Unsicherheit nicht berührt und beträgt

$$\frac{\omega}{\varepsilon} = \sqrt{2} \qquad [14 d]$$

wenn man nur $\lambda = u$ setzt. Das logarithmische Dekrement beträgt also

$$\delta = 4.44$$
 [14 e]

Noch unsicherer als R ist eine Annahme über a. Der schon zitierten Arbeit von Morris kann man entnehmen, dass a etwa von derselben Grössenordnung wie ε sein könnte. Da für den Fall $a=\varepsilon$ die Formel [13] besonders einfach wird, soll mit dieser Annahme zunächst gerechnet werden. Die Grösse a ist für die Zwecke dieser Untersuchung ohne Belang, da sie die Form der Schwingung nicht beeinflusst. Es werde nun nochr >> Rangenommen und $t - \frac{r}{v} = t'$ gesetzt. Dann ergibt sich die Bodenbewegung aus [13]:

$$\sigma_{\rm r} = \frac{aR^2}{2\sqrt[4]{\mu(\lambda+\mu)}\omega} \frac{e^{-\varepsilon t}}{r} \left[\sqrt{1,5}\sin\left(\omega t'-0,96\right)+1-\varepsilon t'\right] \quad [15]$$

In Fig. 2 ist diese Schwiungung durch die ausgezogene Linie dargestellt. Die gestrichelte Linie giht ein Bild vom zeitlichen Verlauf des Störimpulses $\Phi(t) = a t e^{-\alpha t}$.

Um der Unsicherheit in derAnnahme von α Rechnung zu tragen, werde noch der extreme Grenzfall $\alpha >> \varepsilon$ behandelt. In diesem Falle folgt aus [13]:

$$\sigma_{r} = -\frac{a R^{2} \omega}{2 \sqrt[3]{\mu(\lambda+\mu)} \alpha^{2}} \frac{e^{-\varepsilon t'}}{r} \left[\sqrt{1,5} \sin (\omega t'-0,96) + e^{-\alpha t'} (1+\alpha t') \right]$$
[15 a]

Der 2. Term in der eckigen Klammer von [15 a] ist nur für extrem kleine Werte von t' merklich. Abgeseben vom allerersten Teil der Kurve, stellt [15 a] die reine Eigenschwingung dar: Die Behandlung des anderen Grenzfalles $\alpha << \varepsilon$ ist nicht erforderlich. Es ist unwahrscheinlich, dass der Störimpuls beim kritischen Radius *R* bereits auf viele ms auseinandergezogen ist.

Aus Fig. 2 und den Gleichungen [15] und [15 a] geht hervor, dass die Eigenfrequenz $v = \frac{0}{2\pi}$ im primären Spektrum der ExplosionsH. MENZEL

welle vorherrschen muss. DieseFrequenz beträgt unter den hier gemachten Annahmen 240 llz. Sicherlich sind diese Annahmen nicht gut hegründet, es ist aher kaum möglich, sie soweit abzuändern, dass die Eigenfrequenz unter 100 Hz liegt. Die in der Sprengseismik heohaehteten Spektren werden also wahrscheinlich durch eine wesentliche Modifikation des primären Spektrums entstehen. Es kam bezweifelt werden, dass der im Vorbergehenden diskutierte Interferenzeffekt al-

Fig. 2

lein diese Veränderung des primären Spektrums bewirken kann. Bei dem raschen Abklingen der Bewegung nach [15] kann man sich das Zustandekommen dieses Interferenzeffektes bei normalen Schussbohrlochtiefen kaum vorstellen. Es müssen noch andere Effekte auftreten, welche erstens die hohen Frequenzen hesonders stark schwächen, und zweitens eine Verlängerung des ganzen Impulses zur Folge hahen.

Kürzlich haben Clewell und Simon (²) eine Arheit veröffentlicht, in der die Anschauung vertreten wird, dass die Erdkruste wie ein Bandfilter wirkt. Die Schwächung der tiefen Frequenzen soll ein Interferenzeffekt sein, der dann eintritt, wenn die Wellenlänge gross ist gegenüber der Dicke von Schichten, die in das homogene Medium eingelagert sind und sich von diesem durch Dichte und elastischen Konstanten unterscheiden. Das Auslöschen der hohen Frequenzen wird

nach Ansicht dieser Autoren, abgesehen von der Viskosität, durch Streuung an kleinen Inhomogenitäten verursacht, wie bei der Rayleigh-Streuung des Lichtes. An dem Vorhandensein derartiger dünner Schichten und Inhomogenitäten kann kein Zweifel sein. Eine quantitative Abschätzung ihres Einflusses auf durchgehende Wellen ist überaus schwierig. Für den Fall einer eingelagerten Schicht soll das unter der — allerdings sehr speziellen — Voraussetzung versucht werden, dass die Wellennormale senkrecht auf den parallel angenommenen Schichtgrenzen steht.

