STUDIO PRELIMINARE SULLE OSCILLAZIONI LIBERE DEL LAGO DI IDRO

MARIA CECILIA SPADEA

Dal lavoro « I laghi d'Italia » di R. Riccardi, si traggono le seguenti notizie circa i dati che caratterizzano il lago di Idro: lat. 45°47' N circa; Long. 1°17' W ca. (Monte Mario); alt. m 368; sup. kmq 10,87; lungh. mass. fra gli estremi km 10, lungo la linea di valle km 10,8; mass. largh. km 2; mass. prof. m. 122.

Questi ed altri dati vanno considerati come approssimativi, essendo soggetti a tante cause di variazione: diversità di metodi di misura, cambiamenti stagionali o secolari o accidentali, ecc.

Per la determinazione analitica delle fondamentali caratteristiche dei moti liberi del lago, si è fatto ricorso alla carta batimetrica del lago stesso pubblicata dal De Agostini nell'« Atlante dei laghi Italiani ». La carta è stata riportata al 25.000.

Il lago è stato diviso, lungo la linea di valle, in 32 sezioni di 300 in 300 m salvo le prime due, per le quali l'equidistanza è stata di 150 m. Dette sezioni vanno contate a partire dall'estremo Nord (figg. 1-2).

La larghezza b(x) delle singole sezioni in superficie, l'area S(x)delle sezioni stesse, l'area v(x) della superficie libera del lago fra due sezioni consecutive, l'area V(x) fra le varie sezioni e l'estremo Nord del lago e i valori della funzione $\sigma(x)$ (uguale al prodotto $S(x) \cdot b(x)$) per le 32 sezioni, sono riportati nella tabella I.

Si è provveduto quindi alla determinazione della curva normale del lago, che come è noto, si ottiene rappresentando $\sigma(x)$ in funzione di V(x). La figura 3 ne dà l'andamento.

La complessità della curva normale ha portato ad escludere l'applicazione di uno dei metodi suggeriti da Chrystal, per la determinazione degli elementi caratteristici delle sesse del lago.

Si è fatto pertanto ricorso ai metodi di Hidaka e di Defant, l'applicazione dei quali prescinde dalla forma della curva normale.

Il metodo di Hidaka, la cui teoria è stata esposta altrove, è stato applicato per il caso m = 2.

