IL TERREMOTO DELLO HOKKAIDO DEL 4 MARZO 1952

ANTONINO GIRLANDA

PARTE II

Determinazione della dromocrona più probabile delle onde P_n e suo confronto con i tempi calcolati da altri ricercatori.

In una nota precedente (¹) sono state determinate le coordinate epicentrali e l'ora origine del terremoto dello Hokkaido del 4 marzo 1952. Si è ottenuto:

$$\lambda = + 143^{\circ} 30' 00'', 3 \pm 03' 35'', 4$$
,
 $\Phi = + 42^{\circ} 14' 30'', 8 \pm 04' 19'', 5$ (latitudine geocentrica),
 $t_{0} = -01^{h} 22^{m} 41^{s}.5 + 0^{s}.3$.

Una prima serie di calcoli, condotti seguendo il metodo di Caloi-Peronaci (²), ha escluso la possibilità di una profondità apprezzabile.

Servendosi degli elementi già calcolati si determinerà la dromocrona più probabile delle *P*, valevole per il terremoto oggetto di questo studio, allo scopo di poter trarre elementi di giudizio relativamente ad alcune discordanze notate nei tempi di registrazione degli inizi in alcune stazioni.

Si ammette che l'equazione della dromocrona delle P si possa porre sotto la forma approssimata

$$t = \alpha_0 + \alpha_1 \Delta + \alpha_2 \Delta^2 + \alpha_3 \Delta^3 , \qquad [1]$$

Nella quale t è il tempo di tragitto, Δ la distanza epicentrale e α_0 , α_1 , α_2 , α_3 , sono coefficienti, indipendenti da Δ , da determinare in adattamento ai dati sperimentali. Denotando con T_i il tempo di arrivo delle P nella *i*-esima stazione di osservazione, la [1] fornisce il sistema di *n* equazioni:

$$T_{i} - t_{o} = \alpha_{o} + \alpha_{i} \Delta_{i} + \alpha_{2} \Delta_{i}^{2} + \alpha_{3} \Delta_{i}^{3} \qquad [2]$$

nelle quattro incognite a_0 , a_4 , a_2 , a_2 , la determinazione delle quali si può effettuare col metodo dei minimi quadrati, qualora si disponga dei tempi T_1 in un sufficiente numero di stazioni.

ANTONINO GIRLANDA

Per rendere meno laborioso il calcolo si può procedere nel modo seguente.

Dalle [2], scritte, per es., in ordine di distanze crescenti, si deducono per differenza le n-1 equazioni:

$$\delta_{i+i,i} = \alpha_i \left(\Delta_{i+i} - \Delta_i \right) + \alpha_s \left(\Delta^2_{i+i} - \Delta_i^2 \right) + \alpha_s \left(\Delta^3_{i+i} - \Delta_i^3 \right), \quad [3]$$

nelle quali

$$\delta_{i+1,i} = T_{i+1} - T_{i+1}^{i}$$

Ponendo

$$\Delta_{i+1} - \Delta_i = a_{i+1}, \ \Delta^{*}_{i+1} - \Delta_i^{*} = b_{i+1}, \ \Delta^{*}_{i+1} - \Delta_i^{*}, \ -\delta_{i+1}, i = l_{i+1},$$

si ottiene il seguente sistema di equazioni di condizione

$$a_{i+1} \alpha_1 + b_{i+1} \alpha_2 + c_{i+1} \alpha_3 + l_{i+1} = v_{i+1}$$
^[4]

nelle quali le v_{i+1} rappresentano i residui dovuti agli errori di osservazione. Il metodo dei minimi quadrati consente una prima determinazione dei tre coefficienti α_1 , α_2 , α_3 , che, sostituiti nella [2] danno luogo al sistema di *n* equazioni nella sola incognita α_0 :

$$\alpha_{\rm o} + g\left(\Delta_{\rm i}\right) - t_{\rm i} = v_{\rm i}' \qquad [5]$$

essendo

$$t_i = T_i - t_o, \ g(\Delta_i) = \alpha_1 \Delta_i + \alpha_2 \Delta_i^2 + \alpha_3 \Delta_i^3$$