Der Nullpunkt des Koordinatensystems werde in die obere Begrenzungsebene der eingelagerten Schicht d gelegt. (s. Fig. 3.).

Die z-Achse zeige senkrecht nach unten. d sei die Schichtdicke. Oberhalb und unterhalb der Schicht sei e_1 die Dichte λ_1 und μ_1 die

$$\left\{\begin{array}{ccc} \rho_{1}\lambda_{1}\mu_{1} & \chi \\ \hline \rho_{2}\lambda_{2}\mu_{2} \\ \hline \rho_{1}\lambda_{1}\mu_{1} \\ \chi \\ Fig. 3 \end{array}\right.$$

Laméschen Konstanten. Die entsprechenden Werte in der Schicht seien $\varrho_z, \lambda_z, \mu_z$. Senkrecht zur Ebene z = 0 falle eine ehene longitudinale Welle ein. An der Einfallsebene tritt eine Aufteilung der Wellenenenergie ein. Ein Teil der Energie wird in das obere Medium reflektiert, ein anderer Teil dringt in die Schicht ein. An der Ebene z = derfolgt derselbe Vorgang. Der von dieser Fläche reflektierte Energieanteil fällt von unten auf die Ebene z = 0. wo wiederum Energieaufteilung stattfindet. Der Vorgang wiederholt sich fortgesetzt. Von jeder der beiden Grenzflächen wird also nach oben und nach unten eine — wie man leicht sieht — konvergierende unendliche Reibe von Wellen abgestrahlt, die miteinander interferieren. Die einfallende Welle werde durch:

$$w_{i} = A_{i} e^{i\omega(t-z a_{i})}$$
 [16 a]

dargestellt, wobei w_1 die Verrückung (in der z-Richtung) und a_1 die Geschwindigkeit im oberen Medium ist. Von der Flüche z = Owird nach oben die Welle

$$\overline{w}_{i} = B_{i} e^{i\omega(t + \mathbf{z}/a_{i})}$$
[16 b]

und nach unten in die Schicht die Welle:

$$w_{2} = A_{2} e^{i\omega(t-z_{1}a_{1})}$$
 [16 c]

abgestrablt. Entsprechend läuft von der Ebene z = d in die Schicht die Welle:

$$\overline{w}_2 = B_2 e^{i\omega(t + z/a_z)}$$
[16 d]

und nach unten die Welle

$$w_3 = A_3 e^{i\omega(t-z a_1)}$$
 [16 e]

ab. w_1 , w_2 , w_2 und w_3 sind dabei Wellen, die sich durch die eben beschriebene Interferenz ergeben. Es gilt:

$$a_{v} = \sqrt[]{\frac{\lambda_{v} + 2\eta_{v}}{\varrho_{v}}} \quad (v = 1, 2)$$
[17]

und die Konstanten B_1 , A_2 , B_2 , A_3 berechnet man aus den Randbedingungen für z = 0 und z = d. Die Randbedingungen verlangen Stetigkeit der Verrückungen und der Normalkomponenten des Spannungstensors. Man findet das Gleichungssystem:

$$A_{1} + B_{1} = A_{2} + B_{2}$$

$$\varrho_{1}a_{1} (A_{1} - B_{1}) = \varrho_{2}a_{2} (A_{2} - B_{2})$$

$$A_{2}e^{-i\frac{\omega}{a_{1}}} + B_{2}e^{+i\frac{\omega}{a_{2}}} = A_{3}e^{-i\frac{\omega}{a_{1}}}$$

$$[1\bar{a}]$$

$$\varrho_{2}a_{2} (A_{2}e^{-i\frac{\omega}{a_{2}}} - B_{2}e^{+i\frac{\omega}{a_{2}}} = \varrho_{1}a_{1} A_{3}e^{-i\frac{\omega}{a_{1}}}$$

Setzt man zur Abkürzung

$$\frac{\varrho_2 a_2}{\varrho_4 a_4} = p \tag{19}$$

so erhält man die Lösung:

$$B_{i} = \frac{i\left(\frac{1}{p} - p\right)\sin\frac{\omega d}{a_{2}}}{2\cos\frac{\omega d}{a_{2}} + i\left(\frac{1}{p} + p\right)\sin\frac{\omega d}{a_{2}}} A_{i} \qquad [20 a]$$
$$A_{3} = \frac{2e^{i\frac{\omega d}{a_{1}}}}{2\cos\frac{\omega d}{a_{2}} + i\left(\frac{1}{p} + p\right)\sin\frac{\omega d}{a_{2}}} A_{i} \qquad [20 b]$$