TABELLA I

Sezioni	∆(x) m	S (x) 10 ³ n. ²	largh. b (x) m	r () hm²	V (x) hn. ²	σ (x) [hn. ³]	$z = \frac{V}{a}$	$\frac{z^{i}(1-z)^{i}}{\sigma(\tau)}$ (Mm ³)	Δz	$\Delta z \frac{M}{\sigma z^2 (1-z)}$	² M z	M 22	M z [⊕]	M z ⁴
0	0	0	0	0	0	0	0	0	0					
1	150	29,75	1412	22,297	22,297	42,007	·0 993	9,284	·01993	·18503	.00369	.00007	.000002	·00000001
2	300	95,25	1825	48,649	70.946	175,656	·06341	20,096	·04348	·87377	.05511	.00351	.00022	.00002
3		133,00	1875	57,432	128,378	249,375	+11473	41,343	·05132	2,12172	·24342	·02792	.00320	.00036
4		143,50	1775	58,108	186,486	2 4,712	·16667	75,733	·05194	3,93357	.65561	.10927	.01821	.00303
5		149,00	1775	54,054	24,540	264,475	21497	107,685	·04830	5,20119	1,11810	·24035	.05165	·01113
6		151,25	1675	57,432	297,972	253,344	·26630	150,704	.05133	7,73564	2,06000	·54861	·14613	·03891
7	ъ	141,75	1620	48,619	346,621	229,635	·30973	199,055	·04348	8,65491	2,68112	.83053	·25731	·07971
8	ъ	117,75	1325	41,892	388,513	156,019	·34 22	329,255	.03744	12,32731	4,28029	1,48618	.51602	·17912
9	ъ	118,25	1320	43,243	431,756	156,090	·38587	359,792	.03865	13,90596	5,36589	1,06070	·79904	·30830
10	ъ	111,75	1515	45,622	478,378	169,311	·42754	35 4,808	.04167	14,74318	6,30330	2,69491	1,15218	·19257
11	ъ	137,25	1475	48,649	527,027	202,441	.47101	306,(53	·04°47	13,33021	6,27866	2,95731	1,39287	·65611
12		120,50	1340	47,297	574,324	161,4 0	$\cdot 51328$	386,511	·04227	16,33782	8,38588	4,30436	2,20936	1,13401
13		142,25	1465	41,892	616,216	2 8,395	·55072	293,768	$\cdot 03744$	10,99867	6,05719	3,33579	1,83711	1,01166
14		127,25	1375	44,595	660,81 L	174,969	·59058	334,116	·03586	13,31786	7,86526	4,67500	2,74321	1,62012
15		117.25	1275	41,216	702,027	149,494	·62742	365,566	·03674	13,43089	8,42681	5,28720	3,31730	2,08138
16		119,0	1320	49,540	712,567	157,080	·66365	317,227	$\cdot 03623$	11,49313	7,62742	5,06192	3,35933	2,22944
17	•	129,75	1350	47,973	790,540	175,162	·706·2	245,4'0	·04287	10,52158	7,43371	5,25206	3,71065	2,62166
18		107,00	1320	13,243	833,783	141,249	·74517	255,310	.03865	9,86773	7,35314	5,47935	4,08307	3,04262
19	>	55,25	950	32,432	866,215	52,487	· 7415	582,430	·02898	16,87879	13,06672	10,11563	7,83108	6,06235
20		70,50	915	28,378	894,593	64,507	·79952	398,251	$\cdot 02537$	10,10363	8,07805	6,45854	5,16376	4,12844
21		52,50	815	29,730	924,323	42,787	·82609	482,389	.02657	12,81708	10,58806	8,74663	7,22550	5,96891
22		41,25	710	22,973	947,296	29,287	·84662	575,682	$\cdot 02053$	11,81875	10,00599	8,47121	7,17185	6,07176
23		39,25	740	22,297	969,593	29,045	·8665 4	460,320	·01992	9,16957	7,94580	6,88534	5,96646	5,17017
24	>	24,50	650	21,622	991,215	15,925	·88587	642,386	.01933	12,41732	11,00013	9,74474	8,63252	7,64733
25	ъ	15,25	550	18,919	1010,134	8,387	$\cdot 90278$	918,088	·01691	15,52485	14,01552	12,65291	11,42272	10,31223
26	•	11,50	500	16,216	1026,350	5,750	·91727	1001,739	·01449	14,51520	13,31436	12,21280	11,20240	10,27560
27		8,75	590	18,243	1014,593	5,162	·93357	743,898	.01630	12,12554	11,32004	10,56801	9,86595	9,21056
28		18,25	640	19,595	$1064\ 188$	11,680	.95109	184,931	$\cdot 01752$	3,23999	3,08152	2,83080	2,78746	2,65112
29	2	4,50	375	16,892	1081,080	1,687	·96618	628,334	·01509	9,48156	9,16089	8,85104	8,55170	8,26242
30	•	1,75	240	10,811	1091,891	0,420	·97584	1309,524	·00966	12,65000	12,34438	12,04609	11,75501	11,47102
31	3	3,75	475	8,784	1100,675	1,781	·98369	145.985	.00785	1,14598	1,12729	1,10891	1,09082	1,07304
32	,	0	0	18,243	1118,918	0	1	0	0	310,86843 1 ₀	207,24365 1,	$155,12759 \\ 1_2$	$\substack{124,20409\\1_3}$	103,81510 1,