Una ulteriore determinazione più approssimata dei coefficienti α_1 , α_2 , α_3 , si ottiene sostituendo nelle [2] il valore più probabile di α_0 dedotto risolvendo il sistema [5]; si è così condotti al sistema

$$\alpha_i \Delta_i + \alpha_s \Delta_i^2 + \alpha_s \Delta_i^3 - (T_i - t_o + \alpha_o) = v_i'' \qquad [6]$$

che, ponendo

$$\Delta_{i} = a_{i}', \ \Delta_{i}^{2} = b_{i}', \ \Delta_{i}^{3} = c_{i}', \ -(t_{i} + \alpha_{o}) = l_{i}'$$

può essere scritto nella forma usuale

$$a_{\mathbf{i}}' a_{\mathbf{i}} + b_{\mathbf{i}}' a_{\mathbf{2}} + c_{\mathbf{i}}' a_{\mathbf{3}} + l_{\mathbf{i}}' = v_{\mathbf{i}}'' \quad [6']$$

Il sistema dei valori α_i , α_2 , α_3 , che rendono minima la somma dei quadrati dei residui è, com'è noto, deducibile dal sistema normale

$$[a' a'] \alpha_{1} + [a' b'] \alpha_{2} + [a' c'] \alpha_{3} + [a' l'] = 0$$

$$[a' b'] \alpha_{1} + [b' b'] \alpha_{2} + [b' c'] \alpha_{3} + [b' l'] = 0$$

$$[a' c'] \alpha_{1} + [b' c'] \alpha_{2} + [c' c'] \alpha_{3} + [c' l'] = 0 ,$$

dove, per il noto significato dei simboli,

$$\begin{split} [a' a'] &= \Sigma_{i} \Delta_{i}^{2}, \ [a' b'] = \Sigma_{i} \Delta_{i}^{3}, \ [a' c'] = \Sigma_{i} \Delta_{i}^{4}, \ [a' l'] = \Sigma_{i} \Delta_{i} (\alpha_{o} - t_{i}) , \\ [b' b'] &= [a' c'] = \Sigma_{i} \Delta_{i}^{4}, \ [b' c'] = \Sigma_{i} \Delta_{i}^{5}, \ [b' l'] = \Sigma_{i} \Delta_{i}^{2} (\alpha_{o} - t_{i}) , \\ [c' c'] &= \Sigma_{i} \Delta_{i}^{6}, \ [c' l'] = \Sigma_{i} \Delta_{i}^{3} (\alpha_{o} - t_{i}) . \end{split}$$

Evidentemente l'equazione della dromocrona così dedotta si potrà considerare sufficientemente valida per distanze comprese nell'intervallo relativamente al quale si dispone di un sufficiente numero di dati sperimentali.

Sono state esaminate le registrazioni originali o copie fotografiche delle 66 stazioni d'osservazione elencate nella Tabella I, nella quale sono riportati: a) nelle colonne (1) e (2) le distanze epicentrali e gli azimut delle singole stazioni dall'epicentro, calcolati servendosi delle note formule ed adoperando latitudini geocentriche; b) nella colonna (3) i tempi d'inizio delle registrazioni; c) nella colonna (4) i corrispondenti tempi di propagazione riferiti all'ora epicentrale.

Le stazioni, i cui dati, particolarmente sicuri, sono stati utilizzati in precedenza per la determinazione dell'epicentro e dell'ora origine, sono contraddistinte col segno ('). La fig. 1 riproduce un planisfero (in proiezione di Mercatore) sul quale sono state tracciate le linee isodistanti, intervallate di 10°, e le linee isoazimutali, intervallate di 22°,5 allo scopo di caratterizzare la distribuzione delle varie stazioni utilizzate rispetto all'epicentro.

Per una prima determinazione approssimata dei coefficienti α_0 , α_1 , α_2 sono stati utilizzati i tempi di registrazione delle 40 stazioni che, nella citata tabella, sono contradistinte col segno ("). Per evitare risultati non sufficientemente attendibili, sono stati esclusi dal calcolo, oltre che i dati relativi a quelle stazioni le cui distanze superano il limite di percettibilità delle P, anche i dati che, riportati in un primo grafico tracciato a scopo orientativo, si sono manifestati nettamente