Die Konstanten A_2 und B_2 interessieren hier nicht. Die Ausdrücke [16 a] bis [16 e] stellen an sich noch keine wirk-

lichen Wellen dar, da sie an jeder Stelle z eine von $t = -\infty$ bis $t = \infty$ andauernde Schwingung bedeuten. Um zu wirklichen Wellen zu gelangen, muss man die Grössen A_1 , A_2 , A_3 , B_1 und B_2 als Funktionen von ω ansehen und die rechten Seiten derGleichungen [16 a] bis [16 b] über ω von $-\infty$ bis $+\infty$ integrieren. Das ergibt:

$$w_{i} = \int_{-\infty}^{+\infty} A(\omega) e^{i\omega(t-z/a_{i})} d\omega \qquad [21 a]$$

$$\overline{w}_{4} = \int_{-\infty}^{+\infty} A(\omega) \frac{i\left(\frac{1}{p} - p\right)\sin\frac{\omega d}{a_{2}}}{2\cos\frac{\omega d}{a_{2}} + i\left(\frac{1}{p} + p\right)\sin\frac{\omega d}{a_{2}}} e^{i\omega(t+z/a_{4})} d\omega \quad [21 \text{ b}]$$

$$w_{3} = \int_{-\infty}^{+\infty} A(\omega) \frac{2e^{i\frac{\omega d}{a_{4}}}}{2\cos\frac{\omega d}{a_{2}} + i\left(\frac{1}{p} + p\right)\sin\frac{\omega d}{a_{2}}} e^{i\omega(t-z/a_{4})} d\omega \quad [21 \text{ c}]$$

Über die einfallende Welle werde folgende spezielle Annahme gemacht:

$$w_{i} = 0 \qquad t < z/a_{i}$$

$$w_{i} = e^{i\sigma(t-z/a_{i})} \qquad \text{für} \qquad t \geq z/a_{i}$$

$$t \geq z/a_{i}$$
[22]

Dabei sei σ komplex mit positivem Imaginärteil, und von den Funktionen w_1 , $\overline{w_1}$ und w_3 möge nur der Imaginärteil physikalisch reellsein. Die Funktion $\mathcal{A}(\omega)$ in den Gln. [21 a] - [21 c] lautet dann:

$$A(\omega) = \frac{1}{2\pi i} \frac{1}{\omega - \sigma}$$
[23]

Durch Verschiebung des Integrationsweges kann man nun w_1 und w_3 berechnen. Es ist:

$$w_{3} = \frac{1}{\pi i} \int_{-\infty}^{+\infty} \frac{e^{i\omega(t - \frac{z-d}{a_{1}})}}{2\cos\frac{\omega d}{a_{2}} + i\left(\frac{1}{p} + p\right)\sin\frac{\omega d}{a_{2}}} \frac{d\omega}{\omega - \sigma} \quad [21 \text{ c*}]$$

Die Pole des Integranden liegen bei

$$\omega = \sigma$$
 [24 a]

und hei

$$\omega_n = \frac{a_o}{d} \pi \cdot n + i \frac{a_o}{d} \operatorname{arctgh} \frac{2}{p+1/p}$$
 (n=0, ±1, ±2,)
[24 b]

Sie hahen also alle einen positiven Imaginärteil. Daraus folgt:

$$w_{3}=0 \quad , \quad \text{für } t < \frac{z-d}{a_{1}}$$

$$w_{3}=\frac{2e^{i\sigma(t-\frac{z-d}{a_{1}})}}{2\cos\sigma\frac{d}{a_{2}}+i\left(\frac{1}{p}+p\right)\sin\sigma\frac{d}{a_{2}}} - \frac{2i}{p-1/p}\sum_{n=-\infty}^{+\infty}\frac{e^{i\omega_{n}(t-\frac{z-d}{a_{1}})}}{\omega_{n}-\sigma},$$

$$\text{für } t \ge \frac{z-d}{a_{1}} \qquad [25]$$

Bei dieserBerechnung ist $\sigma = \sigma_n$ angenommen worden. Es ist nicht schwierig, auch den Fall zu hehandeln, dass irgend ein ω_n mit σ zusammenfällt. Doch hier soll darauf verzichtet werden.