63

MARIA CECILIA SPADEA

Sia a la superficie del lago, g l'accelerazione di gravità, λ un parametro che risulta dalla risoluzione dell'equazione di III grado (corrispondente al caso m = 2); i periodi delle oscillazioni libere si traggono dalla formula:

$$T = 2\pi \ a / (g_{h})^{1/2}$$
[1]

L'equazione che consente la determinazione dei valori di λ contiene opportune combinazioni di certe grandezze I_0 , I_1 , I_2 , I_3 , I_4 , i valori delle quali vengono dedotti dai dati che caratterizzano la forma

del lago. Poiché, come si è detto, la curva normale è risultata di forma complessa, la relativa equazione di Chrystal è stata risolta mediante integrazione numerica. Da tale risoluzione (vedi tabella I), si sono tratti i seguenti valori:

$$I_0 = 310,86843$$
$$I_1 = 207,24365$$
$$I_2 = 155,12759$$
$$I_2 = 124,26409$$
$$I_4 = 103,81510$$

Ne è venuta la seguente equazione di III grado in λ :

 $4166.937\lambda^3 - 63.009\lambda^2 + 0.16997\lambda - 0.000095238 = 0$

Il metodo delle approssimazioni successive ha dato i tre seguenti valori per λ :

$$\lambda_1 = 0.0007677$$

 $\lambda_2 = 0.002515$
 $\lambda_3 = 0.011839$

Poiché a = 0,111892 Mm², conseguono dalla [1] per i tre valori di λ ottenuti,

$$T_1 = 13^{m},5$$

 $T_2 = 7^{m},5$
 $T_3 = 3^{m},4$

che rappresentano i periodi delle sesse uni-bi-trinodali del lago di Idro.

Per la determinazione dei nodi va tenuto presente che in essi du/dz = 0. Ciò comporta nel caso m = 2.

$$4\frac{A_{i}}{A_{0}}z^{3}+3\left(\frac{A_{i}}{A_{0}}-\frac{A_{2}}{A_{0}}\right)z^{2}+2\left(1-\frac{A}{A_{0}}\right)z=0$$
 [2]

dove il valore dei rapporti A_1/A_0 e A_2/A_0 può essere dedotto dal sistema di equazioni in A_0, A_1, \ldots una volta determinati i valori di I_0, I_1, \ldots e per ogni valore di λ .

Avremo pertanto, con riferimento all'oscillazione libera uninodale l'equazione di III grado in z:

$$17,40040 z^3 - 17,62232 z^2 + 5,07468 z - 1 = 0$$
.

Risolta tale equazione con il metodo delle approssimazioni successive, si è pervenuti al seguente valore per z.

$$z := 0,71812$$

che è il solo dei valori di z compresi fra 0 e 1.

L'uninodo corrisponde quindi ad una sezione che dista dall'estremo Nord m 4890.

Il valore di λ corrispondente all'oscillazione libera binodale è:

$$\lambda = 0.002515$$

Pertanto la corrispondente equazione dei nodi viene:

$$58,28488 z^3 - 75,69180 z^2 + 19,31876 z + 1 = 0$$

Le due radici di z comprese tra 0 e 1 sono le seguenti:

$$m{z}_1 = 0,42578$$

 $m{z}_2 = 0,91124$.

Le linee nodali della sessa binodale corrispondono perciò a sezioni trasversali che distano dall'estremo Nord m 2687 e m 7375 rispettivamente.

Per la sessa trinodale si ha:

$$\lambda = 0.11839$$

La corrispondente equazione dei nodi risulta pertanto:

$$10.5896 z^3 - 18.3642 z^2 + 8.9480 z - 1 = 0$$
.