	1	2	3	4	5	6
STAZIONI	۵	Azimut	registraz.	Tempi di	tragitto	0 — C
			(01 h. +)	osservati		
entryies of designed, or	0	o '	m. s.	m. s.	m. s.	8
1. Ambulong	34.265	221 11.4	29 44.0	7 02.5?	dump 14	
2. College (') (")	43.712	35 09.9	30 50.5	8 09.0	8 08.4	+0.6
3. Shillong (') (")	45.273	265 12.5	31 02.1	8 20.6	8 21.0	-0.4
4. Alipore	49.679	204 30.5	32 12.2	9 30.72	8 35.5	
5. 511Ka 6 New Delhi (') (")	51.309	43 40.4	32 03.5	9 22.0:	901.1	0.2
7. Resolute Bay $(')$ $('')$	56 973	15 40.0	32 29 2	9 47.7	9 30.8	-13
8. Victoria	61.597	49.00.6	33 29.7	10 48.2?	10 20.9	1.0
9. Kiruna (') (")	62.048	338 53.4	33 04.8	10 23.3	10 23.9	0.6
10. Seattle	62.691	49 21.5	33 21.4	10 39.9?	10 28.3	
11. Poona (')	62.828	270 46.6	33 09.5	10 28.0	10 29.1	-1.1
12. Bombay (')	63.368	271 47.0	33 14.5	10 33.0	10 32.7	+0.3
13. Kodaikanal	65.506	261 16.2	33 40.0	10 58.5?	10 46.6	
14. Upsala (*) (*) 15. M. Homilton (!) (*)	68.812	333 59.0	33 48.0	11 07.1	11 07.5	0.4
15. Mt. Hammon $()$ ()	70 680	57 42 2	31 00 1	11 18 9	11 10 0	+1.1
17. Revkjavik (') (")	73.142	353 22.3	34 15.0	11 33.5	11 33 7	0.1
18. Boulder City (') (")	74.237	55 38.5	34 22.4	11 40.9	11 40.1	± 0.8
19. Praha (') (")	77.677	329 11.5	34 42.1	12 00.6	11 59.7	+0.9
20. Budapest (')	77.869	325 06.1	34 43.9	12 02.4	12 00.8	+1.6
21. Jena (') (")	78.017	331 13.6	34 43.1	12 01.6	12 01.6	0.0
22. Kerskemet	78.042	334 23.5	35 06.0	12 24.5?	12 01.7	
23. Gottingen (') (")	78.068	332 26.7	34 44.2	12 02.7	12 01.9	+0.8
24. Szeged 25. Vienna (') (")	18.313	323 42.9	34 39.3	12 17.0:	12 05.0	. 1 9
26. Kalorsa	78 618	321 02.5	31 59 0	12 05.0	12 03.4	+1.3
27. De Bilt	79.157	335 18.7	35 00.0	12 18.5?	12 08.1	
28. Beograd (') (")	79.339	322 37.7	34 50.4	12 08.9	12 08.9	0.0
29. Stuttgart (') (")	80.674	331.19.9	34 58.5	12 17.0	12 16.2	+0.8
30. Rathfarnham (')	81.156	342 12.2	35 02.5	12 21.0	12 18.8	+2.2
31. Kew (') (")	81.327	338 04.1	35 02.0	12 20.5	12 19.7	+0.8
32. Strasbourg (') (")	81.335	332 02.3	35 02.0	12 20.5	12 19.7	+0.8
33. Dasel () (') 34 Nouchstel (') (")	82.289	331 35.9	35 07.2	12 20.4	12 24.8	+0.9
34. Reachater () () $(35. \text{ Padoya} (2) (2)$	83 241	327 23 6	35 10.4	19 90 9	12 28.1	+0.5
36. Bologna	83.462	327 43.7	35 15.2	12 33.7	12 29.0	-0.0 +2.6
37. Pavia	83.717	329 24.5	35 22.7	12 41.2?	12 33.3	1
38. Auckland	83.934	155 13.7	35 36.5	12 55.0?	12 32.3	
39. Chicago U.S.C.G.S. (') (")	84.334	35 47.5	35 15.0	12 33.5	12 35.5	-2.0
40. Helwan (') (")	84.807	306 07.6	35 20.0	12 38.5	12 37.9	+0.6
41. Koma (') (") 42. Classical (l) (l')	85.124	325 33.8	35 21.0	12 39.5	12 39.6	0.1
42. Clermont () (*)	85.308	333 24.3	35 22.2	12 40.7	12 40.8	0.1
44. Seven Falls	85,721	24 09.0	35 30.0	12 54.5 :	12 42.5	
45. Ottawa (') (")	85.819	26 31.9	35 23.4	12 41.9	12 42.0	-1.2
46. Messina (') (")	86.828	321 30.9	35 29.0	12 47.5	12 48.2	-0.7
47. Cleveland (') (")	87.098	32 09.5	35 30.5	12 49.0	12 49.5	0.5
48. Cincinnati (') (")	87.856	35 19.8	35 34.8	12 53.3	12 53.3	0.0
49. Wellington	87.996	156 57.3	35 42.0	13 00.5?	12 53.9	
51. Christehungh (1) (2)	89.095	30 07.3	35 40.5	12 59.0	12 59.3	
52. Harvard (') (")	89.48+	25 00 4	35 41.5	12 59.0	13 01.2	-1.4
53. Halifax	80 088	19 00 6	36 03 8	13 22 3?	13 02.5	0.4
54. Palisades (') (")	90.324	27 22.3	35 45.3	13 03.8	13 05.3	
55. Tortosa	90.628	332 49.5	35 56.0	13 14.5?	13 06.6	
56. Washington D.C. (') (")	91.043	30 29.0	35 49.2	13 07.7	13 08.7	
57. Algeri Univ. (') (")	93.305	329 11.4	35 58.6	13 17.1	13 19.3	-2.2
58. Coimbra	93.901	338 49.5	36 23.8	13 42.3?	13 22.0	
60 Lisbor	95.261	334 10.3	36 26.0	13 44.5?	13 28.3	
61 Malaga	95.485	338 49.8	30 21.5	13 40.0 2	13 29.2	
62. Bermuda	95.940	554 55.5 94 09 1	36 44 9	13 41.7:	13 31.1	
63. Tamanrasset (')	104.396	320 22 3	36 50 6	14 09.1	13 33.1	± 2.3
64. San Juan	113.595	30 48.7	38 01.5	15 20.0	1100.0	
65. Johannesburg	125.498	274 36.5	43 54.1	21 12.6		
66. La Plata	161.684	72 50.2	43 00.0	20 18.5		

