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Fig. 1 t o 4. - D i f f e r e n t geologica] f o r m a t i o n s w h i c h coukl , 011 t h e ave rage , d i sp l ay a n i s o t r o p y , 
wit l i or w i i h o u t in i t ia l o rus ta l forces 8. 

1. INTRODUCTION. 

It is probable that certain features of 
symmetry in geological structures can liave 
some effect comparable to anisotropy on 

difìcation of elastic constants with deptli 
induces velocity dispersion in the Rayleigh 
surface waves, and also makes possible the 
appearance of the (dispersive) Love waves. 
Discarding liere any variation with deptli, 

the propagation of seismic waves, when 
that symmetry is significant on an average, 
at the scale of the wave length. Take for 
instanc.e the layered structure due to se-
dimentary formation. When the layers are 
horizontal (Fig. 1), it is known that a mo-

we may consider only the effect of a trans-
verse anisotropy which could be displayed 
by such a structure. If the lattei- extends 
on sufflciently large areas, as compared to 
the wave length of the traversing waves, 
with small irregularities which woidd not 
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impair tlie general symmetry, one must 
expect tha t some effect will be detected on 
the surface wave. 

On the other hand, if such layered struc-
tures have been highly compressed and 
have folded in a given horizontal direction 
(Fig. 2 and 3), the same assumption of 
average liomogeneity could be made for 
the waves propagating along the surface 
in the direction perpendicular to the folds. 
The " modulation which appears espeeially 
in Fig. 2 for the elastic constants could be 
neglected if its wave-length Lm is small 
compared to the wave-length of the waves. 
In tha t case, only average values of the 
constants will have to be retained. 

Accordingly certain parts of the world 
display geological structures which may 
roughly be considered as two-dimensional, 
and as such can be discribed in a vertical 
cross-section (x, y). The tectonic theories 
of these structures assume the occurrence 
of crustal forces which often are stili at 
work, and usually are supposed to exerce 
a compression in the horizontal direction x, 
or even a tension, in certain cases. As a 
result of these forces, foldings and faults 
appear, and the rocks themselves exhibit 
an anisotropie structure, which very roughly 
and on an average can remain two-dimen-
sional over more or less large areas. 

In niany cases however these areas are 
not very broad, one famous example being 
the formations called " Graben part ly 
characterized by series of parallel fractures 
(Fig. 4); one knows tha t tension and com-
pression hypotheses have been ventured to 
explain their origin, and tha t in fact both 
theories disclose strong and weak points 
when related to actual cases. One can as-
sume tha t the elastic properties of such 
formations on the whole will also exhibit 
a special kind of two-dimensional aniso-
tropy, and the purpose of this paper is to 
study its effect on the propagation of sur-
face waves. 

I t should be noted here tha t the propaga-
tion of elastic waves in infinite unstressed 
aeolotropic media have been the subject 
of several studies [(2) to (5) and (10) to (")]. 
Besides the well-known existence of the 
principal velocities of wave propagation, 
(ref. fii'st chapter of Love's Treatise on the 

Mathematical Theory of Elasticity), one 
must point out t ha t the distinction be-
tween dilatational and distortional waves 
tends to disappear in the case of aeolotropy. 
The propagation of surface waves in an 
unstressed semi-infinite medium endowed 
with transverse isotropy, (or hexagonal 
symmetry) about the vertical axis was 
studied by Stoneley (7) and Satò (8); there 
is then of course no privileged direction of 
propagation for Bayleigh waves, due to 
the symmetry of revolution of the system. 
Such characteristie directions arise in cases 
of higlier degrees of anisotropy, as has been 
shown by Stoneley for cubie crystals ("), 
and more generally by Synge (12). 

In short, we consider now the propaga-
tion of surface waves in the direction x, 
in a semi-infinite (y > 0) homogeneous, 
transverse isotropie (aeolotropic with hexa-
gonal symmetry) medium, submitted to 
an uniform initial stress 8 in the direction 
x. The problem is two-dimensional and 
could be extended to the propagation of 
a surface wave in an orthotropic medium 
if x and y are two of its axis of symmetry. 

The study is restricted to the Bayleigh 
waves propagating in the direction of 8. 
The main and novel feature is the inve-
stigation of the effect on the velocity of 
the surface waves of an initial stress 8 
acting in the direction of propagation. 

I t will be seen tha t the initial stress in-
creases the degree of the preexisting aeolo-
tropy, and tha t i t could also be the only 
cause of anisotropy, if the medium were 
isotropie in the absence of the initial stress. 