Ganz entsprechend erfolgt die Auswertung des Integrales von [21 h] Man schreiht zunächst:

$$\overline{w}_{i} = \frac{1/p - p}{4 \pi i} \left[\int_{-\infty}^{+\infty} \frac{e^{i\omega(t + z/a_{1} + d/a_{2})}}{2 \cos \frac{\omega d}{a_{2}} + i\left(\frac{1}{p} + p\right) \sin \frac{\omega d}{a_{2}}} \frac{d\omega}{\omega - \sigma} - \frac{i\omega(t + z/a_{1} - d/a_{2})}{-\int_{-\infty}^{+\infty} \frac{e^{i\omega(t + z/a_{1} - d/a_{2})}}{2 \cos \frac{\omega d}{a_{2}} + i\left(\frac{1}{p} + p\right) \sin \frac{\omega d}{a_{2}}} \frac{d\omega}{\omega - \sigma} \right]$$
[21 h*]

Die Pole sind dieselhen wie beim Integral von [21 c*]. Die Integration ergibt:

$$\overline{w}_{1} = \frac{1}{2} \frac{\frac{1}{p} - p}{2\cos\sigma \frac{d}{a_{2}} + i\left(\frac{1}{p} + p\right)\sin\sigma \frac{d}{a_{2}}} \left[e^{i\sigma(t+z/a_{1}+d/a_{2})} - e^{i\sigma(t+z/a_{1}-d/a_{3})}\right] + \frac{i}{2} \frac{+\infty}{\sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{\omega_{n} - \sigma}} \left[e^{i\omega_{n}(t+z/a_{1}+d/a_{3})} - e^{i\omega_{n}(t+z/a_{1}-d/a_{3})}\right]$$
[26]

Bei näherer Betrachtung dieser Lösungen erkennt man sofort, dass sie physikalische Ungereimtheiten enthalten, welche ans der im mathematischen Ansatze enthaltenden Idealisierung folgen. So würde die Welle w_3 von der Stelle z = d bereits zur Zeit t = 0 nach unten ablaufen. Dies ist natürlich unmöglich wenn die einfallende Welle zur Zeit t = 0 am Orte z = 0 eintrifft. Diese Diskrepanz ist eine Folge der Tatsache, dass im Ansatze alle Wellen simultan angenommen worden sind. Die Berechtigung dazu ist durch die Voraussetzung gegeben, dass die Schichtdicke d klein ist gegenüber der Wellenlänge der einfallenden Wellen in der Schicht. Die Lösung für w_3 , und entsprechendes gilt natürlich auch für w_1 , kann also nur als eine Approximation angesehen werden, welche umso besser ist, je grösser der Wert $t = \frac{z-d}{a_4}$ ist, und die erst für solche Werte von $t = \frac{z-d}{a_4}$ brauchbar ist, welche ein kleines Vielfaches von d/a_2 betragen. Im Falle der Welle wi würden die durch die ersten Terme in den eckigen Klammern von [26] dargestellten Wellen zur Zeit $t = -\frac{z}{a_1} - \frac{d}{a_2}$ beginnen und die durch die zweitenTerme dieser Klammern dargestellten Wellen erst zur Zeit $t = -\frac{z}{a_1} + \frac{d}{a_2}$.Infolge der eben auseinandergesetzten Einschränkung des Geltungsbereiches der Lösung kann man beide Wellen getrost superponieren und erhält:

$$\overline{w}_{4} = \frac{i\left(\frac{1}{p} - p\right)\sin\sigma\frac{d}{a_{2}}}{2\cos\sigma\frac{d}{a_{2}} + i\left(\frac{1}{p} + p\right)\sin\sigma\frac{d}{a_{2}}}e^{i\sigma(t+z/a_{1})} - \frac{+\infty}{\sum_{n=-\infty}^{\infty}\frac{(-1)^{n}}{\omega_{n} - \sigma}e^{i\omega_{n}(t+z/a_{1})}} \sin\omega_{n}\frac{d}{a_{2}}}$$
[26*]