TABELLA I

discordanti dall'andamento, sia pure grossolanamente regolare, dei rimanenti dati sperimentali.

La risoluzione del sistema delle corrispondenti 39 equazioni di condizione del tipo [4], ha dato i seguenti risultati:

$$\begin{aligned} a_1 &= 12,2525625 \ , \\ a_2 &= -5,5531466 \cdot 10^{-2} \ , \\ a_3 &= 0.1144524 \cdot 10^{-3} \ , \end{aligned}$$

Fig. 3 - Boulder City ($\Lambda = 74^{\circ}.24$; a 55°38'.5)

con l'errore medio

$$\epsilon = \pm 1.106898$$
 .

La somma dei quadrati dei residui è risultata

$$[vv] = 44,1080$$

sensibilmente coincidente con

$$[ll \cdot 3] = 44,1088$$
.

In base a tali risultati si sono calcolati, per ognuna delle 40 stazioni utilizzate, i valori del trinomio

$$g(\Delta_i) = \alpha_1 \Delta_i + \alpha_2 \Delta_i^2 + \alpha_3 \Delta_i^3$$

riportati, unitamente alle differenze $g(\Delta_i) - t_i$, nella Tabella II, che hanno consentito, conformemente alle [5], la determinazione del valore più probabile del coefficiente α_0 . Si è ottenuto

$$\alpha_{0} = 48,719 \pm 0,272$$
.

ANTONINO GIRLANDA

TABELLA II

		Parajas and annual and	
1	Callega	490 02721	
1.	College	439.03731	- 49.09894
2.	Shillong	451,50100	- 19 72678
3.	New Delhi	520,87322	
4.	Resolute Bay	538.98023	40.71977
5.	Kiruna	573.79417	- 49.50505
6.	Poona	578.98633	
7.	Bombay	582.55668	
8.	Upsala	617.46911	49.03089
9.	Mt. Hamilton	619.50485	- 51.09515
10.	Fresno	629.00724	- 49.89276
11.	Reykjavik	643.88180	- 49.61820
12.	Boulder City	650.37834	- 50.52166
13.	Praha	670.32306	- 50.27694
14.	Budapest	671.41587	- 50.98413
15.	Jena	672.25679	- 49.34321
16.	Gottingen	672.54628	- 50.15372
17.	Vienna	674.34229	- 50.65771
18.	Beograd	679.71269	- 49,18731
19.	Stuttgart	687.14157	- 49.85843
20.	Rathfarnham	689,79930	51.20070
21.	Kew	690.73909	- 49.76091
22.	Strasbourg	690.78302	
23.	Basel	695.99613	-49.70387
24.	Neuchatel	699.73023	49.16977
25.	Padova	701.14881	- 48.05119
26.	Chicago	707.00444	- 46.49556
27.	Helwan	709.51876	- 48.98124
28.	Roma	711,19721	- 48.30279
29.	Clermont	712.48594	- 48.21406
30.	Ottawa	714.85862	- 47.04138
31.	Messina	720,12950	- 47.37050
32,	Cleveland	721,53103	- 47.46897
33	Cincinnati	725.44578	-47.85422
34.	State College	731,78206	- 47.21794
35.	Christchurch	733.75557	- 46.04443
36.	Harvard	735.06033	-47.23967
37.	Palisades	737.99156	- 45-80844
38	Washington D.C.	741.58987	- 46,11013
39.	Algeri Univ.	752 74781	- 44.35219
~			