Le tre radici di questa equazione sono tutte evidentemente comprese fra 0 e 1. Eccone i valori:

$$z_1 = 0,15876$$

 $z^2 = 0,62764$
 $z^3 = 0,94777$

A questi valori corrispondono tre sezioni trasversali (trinodi) che distano dall'estremo Nord m 854, m 4200, m 8043 rispettivamente. STUDIO PRELIMINARE SULLE OSCILLAZIONI LIBERE DEL LAGO DI HIRO

Sezioni	1º Uninodole	11º Binodale	111º Trinodale
0	- 1	- 1	- 1
1	90574	- 1,35582	82-91
2	74170	1,93529	50378
3	62341	-2.30835	— .19a0 3
4	56319	-2.38700	03025
5	55064	-2,23400	18009
6	56969	- 1,87753	+ .28050
7	60170	- 1.45399	+ . 82451
8	68414	1.02226	+.35621
9	66596	0,58307	. 32681
10	69171	-[- 0,02120	29642
11	70112	± 0.60271	+, 24701
12	68499	+1.14397	18663
13	64855	+ 1,58202	- <u> </u> 12694
11	56518	+1.98500	06069
15	45552	+2.28007	00048
16	30763		05457
17	07457		11029
18	+ .19612	+2.51723	12773
19	+ . 44042	+2,36518	16561
20	+.68559	+ 2.15050	17272
21	+ . 97562		17047
22		+1,52877	16118
23	+1.48708		14525
24	+ 1,76280	+0.76709	— . 12302
25	2,02164	+ 0.36471	09742
26	2,25689	-0.01747	07080
27		= 0.48971	03551
28	+2,85595	- 1.04958	00920
29	+3,14255	-1.57598	+.05348
30	+ 3,84037	-1.93497	+.08472
31	$-3,502^{-9}$	- 2.24015	+ .11186
33	+3,85276	-2.91184	+ . 17840

TABELLA II

Fig. 4

Fu calcolato poi l'andamento dello spostamento verticale della superficie del lago, corrispondentemente alle tre oscillazioni libere studiate.

Le equazioni che danno l'andamento degli spostamenti verticali sono:

 $\begin{aligned} \zeta' &= 17,40040 \ z^3 - 17,62232 \ z^2 + 5,07468 \ z - 1 \\ & \text{per la sessa uninodale} \\ \zeta'' &= 58,28438 \ z^3 - 75,69180 \ z^2 + 19,31876 \ z + 1 \\ & \text{per la sessa hinodale} \\ \zeta''' &= 10,5896 \ z^3 - 18,3642 \ z^2 + 8,9480 \ z - 1 \\ & \text{per la sessa trinodale} \end{aligned}$