Die Wellen w_3 und w_1 bestehen aus 3 Anteilen. Der erste Anteil hat die Form der einfallenden Welle mit veränderter Amplitude und Phase. Der zweite Anteil ist unperiodisch (n = 0), der dritte Anteil ist eine gedämpfte Welle mit der Grundperiode $2 \frac{d}{a_2}$. Die Grössen ω_n kann man als komplexe Eingenfrequenzen der durch die einfallende Welle angeregten Schicht ansehen. Da der Realteil von ω_n aher sehr gross ist, wird die Welle mit der Grundperiode $2\frac{d}{a_2}$ zumindest hei w_3 keine wesentliche Rolle spielen. Bei $\overline{w_1}$ allerdings kann infolge des geringen Ahsoluthetrages von $\sigma \frac{d}{a_2}$ der erste Anteil an Bedeutung verlieren. Die Wirkung der Schicht wird also darin hestehen, dass die durchgehende Welle in ihrer Form nur geringfügig verändert wird. on der von der Schicht reflektierten Welle können die Eigenfrequenzen der Schicht eventuell eine Rolle spielen. In Fig. 4 ist die einfallende und die durchgehende Welle für einen speziellen Fall zur Illustration des Gesagten dargestellt worden Die numerischen Annahmen sind dahei:

$$a_1 = 1,6 \text{ m/ms}$$
; $a_2 = 2,4 \text{ m/ms}$; $p = 1,5$; $d = 1 \text{ m}$
 $\sigma = (1,51+1,07i) \text{ ms}^{-1}$

Bei sehr kleinen Schichtdicken wird also, zumindest hei senkrechtem Welleneinfall, keine sehr merkliche Änderung des Spektrums zu er-

warten sein. Im entgegengesetzten Grenfalle einer Schichtdicke, die sehr gross gegenüber der Wellenläng ist, kann man überhaupt keine Umwandlung des Spektrums annehmen Bevor es zu einer Interferenz zwischen zwei Wellen kommen kann, ist die erste bereits praktisch verschwunden. Der Fall, dass die Wellenlänge in der Schicht und die Schichtdicke von etwa gleicher Grössenordnung ist, kann mit der im Vorhergehenden angewandten Methode nicht erledigt werden. Die Wirkung einer derartigen Schicht auf eine durchgehende Welle soll hier nicht behandelt werden, da eine mehrere Meter mächtige Einlagerung von merklich verschiedener Schallhärte im tieferen Untergrunde nicht so häufig vorkommen dürfte, dass man das als einen Normalfall ansehen könnte. Dagegen ist der Fall, dass Schichtmächtigkeit und Wellenlänge von merklich gleicher Grössenordnung sind, für den Fall des Einfallens einer Welle an der Erdoberfläche von Bedeutung. Nehmen wir einmal an, dass die Wellengeschwindigkeit in der sog. Verwitterungsschicht 0.8 m/ms ist. EineWelle, in der eine Frequenz von 240 Hz vorherrscht, wird in dieser Schicht eine Wellenlänge von 3.33 m haben. Es ist bekannt, dass die Dicke der Verwitterungsschicht von gleicher Grössenordnung ist. Es soll daher nun die

$$d \left\{ \begin{array}{c} 0 \\ \rho_0 a_0 \\ \hline \\ \rho_1 a_1 \\ z \\ Fig. 5 \end{array} \right.$$

Theorie der Reflexion für eine senkrecht auf eine geschichtete Erdoberfläche einfallende Welle betrachtet werden.

Die Ebene z = O sei die Erdoberfläche, und die Ebene z = dsei die untere Begrenzung der Verwitterungsschicht, die von gleicher Dicke und bomogen angenommen werde. ρ_0 , a_0 , beznw. ρ_4 , a_4 seien Dichte und Wellengeschwindigkeit in der Verwitterungsschicht bzw. im bomogenen Untergrunde. An der Fläche z = d falle zur Zeit t = Odie Welle w_1 von unten ber ein. Sie wird in eine reflektierte Welle \overline{w}_1 und in eine durchgehende Welle w_0 aufgespalten. Zur Zeit $t = \frac{d}{a}$ trifft u_0 auf die Fläche z = 0. Die von dieser Fläche reflektierte Welle sei $\overline{w_0}$, welche zur Zeit $t = \frac{2d}{a_0}$ von oben her auf die untere Grenzfläche trifft. Die dabei durch Reflexion und Brechung entstehenden Wellen $w_0^{(1)}$ bzw. $w_1^{(1)}$. Diese Vorgänge wiederholen sich nun unendlich oft, wobei aber die Energie der Teilwellen nach einer endlichen Zahl von Reflexionen praktisch bereits unmerklich wird. Betrachten wir zunächst die Vorgänge an der Ebene z = 0. Die von dieser Fläche durch Interferenz der einzelnen Teilwellen zu beobachtende Schwingung sei Lo. Dann ist:

Entsprechend setzt sich auch die in den Untergrund reflektierte Welle W_1 durch Superposition der Teilwellen zusammen. Es gilt:

Setzt man ein partikuläres Integral für die einfallende Welle in der Form:

$$w_{i} = A(\omega) e^{i\omega(t+z a_{i})}$$
[28]

 a_{0}

UFBER DAS SPEKTRUM SEISMISCHER WELLEN

an, so liefert die Reflexionstheorie die partikulären Lösungen:

$$w_{0} = \frac{2p}{p+1} A(\omega) e^{i\omega(t + \frac{z-d}{a_{0}} + \frac{d}{a_{1}})}$$

$$\overline{w}_{0} = \frac{2p}{p+1} A(\omega) e^{i\omega(t - \frac{z+d}{a_{0}} + \frac{d}{a_{1}})}$$

$$\overline{w}_{1} = \frac{p-1}{p+1} A(\omega) e^{i\omega(t - \frac{z-2d}{a_{1}})}$$

$$w^{(v)}_{0} = \frac{2p}{p+1} \left(\frac{1-p}{1+p}\right)^{v} A(\omega) e^{i\omega[t + \frac{z-(2x+1)d}{a_{0}} + \frac{d}{a_{1}}]}$$

$$\overline{w}^{(v)}_{0} = \frac{2p}{p+1} \left(\frac{1-p}{1+p}\right)^{v} A(\omega) e^{i\omega[t - \frac{z+(2x+1)d}{a_{0}} + \frac{d}{a_{1}}]}$$

$$\overline{w}^{(v)}_{1} = \frac{4p}{(1+p)^{2}} \left(\frac{1-p}{1+p}\right)^{-\frac{z}{2}} A(\omega) e^{i\omega[t - \frac{z-2d}{a_{1}} - \frac{2vd}{a_{0}}]}$$

Die Welle w_1 soll nun ebenso speziell angenommen werden wie auf S. 10. Es sei also:

$$w_{i} = 0 \qquad t < -\frac{z}{a_{i}} + \frac{d}{a_{i}}$$

$$w_{i} = e^{i\sigma(t+z,a_{i})} \qquad t \ge -\frac{z}{a_{i}} + \frac{d}{a_{i}}$$
[30]

Dann wird:

$$A(\omega) = \frac{1}{2 \pi i} \frac{e^{-i\omega d/a_1}}{\omega - \sigma}$$
[31]

Im Intervall $(2n+1)\frac{d}{a_2} \le t < (2n+3)\frac{d}{a_0}$ erhält man für ζ_0 :

$$\zeta_{0} = \frac{1}{2\pi i} \frac{4p}{1+p} \int_{-\infty}^{+\infty} \frac{\left(\frac{1-p}{1+p}\right)^{n+1} e^{-2i\omega(n+1)d/a_{0}} - 1}{\frac{1-p}{1+p} e^{-2i\omega d/a_{0}} - 1} e^{i\omega(t-d/a_{0})} \frac{d\omega}{\omega - \sigma}, n \ge 1$$
[32]

Um dieses Integral durch Integration über einen geeigneten komplexen Weg auszuwerten, teilt man es in zwei Teile auf:

$$\zeta_{0} = \frac{1}{2\pi i} \frac{4p}{p+1} \int_{-\infty}^{+\infty} \frac{\left(\frac{1-p}{1+p}\right)^{n+1}}{\frac{1-p}{1+p}e^{-2i\omega d/a_{0}} - 1} e^{i\omega [t-(2n+3)d/a_{0}]} \frac{d\omega}{\omega - \sigma} - \frac{1}{2\pi i} \frac{4p}{p+1} \int_{-\infty}^{+\infty} \frac{1}{\frac{1-p}{1+p}e^{-2i\omega d/a_{0}}} - 1} e^{i\omega (t-d/a_{0})} \frac{d\omega}{\omega - \sigma} \qquad [32']$$

Für $t < (2 n+3) d/a_0$ verschwindet der erste Term von [32']. ζ_0 wird also in dem betrachteten Intervall nur durch den zweiten, überhaupt nicht mehr von *n* abhängigen, Term dargestellt. Zur Auswertung dieses zweiten Integrales muss man zunächst die Pole des Integranden berechnen. Ausser bei $\omega = \sigma$ liegen diese bei.

$$\omega_{r} = (2r+1)\frac{a_{0}}{2d}\pi + i\frac{a_{0}}{2d}/n\frac{p+1}{p-1} , \quad (r=0,\pm1,\pm2,\ldots) [33]$$