IL TERREMOTO DELLO HOKKAIDO DEL 4 MARZO 1952

Passando successivamente alla risoluzione del sistema [6'], ottenuto dal sistema [2] sostituendo il valore di α_0 così determinato, si sono ottenuti i seguenti valori più approssimati dei coefficienti α_1 , α_2 , α_2 , ed i corrispondenti errori medi:

$$\begin{aligned} \alpha_1 &= 12,1460454 \pm 0,063488 , \\ \alpha_2 &= -5,1065838 \cdot 10^2 \pm 0,163986 \cdot 10^2 , \\ \alpha_3 &= 0,0761058 \cdot 10^3 \pm 0,01056 \cdot 10^3 . \end{aligned}$$

Fig. 4 - Stuttgart ($\Delta = 80^{\circ}.67$; a 331°19'.9)

Per il consueto controllo si è ottenuto:

$$[v''v''] = 41,62312 ,$$

$$[l'l' \cdot 3] = 41,62313 .$$

In definitiva si può ritenere che l'equazione della dromocrona più probabile delle P, valevole per il terremoto oggetto di questo studio e per distanze comprese tra 40° e 105°, è la seguente:

$$t = (0,0761 \cdot 10^{-3} \pm 0,0106 \cdot 10^{-3}) \Delta^{3} - (5,106584 \cdot 10^{-2} \pm 0,163986 \cdot 10^{-2}) \Delta^{2} + (12,146045 \pm 0,63488) \Delta + 48,719 .$$
[7]

Nella Tabella III, sono riportati i tempi di tragitto calcolati di decimo in decimo di grado servendosi della [7]. Da un confronto con le tabelle di Jeffreys e Bullen (³), di Gutenberg e Richter (⁴) e di Macelwane (⁵), si nota che (Tabella IV) le deviazioni rispetto ai tempi di tragitto tabulati dai primi due autori superano di poco il secondo solo per distanze comprese tra 90° e 105°; gli scarti rispetto ai tempi di Gutenberg e Richter si distribuiscono in un intervallo che va da -3^{s} a $+1^{s}$, mentre gli scarti rispetto ai tempi di Macelwane (Tabella IVc) si distribuiscono nell'intervallo -8^{s} , $+1^{s}$, analogamente a quanto già osservato da Gutenberg e Richter (⁴).