68

1		1																															
	2 No		100,00	1. 6	90,08	89,95	82,55	73,65	63,20	97,06	34,71	1(,)1	0,18	- 14,90	31,44	44,83	- 58,90	- 12,92	85,25	- 94,68	117.03	19615	159 09	156.47	- 154 90	- 144.23	- 116 42	- 69 75	1 0.96	4,20	16930	+ 432.91	+ 498,73
DALE	2 Δη ₀ 50	5	66.6	2,23	1,13	- 0,03	- 1,39	- 8,91	- 10,45	- 14,44	10,05	10, 4	01,01 -	- 14,18	0 + 01 -	14,61 -	CU,+1	- 14,02	- 12,33	- 9,43	. 4 00	8 99	11.0		+ 1.57	+ 10.67	+ 27.81	+ 46.67	+ 70.01	1 33 55	+ 128 49	+ 270,61	+ 65,82
0 z I B	2ξ ₀ 102 cm		0, 1	(4,) -		C4.6 -	- 12,40	- 14,94	- 11,52	00,07	26,02 -	10,02	01,10	61,42 -	01,00	64,22	10,02 -	10,02 -	- 20,08	- 15,82	93,64	13,78	- 11 36	- 505	+ 2,64	+ 17,90	+ 46,65	+ 78,28	+ 117 49	+ 56.21	+ 215,51	+ 453,89	+ 110,40
	q 10 ¹⁰ cm ³		913	18.05	195 79	C1, C21	110,00	222,03	204,93	00,042	310,94	001,90	00,010	540,24 533 15	010016	00 000	66,667	11,6 7	240,13	202,002	130.63	01,16	59.66	24.53	-10,35	- 43,85	- 71,14	- 90,02	-102.74	-102.69	- 96,98	- 79,43	- 41,40 - 0.29
	2 η ₀ cm	00.001	00,001	08 33	06,18	03 31	80,79	85 51	80.35	72.46	65 00	57.47	50.07	41.90	33.41	24,44	14.51	4.69	4 40	15,50	- 36.61	- 52.82	- 73.92	- 99,84	-125,81	- 164,91	- 223,12	-293,22	- 371,58	-400.16	- 482,23	- 626,15	- 660,27
	$2 \Delta \eta_0$ cm		- 084	- 0,83	- 915	- 2,87	. 353	4.94	- 519	680	- 7.47	- 8.52	. 740	- 8.87	62.2 -	- 8.97	- 9.93	- 9.89	- 911	- 11.01	-21.11	-16,21	- 21,10	- 25,92	- 25,97	-39,10	- 58,21	- 70,10	- 78,36	- 28,58	- 82,07	-143,92	- 34,12
ALE	$2\xi_0$ 102 cm		- 7.49	- 7,33	- 9,55	- 12.75	- 15 66	1.81	- 23,03	- 30,59	- 33.15	- 37,83	- 32,84	- 39.37	- 34,56	- 39.80	- 44.06	- 43,90	- 40.44	48.85	- 93,70	- 71,96	- 93,64	-115,06	-115,26	- 173,54	- 258,35	-311,13	- 347,78	-126,85	- 364,24	- 638,74	11,161
0 2	q 1010 cn.3		2,3	70,54	127,01	182.9)	223,34	284.90	326.51	360.17	391.94	422.71	450.67	4 4,35	491,61	505,51	516,58	522,45	521.68	522,74	517,71	507,32	491,62	474,64	452,38	425,18	393,98	357,80	304,31	231,50	163,91	111,78	2,35
z ⊃	$v(x) = 108 cm^2$	0	22.297	48,619	57,432	58,108	54,054	5 .432	48,649	41,892	43,243	46,622	48,649	47,297	4,8)2	44,595	41,216	40,540	,7,973	43,243	$^{+}_{3}2,432$	9,378	29,730	22.973	22,29	20,022	16,919	10,215	18,243	19,595	10,892	18,011	0, 104 8,243
	$\frac{S(\mathbf{x})}{107 \text{ cm}^2}$	0	29,75	96,25	133,00	143,50	149,00	151, 25	141,75	117.75	118,25	111,75	137,25	120,50	142, 25	127, 25	117,25	119,00	129,75	107,00	55, 25	70,50	52,50	41,5	39,25	11,00	52,61	02,11	0,12	18,25	4,50	1,'5 3,75	0 ⁵ 0
	$\Lambda \approx 10^{2} \text{ cm}$	0	150	300	Ŕ	*	•	A	«.		•	•	*	*	*	•	*	*	*	*	*	*	•	8	a	e 3			•	e 1	a 2		*
	SEZ.	0	Ч	57	ŝ	4	ŝ	9	1-	8	6	10	11	12	13	14	15	16	11	18	16	20	17	22	27	47	07	070	17	200	670	31	32

TABELLA III

69

MARIA CECILIA SPADEA

Preso uguale ad 1 lo spostamento iniziale all'estremo Nord, sono stati calcolati, di sezione in sezione, gli spostamenti verticali relativi ad ognuna delle tre sesse citate. La tabella II riporta i risultati dei calcoli e la fig. 4 ne dà il relativo grafico.