Integriert man nun um die Pole, so erhält man:

$$\begin{aligned} \zeta_{0} &= -\frac{4p}{1+p} \frac{1}{1+p} e^{-\frac{1}{2\iota\sigma d/a_{0}}} e^{i\sigma(t-d/a_{0})} \\ &+ i\frac{a_{0}}{d} \frac{2p}{p-1} \sum_{r=-\infty}^{+\infty} \frac{1}{\omega_{r}-\sigma} e^{i\omega_{r}(t+d/a_{0})} , \quad \sigma \neq \omega_{r} \end{aligned}$$
[32"]

und diese Lösung gilt für:

$$3 \frac{d}{a_0} \le t < \infty$$
 [34]

die Gl. [32"] ist zu ergänzen durch:

$$\zeta_0 = 0$$
 für $t < d/a_0$ [32*]

und durch

$$\zeta_{0} = \frac{4p}{p+1} e^{i\sigma(t-d|a_{0})} \quad \text{für} \quad \frac{d}{a_{0}} \le t < \frac{3d}{a_{0}} \quad [32^{**}]$$

Auf ganz entsprechende Weise lässt sich die Welle W_1 berechnen. Zunächst erhält man für $2nd/a_0 \le t - \frac{z-d}{a_t} < 2(n+1)d/a_0$

$$W_{i} = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \left(\frac{p-1}{p+1} + \frac{4p}{(p+1)^{2}} \sum_{v=1}^{n} \left(\frac{1-p}{1+p} \right)^{v-1} e^{-2i\omega v d/a_{2}} \int_{-\infty}^{i\omega(t-\frac{z-d}{a_{1}})} \frac{d\omega}{\omega-\sigma}$$
[35]

Nach Umrechnung findet man:

$$W_{4} = \frac{\frac{1}{2\pi i} \int \frac{1-p}{1+p} - e^{-2i\omega d/a_{2}} + \frac{4p}{(1+p)^{2}} \left(\frac{1-p}{1+p}\right)^{n} e^{-2i\omega(n+1)d/a_{0}}}{\frac{1-p}{1+p} e^{-2i\omega d/a_{0}} - 1} e^{i\omega(t-\frac{z-d}{a_{1}})} \frac{d\omega}{\omega - \sigma}$$
[357]

Spaltet man auch dieses Integral wie das von GI. [32] in Teilintegrale auf, so ist in dem betrachteten Integral das Teilintegral, welches dem 3. Summanden des Zählers in [35'] entspricht, Null. Die Pole werden wieder durch [33] gegeben, und die Integration führt auf die Lösung:

$$W_{i} = 0 \quad , \quad \text{für } t < \frac{z - d}{a_{i}} \qquad [35^{*}]$$

$$W_{i} = \frac{p - 1}{p + 1} e^{i\sigma(t - \frac{z - d}{a_{i}})} \quad \text{für } \frac{z - d}{a_{i}} \le t < \frac{z - d}{a_{i}} + 2\frac{d}{a_{0}}[35^{**}]$$

$$W_{i} = \frac{\frac{1 - p}{1 + p} - e^{-2i\sigma d a_{0}}}{\frac{1 - p}{1 + p}e^{-2i\sigma d a_{0}} - 1} e^{i\sigma(t - \frac{z - d}{a_{i}})} \qquad [35'']$$

$$-i\frac{a_0}{d}2p\sum_{i=-\infty}^{i\infty}\frac{1}{\omega_i-\sigma}e^{i\omega_i(i-\frac{z-d}{a_1}+\frac{4d}{a_0})}, \quad \text{für}\frac{z-d}{a_1}+2\frac{d}{a_0} \leq t < \infty$$

Das Auftreten der Eigenfrequenzen ω_r ist eine Folge der Tatsache, dass an den Grenzflächen z = 0 und z = d periodisch neue Energieaufteilungen vor sich gehen. Die Grundperiode ist dahei $T_0 = 4d/a_0$ Die Eigenfrequenzen müssen komplex sein, weil die verfügbare Energie nicht unendlich gross ist. Man könnte die Vorgänge natürlich auch durch Wellen beschreiben, in denen nur die Frequenz σ auftritt. Bei einer derartigen Beschreibung aber, würden in jedem der Intervalle $(2n+1)\frac{d}{a_0} \leq t < (2n+3)\frac{d}{a_0}$ die Amplituden und Phasen

H. MENZEL

von *n* abhängig sein. In dieser Veränderung der Amplituden und Phasen mit dem Intervall drückt sich gerade das Vorkommen der Eigenfrequenzen ω_r aus