TABELLA III

70	.0	.1		.3	.4	.5	.6	.7	.8	.9
	m s	m s	m s	m s	m s	m s	m s	m s	m s	nı s
40	7 37.7	7 38 6	7 39.4	7 40.3	7 41.1	7 41.9	7 42.8	7 43.6	7 44.1	7 45.3
41	46.1	16.9	47.8	48.6	49.4	50.3	51.1	51.9	52.8	53.6
42	54.4	55.2	56.1	56.9	57.7	58,5	59.3	8 00.2	8 01.0	8 01.8
43	8 02.6	8 03.5	8 04.3	8 05.1	8 05.9	8 06.7	8 07.5	08.3	09.1	09.9
44	10.7	11,6	12.4	13.2	14.0	14.8	15.6	16.4	17.2	18.0
45	18.8	19.6	20.4	21.2	22.0	22.8	23.6	24.4	25.2	26.0
46	26.8	27.6	28.4	29.2	30.0	30.8	31.5	32.3	33.1	33.9
47	34.7	35.5	36.3	37.0	37.8	38.6	39.4	40.2	40.9	41.7
48	42.5	43.3	44.0	44.8	45.6	46.4	47.1	47.9	48.7	49.5
49	50.2	51.0	51.8	52.5	53.3	54.1	54.8	55.6	56,4	57.1
50	8 57.9	8 58.6	8 59.4	9 00,2	9 00.9	9 01.7	9 02.4	9 03.2	9 03.9	9 04.7
51	9 05.4	9 06.2	9 06.9	07.7	08.4	09.2	09.9	10.7	11.4	12.2
52	12.9	13.7	14.4	15.2	15.9	16.7	17.4	18.1	18.9	19.6
51	20.3	21.1	21.8	22.6	23.3	24.0	24.8	25.5	26.2	27.0
55	21.1	28.4	29.1	29.9	30.0	31.3	32.1	32.8	33.0	34.2
56	34.9	35.1	30. 1	31.1	31.8	38.3	39.3	40.0	40.7	41.4
57	42.1	42.8	43.0	++.3	40.0	40.1	40.4 59 C	+1.1	47.0	55.6
58	56.3	49.9	57.7	51.5	50.0	50.7	55.5 10 00 1	04.4 10 01 1	10 01 9	10 02 5
59	10 03 ?	10 03 0	10 01 6	10 05 3	10 06 0	10 06 7	10 00.4	10 01.1	10 01.0	09.1
60	10 10.1	10 10.8	10 11 5	10 00.0	10 12 8	10 13 5	10 14 2	10 14 9	10 15 5	10 16.2
61	16.9	17.6	18.2	18.9	10 12.0	20.3	20.9	21.6	22.3	25.0
62	23.6	24.3	25.0	25.6	26.3	27.0	27.6	28.3	29.0	29.6
63	30.3	31.0	31.6	32.3	32.9	33.6	34.2	34.9	35.5	36.2
64	36.9	37.5	38.2	38.8	39.5	10.1	40.7	41.4	42.1	42.7
65	43.4	44.1	44.7	45.3	45.9	46.6	47.2	47.9	48.5	49.2
66	49.8	50.4	51.1	51.7	52.4	53.0	53.6	54.3	54.9	55.5
67	56.2	56.8	57.4	58.1	58.7	59.3	59.9	11 00.6	11 01.2	11 01.8
68	11 02.5	11 03.1	11 03.7	11 04.3	11 05.0	11 05.6	11 06.2	11 06.8	11 07.4	11 08.1
69	08.7	09.3	09.9	10.5	11.1	11.8	12.4	13.0	13.6	14.2
70	11 14.8	11 15.4	11 16.1	11 16.7	11 17.3	11 17.9	11 18.5	11 19.1	11 19.7	11 20.3
7.9	20.9	21.5	22.1	22.7	23.3	23.9	24.5	25.1	25.7	26.3
72	26.9	27.5	28.1	28.7	29.3	29.9	30.5	31.1	31.7	32.5
7.1	32.9	33.5	34.0	34.6	35.2	35.8	36.4	37.0	37.6	38.2
75	38.7	39.3	39.9	40.5	41.1	41.0	42.2	42.8	+3.+	10.7
76	503	45.1	40.4	40.3	40.0	44.4	48.0	48.0	19.1	55.1
77	55.9	56.5	571	57.6	58.9	58.8	50.3	20.0	12 00 1	12 01 6
78	12 01.5	12 02 1	12 02 7	12 03 2	12 03.8	12 01 3	12 01 0	12 05.4	06.0	06.5
79	07.1	07.6	08.2	12 03.2	09.3	00.8	12 04.7	10.9	11.5	12.0
80	12 12.6	12 13 1	12 13.6	12 14.2	12 14.7	12 15.3	12 15 8	12 16.3	12 16.9	12 17.4
81	18.0	12 18.5	19.0	19.6	20.1	20.6	21.2	21.7	22.2	22.8
82	23.3	23.8	24.4	24.9	25.4	25.9	26.5	27.0	27.5	28.0
83	28.6	29.1	29.6	30.1	30.7	31.2	31.7	32.2	32.7	33.3
84	33.8	34.3	34.8	35.3	35.8	26.4	36.9	37.4	37.9	38.4
85	38.9	39.4	39.9	40.5	41.0	41.5	42.0	42.5	43.0	43.5
80	44.0	44.5	45.0	45.5	46.0	46.5	47.0	47.5	48.0	48.5
87	49.0	49.5	50.0	50.5	51.0	51.5	52.0	52.5	53.0	53.5
88	54.0	54.5	55.0	55.5	56.0	56.5	56.9	57.4	57.9	58.4
09	58.9	59.4	59.9	13 00.3	13 00.8	13 01.3	13 01.8	13 02.3	13 02.8	13 03.2
01	13 03.7	13 04.2	13 04.7	13 05.2	13 05.6	13 06.1	13 06.6	13 07.1	13 07.5	13 08.0
02	08.5	09.0	09.4	09.9	10.4	10.9	11.3	11.8	12.3	12.0
93	13.2	13.7	14.1	14.0	15.1	15.5	10.0	10.5	10.9	11.4
94	17.9	18.3	18.8	19.2	19.7	20.2	20.0	21.1	21.5	24.0
95	22.4	22.9	23.4	23.8	24.3	24.7	25.2	25.0	20.1	20.5
96	31.5	21.4	29.2	20.0	20.0	29.2	29.1	31.6	30.0	35.1
97	35.9	36.3	36.7	37.9	37.6	38 1	38.5	38.0	30.1	39.8
98	40.2	.10 7	41.1	41 5	12.0	19.1	128	43.2	43 7	44.1
99	44.5	45.0	45.1	41.5	46.2	46.7	47.0	47.5	47.9	48.4
100	13 48.8	13 49.2	13 49.6	13 50.0	13 50.5	13 50.9	13 51.3	13 51.7	13 52.1	13 52.5
101	53.0	53.4	53.8	54.2	54.6	55.0	55.5	55.9	56.3	56.7
102	57.1	57.5	57.9	58.3	58.7	59.1	59.5	14 00.0	14 00.4	14 00.8
103	14 01.2	14 01.6	14 02.0	14 02.4	14 02.8	14 03.2	14 03.6	04.0	04.4	04.8
104	05.2	05.6	06.0	06.4	06.8	07.2	07.6	08.0	08.4	08.8
105	00.2	1								