Metodo Defant. — A scopo di controllo, ho applicato anche il metodo di Defant. È ben nota la teoria di questo metodo. Mi limito qui a dare il significato dei simboli che figurano nella tabella III. In essa è $\alpha = 4 \pi^2/gT^2$, con manifesto significato dei simboli; $\Delta(x)$ rappresenta l'intervallo fra sezione e sezione; $2 \xi_0$, $2 \eta_0$ esprimono le ampiezze delle oscillazioni, contate lungo una sezione longitudinale del lago, in senso orizzontale e verticale rispettivamente; $2 \Delta_{-0}$ dà la variazione dello spostamento verticale da una sezione all'altra; $q = 2\eta_0 v(x)$ eprime il volume dell'acqua che nel tempo T/4, fra il riposo ed il massimo spostamento di una particella liquida, passa attraverso una generica sezione S(x).

Quando il periodo T dell'oscillazione libera considerata coincide con il periodo dell'oscillazione del lago, in corrispondenza dell'ultima sezione si dovrà avere q = 0.

Per la sessa uninodale, il valore $T = 14^{\text{m}}$,4 ha portato al residuo $q = 142,03:10^{10} \text{ cm}^3$. Dopo un altro tentativo per $T = 12^{\text{m}},2$ il residuo è stato praticamente nullo (tabella III).

Per quanto concerne la sessa binodale un residuo praticamento nullo si è avuto con il periodo $T = 7^{\text{m}},5$ (tabella III).

La fig. 5 dà la posizione dei nodi e l'andamento degli spostamenti lungo il lago, per le due oscillazioni libere considerate, ottenute con il metodo di Defant.

Ose	rillazioni libere	Primo metodo (Hidaka)	Secondo metodo (Defant)					
Uninodale	(periodo nodo dall`estremo (Nord	13,5 4890 metri	12,2 1650 metri					
Binodale	(periodo , I Binodo (II Binodo	7,5 2687 metri 7375 metri	7,5 2700 metri 7800 metri					
Trinodale	(periodo) I Trinodo) II Trinodo (III Trinodo	3,4 854 metri 4200 metri 8043 metri						

La ricerca analitica condotta sul lago di Idro ha portato ai risultati che qui ora riassumo

Fig. 5

MARIA CECILIA SPADEA

I due metodi hanno condotto a risultati in ottimo accordo, specie per quanto si riferisce all'oscillazione libera binodale.

Le osservazioni, che mi propongo di eseguire in seguito, permetteranno di stabilire, per quanto si riferisce all'oscillazione uninodale, quale dei due metodi ha portato a valori più rispondenti alla realtà.

Conformemente alla teoria, nella parte Sud del lago, stretta e poco profonda, si verificano i massimi spostamenti per le oscillazioni uni-binodali.

Anche per quanto si riferisce ad essi, l'osservazione permetterà di decidere sull'attendibilità dei risultati ottenuti dai due metodi.

Roma — Istituto Nazionale di Geofisica — Gennaio 1953.

RIASSUNTO

Si riportano i risultati dello studio preliminare eseguito allo scopo di determinare, nelle loro fondamentali caratteristiche, le oscillazioni libere del lago di Idro.

Ottenuta la curva normale del lago, si sono applicati due diversi metodi di calcolo, che hanno consentito di pervenire ai periodi delle prime tre sesse (uni,-bi-trinodale) nonché ai corrispondenti spostamenti verticali e orizzontali e alle linee nodali.

Le osservazioni, che ci riserviamo di fare, serviranno a stabilire il grado di attendibilità dei risultati ottenuti per via teorica.

SUMMARY

We present here the results of a preliminary study to determine the fundamental characteristics of the free oscillations of the Lake of Idro.

Having obtained the normal curve for the lake, two different methods of calculation were applied which have given the periods of the first three seiches (once, twice and thrice-nodal), including the corresponding vertical and horizontal displacements of the nodal lines.

The observations, which we intend to do, will serve to establish the degree of reliability of the results obtained by theoretical methods.

BIBLIOGRAFIA

CALOI P., Le sesse del lago di Garda. Parte I e II, Annali di Geofisica I, 1 e 2, 1948.