Um einen anschaulichen Einblick in die Verhältnisse zu gewinnen, seien einige numerische Rechnungen angefügt: Wie auf S. 13 sei $\sigma = 1,51 + 1,07$ *i* und $a_1 = 1,6$ m/ms. Für die Geschwindigkeit in der Verwitterungsschicht sei $a_0 = 0.8$ m/ms angenommen. Schliesslich sei d = 2 m und p = 2. Dann ist im Intervall $-\infty < t < 2,5$ ms, die Schwingung $\zeta_0 = 0$. Im Intervall $0 \le \tau = t - 2,5 < 5$ ms ist:

$$\zeta_0 = 2,67 \ e^{-i.07\tau} \ \sin \ 1,51 \ \tau$$

Im Intervall $0 \le \tau' = t - 7,5 \le \infty$ besteht ζ_0 aus einem Anteile

$$\zeta_0^{(i)} = -1.84.10^{-4} e^{-4.07t'} \sin(1.51t'+2.55)$$

und einem Anteil $\zeta^{(2)}_{0}$, welcher eine gedämpfte periodische Schwingung darstellt. Die Grundperiode von $\zeta^{(2)}_{0}$ beträgt 10 ms. Die Perioden der Oberschwingungen ergeben sich aus $T_r=10/(2r+1)$ ms. Die Dämpfungskonstante ist für die Grundschwingung und alle Oberschwingungen gleich gross und hat den Wert 0.22 ms⁻⁴ Für die Grundschwingung erhält man:

$$\zeta^{(2)}_{00} = 0.22 \ e^{-0.22\tau'} \ \cos(0.63 \ \tau' - 0.63)$$

Die Amplituden der Oberschwingungen nehmen nur sehr langsam mit wachsendem r ab, sodass die höheren Frequenzen das Bild der Schwingung noch entscheidend beeinflussen.. Wichtig ist, dass der Anteil $\zeta^{(4)}_0$ gegenüber $\zeta^{(2)}_0$ zurücktritt. Nach Durchgang des ersten Impulses in den ersten 5 ms machen sich die Eigenfrequenzen stark bemerkbar, zumal ihr Imaginärteil bedeutend geringer ist als der von σ . Es erscheinen also im Spektrum tiefere Frequenzen.

Ganz äbnlich liegen die Verhältnisse bei W_1 . Es treten dabei dieselben Eigenfrequenzen auf wie bei ζ_0 . W_1 ist Null für t $<\frac{z-d}{a_1}$

Im Intervall $\frac{z-d}{a_1} \le t < \frac{z-d}{a_1} + 5$ ms erhält man:

$$W_{i} = 0.33 \ e^{-i.07(t-\frac{z-d}{a_{1}})} \ \sin 1.51(t-\frac{z-d}{a_{1}})$$

Im Intervall $\frac{z-d}{a_1} \leq \tau = t - 5 < \infty$ beträgt der erste Anteil von W_1

$$W^{(1)}_{i} = 1,44.10^{-2} e^{-1.07} (\tau - \frac{z-d}{a_i}) \sin [1,51(\tau - \frac{z-d}{a_i}) + 1,28]$$

Beim zweiten Anteil beträgt der Beitrag der Welle mit der Grundperiode T_0 :

$$W^{(2)}_{10} = 0.07 \ e^{-0.22} (\tau - \frac{z-d}{a_1}) (\cos [0.63(\tau - \frac{z-d}{a_1}) - 0.63]$$

Man sieht, dass bei W_1 die Eigenfrequenzen nicht eine ebenso grosse Rolle spielen wie bei ζ_0 , aber auch bei der an der Erdoberfläche reflektierten Welle werden im Spektrum tiefere Frequenzen auftreten als in der einfallenden Welle.

Es hat den Anschein, als ob der auf Seite 2 besprochene Interferenzeffekt im Zusammenwirken mit dem zuletzt diskutierten Effekt der geschichteten Oberfläche wesentlich das Spektrum der sprengseismischen Wellen bestimmt. Auch bei natürlichen Erdbebenwellen dürften die Vorgänge beim Einfall in die geschichtete Erdoberfläche für das Spektrum dieser Wellen von Bedeutung sein. Natürlic⁷1 ist es erforderlich, die Untersuchung auf den Fall nicht senkrechter Inzidenz auszudehnen.

ZUSAMMENFASSUNG

Es werden einige Interferenzeffekte diskutiert, welche in einem ideal elastischen Medium das Spektrum sprengseimischer Wellen verändern. Der Einfluss der sog. Verwitterungszone scheint am bedeutendsten zu sein.

LITERATUR

(1) MORRIS GEORGE: Geophysics. Vol. XV, N. 1, 1950.

(2) CLEWELL D. H. and SIMON R. F.: Geophysics, Vol. XV, Nr. 1, 1950.