IL TERREMOTO DELLO HOKKAIDO DEL 4 MARZO 1952

Nella Tabella I sono anche riportati, nella colonna (5) i tempi di tragitto, relativi alle singole stazioni di osservazione, calcolati mediante la (7) e nella colonna (6) le differenze tra i tempi osservati e quelli calcolati. Si nota chiaramente che, mentre per il gruppo delle 40 stazioni, i cui dati sono stati utilizzati nei calcoli precedenti, tali diffe-

Fig. 5 - Cleveland ($\Delta = 87^{\circ}.10$; $\alpha = 32^{\circ}09'.5$)

renze sono dell'ordine prevedibile dalla teoria degli errori d'osservazione, per il rimanente gruppo delle 19 stazioni si hanno differenze sistematicamente positive (fig. 2), il che prova che i tempi rilevati in queste ultime appartengono ad impulsi successivi a quelli dovuti al vero inizio delle *P*. A tale proposito è da notare che, nei sismogrammi csaminati indipendentemente dalla distanza e dall'azimut, le registrazioni nonostante la eccezionale intensità dello scuotimento sismico, iniziano con una lieve *emersio* seguita, ad una decina di secondi, da bruschi ed ampi impulsi che danno alla parte iniziale delle registrazioni un aspetto particolare. Tale aspetto in alcuni sismogrammi è talmente marcato che può fare pensare alla registrazione successiva di scosse distinte. Presumibilmente queste caratteristiche sono da attri-

TABELLA IV-a

	0	1	2	3	4	5	6	7	8	9
40° 50° 60° 70° 80° 90° 100°	$\begin{array}{c} 0.4 \\ 0.1 \\ 0.6 \\ 0.6 \\ 0.2 \\ -1.0 \\ -0.4 \end{array}$	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.6 \\ 0.6 \\ 0.1 \\ -1.2 \\ -0.1 \end{array}$	$\begin{array}{c} 0.1 \\ 0.3 \\ 0.7 \\ 0.6 \\ -0.1 \\ -1.3 \\ -0.3 \end{array}$	$\begin{array}{c} 0.1 \\ 0.4 \\ 0.6 \\ 0.6 \\ -0.2 \\ -1.4 \\ 0.6 \end{array}$	$\begin{array}{c} 0.1 \\ 0.3 \\ 0.6 \\ 0.5 \\ -0.3 \\ -1.3 \\ 1.0 \end{array}$	$\begin{array}{c} 0.1 \\ 0.5 \\ 0.6 \\ 0.5 \\ -0.4 \\ -1.3 \\ 1.1 \end{array}$	$ \begin{array}{c} 0.0 \\ 0.5 \\ 0.6 \\ 0.4 \\ -0.5 \\ -1.2 \end{array} $	$\begin{array}{c} 0.0 \\ 0.6 \\ 0.6 \\ 0.4 \\ -0.7 \\ -1.1 \end{array}$	$ \begin{array}{c c} 0.1 \\ 0.6 \\ 0.3 \\ -0.8 \\ -0.9 \end{array} $	$\begin{array}{c c} 0.1 \\ 0.6 \\ 0.6 \\ 0.2 \\ -0.9 \\ -0.7 \end{array}$

Scarti rispetto ai tempi tragitto calcolati da Jeffreys e Bullen.

ANTONINO JIRLANDA

TABELLA IV-b

	0	1	2	3	4	5	6	7	8	9
$ \begin{array}{r} 40^{\circ} \\ 50^{\circ} \\ 60^{\circ} \\ 70^{\circ} \\ 80^{\circ} \\ 90^{\circ} \\ 100^{\circ} \end{array} $	$\begin{array}{c} 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ -2 \\ -2 \\ -2 \end{array}$	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ -1 \\ -2 \end{array} $	$ \begin{array}{c} 1 \\ -2 \\ 0 \\ -1 \\ -2 \\ -2 \end{array} $	$ \begin{array}{c c} 1 \\ -1 \\ 0 \\ -1 \\ -2 \\ -3 \\ -1 \end{array} $	$ \begin{array}{c} 1 \\ -2 \\ 0 \\ -1 \\ -2 \\ -2 \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ -2 \\ 1 \\ -2 \\ -2 \\ -3 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ -2 \\ 0 \\ -1 \\ -2 \\ -2 \\ -2 \end{array} $	$ \begin{array}{c} -1 \\ -1 \\ 1 \\ -1 \\ -2 \\ -3 \end{array} $	$ \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ -2 \\ -3 \end{bmatrix} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ -2 \\ -3 \end{array} $

Scarti rispetto ai tempi di tragitto calcolati da Gutenberg e Richter.

TABELLA IV-C

Scarti rispetto ai tempi di tragitto calcolati da Macelwane.

	0	1	2	3	4	5	6	7	8	9
400 500 600 700 800 900 1000	$ \begin{array}{ c c } -3 \\ -5 \\ -8 \\ -7 \\ -6 \\ -6 \\ -3 \\ \end{array} $	$ \begin{array}{c} -3 \\ -5 \\ -8 \\ -7 \\ -5 \\ -5 \\ -5 \\ -2 \end{array} $	$ \begin{array}{ c c c } -3 \\ -5 \\ -8 \\ -7 \\ -5 \\ -5 \\ -1 \\ \end{array} $	$ \begin{array}{c} -4 \\ -6 \\ -8 \\ -7 \\ -5 \\ -5 \\ -1 \end{array} $	$ \begin{array}{c} -4 \\ -7 \\ -8 \\ -7 \\ -5 \\ -5 \\ 0 \end{array} $	$\begin{vmatrix} -4 \\ -7 \\ -8 \\ -7 \\ -6 \\ -5 \\ 1 \end{vmatrix}$	$ \begin{array}{ } -4 \\ -7 \\ -8 \\ -6 \\ -6 \\ -4 \\ \end{array} $	$ \begin{array}{ c c } -4 \\ -7 \\ -7 \\ -6 \\ -6 \\ -4 \\ \end{array} $	$ \begin{array}{c c} -4 \\ -7 \\ -7 \\ -6 \\ -6 \\ -3 \\ \end{array} $	$ \begin{array}{c} -5 \\ -7 \\ -7 \\ -6 \\ -6 \\ -3 \end{array} $

buirsi ad un particolare meccanismo di produzione all'ipocentro che ha dato luogo ad un processo, di una certa durata, nel corso del quale le vibrazioni a breve periodo possono essere state modificate per un fenomeno d'interferenza.

Istituto Nazionale di Geofisica – Osserv. di Messina – Ottobre 1953.

RIASSUNTO

A proseguimento dello studio dedicato al terremoto dello Hokkaido del 4 marzo 1952, viene dedotta, mediante un metodo di approssimazioni successive l'equazione della dromocrona più probabile delle onde P, valevole per distanze comprese tra 40° e 105°. In base a tale equazione vengono calcolati i tempi di tragitto e viene istituito un confronto con gli analoghi tempi calcolati da Jeffreyes e Bullen, da Gutenberg e Richter e da Maceluane. Viene notata la coincidenza, nei limiti degli errori sperimentali, con i tempi di Jeffreys e Bullen.

Si giustifica il notevole ritardo riscontrato nell'inizio delle registrazioni in alcune stazioni.

SUMMARY

For the advancement of the study of the earthquake of Hokkaido of March 4, 1952, there has been deduced, by means of a method of successive approximations, the equation of the most probable dromochrone of the P wave, valid for distances included between 40° and 105°. On the basis of such an equation, the passage times have been calcolated and a comparison has been made between the analogous times calcolated by Jeffreys and Bullen, by Gutenberg and Richter, and by Macelwane. A coincidence is pointed out, within the limits of the experimental errors, with the times of Jeffreys and Bullen.

The considerable retard noted in the begins of the registrations in various stations has been justified.

BIBLIOGRAFIA

(1) GIRLANDA A., Il terremoto dello Hokkaido del 4 marzo 1952. Annali di Geofisica VI, 2, 1953.

(5) CALOI P.-PERONACI F., Il terremoto del Turkestan del 2 novembre 1946.
 Annali di Geofisica I, 2, 1948.

(3) JEFFREYS H.-BULLEN K. E., Seismological Tables. British Association for the Advancement of Science: Gray Milne Trust. London 1940.

(4) GUTENBERG B. and RICHTER C. F., On seismic waves (First Paper). Gerl. Beitr. z. Geoph., Band 43, 1935.

(5) MACELWANE J. B., A Preliminary Table o of observed travel times of earthquake waves for distances between 10° and 180°, applicable only to normal Earthquakes. Saint Louis University, 1933.