One can thus distinguish between the 
" forced " anisotropy induced by the initial 
stress S and which in our case will appear 
in a dissymmetry in the elastic constants, 
and the " naturai " aeolotropy of the ma-
terial in absence of 8. There is here another 
reason to assume the preexistence of naturai 
aeolotropy: the fact tha t in most naturai 
media the presence of an initial stress 
causes a slow change of the elastic con-
stants, change which in general will con-
sist in an increase of the " naturai " aeolo-
tropy. 

The assumption of liomogeneity allows 
an easy solution of the partial differential 
equations of the wave propagation, the 
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coefficients r e m a i n i n g Constant. Such 
equations, written down for the general case 
of anisotropie elasticity have been given 
previously by Biot in an important paper 
on " The influence of initial stress on 
elastic waves " ('). In this reference, Ray-
leigh waves are considered from the point 
of view of the gravity effect, and Brom-
wich's result is restated for an incompres-
sible medium. The influence of the gravity 
lias been recognized to be small and needs 
not be reconsidered here. 

2. EQUATIONS OF TIIE R A Y L E I G H WAVE. 

With Biot's notations for the components 
of the stress tensor the equation of 
oscillation in two dimensions (x, y) are, 
(see ref. ('), p. 529, equ. 34, where we liave 
put $22 = 0 and Sn = 8) 

32M 

tfv 
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In these equations the subscripts 1 and 2 
are related to the horizontal and vertical 
directions x and y, and u and v are the 
components of the displacement. Inertia 
forces are represented by second time de-
rivatives multiplied by o, the mass density. 

For the assumed two-dimensional wave 
the stress-strain relations reduces it self to: 
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with the notation: 
A3 = (B33 - 8)12 
and 

^12 = Rl2 + A32 = R2lH 

A32 = (B33 + 8)12 

A13=(B12+B21+B33)I2. 

The boundary eonditions are, for the free 
sui'face y = 0, (horizontal piane boundary), 
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[4] 

For geophysical applications this would 
mean tha t varying external forces on the 
surface are neglected, and this indeed is 
permissible, for instance, a t the surface 
of the continents. 

Furthermore, there is, of course, in the 
case of the semi-infinite medium, the ad-
ditional condition tha t u and v converge 
to zero for infinite positive values of y, 
whose orientation is taken positive down-
wards. 

Now, due to the constancy of their coef-
ficients, the equ. [3] can be satisfied by 
a solution of the forni: 

[5] 

[6] 

[2] 

u — a exp (— aky) sin [lc(x — et)] 

v = b exp ( — aky) cos [k(x — et)] 

and their substitution gives: 

k2 [a (qc2 - Bu + A13 a2) + b Alt a] = 0 
k2 [ - aA12 a + b (qc2 - A32 + B22a2)] = 0. 

The propagation of a surface wave of finite 
wave-length (k # 0) requires tha t the coef-
ficients a and b should not vanish simul-
taneously. The condition of consistency 
for [6] takes then the forni: 

a' B22 An + et2 [(qc2 - A32) Al3 + 

with B21 = B12 + 8. Tlius, for 8 ^ 0, the 
elastic coefficients are no more symmetric. 

Substituting [2] in [1], one obtains: 

+ (qc2 - Bn) B22 + A2 

+ (QC2 - Bn) (QC2 - A32) -- O [7] 

[3] 

Let us cali a\ and a2
2 the roots of [7], and 

let us assume tha t they are real but un-
equal (see Appendix I for the case of 
equal roots). 

When the roots a2i and a2
2 are both posi-

tive, one can always take for ka the sign 
which makes it positive in [5], in order to 
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insure the vanishing of the solutions for 
increasing values of y. 

The alternate signs with the correspon-
rling complementary terms and boundary 
conditions, should intervene in the case 
where waves are propagating in a piate 
bounded by two parallel planes, instead of 
a semi-infinite medium. 

There are two such values for a, and 
as a consequence of the linearity of the 
equ. [3], a complete solution for u and v 
can be put in the form: 

u = [a' exp (— a'ky) + 
+ a" exp (— a"ky)] sin [k (x — et)] 

[8] 
v = [p' a' exp (— a'ky) + 

+ p" a" exp (— a"ky)] cos [ft (x — et)] 

with only two constants a and a" to be 
determined by the boundary conditions [4], 
for y — 0; the P's are the previously defin-
ed values of the ratio b/a. The other cons-
tants associated with the values —a' and 
—a" of a disappear due to the condition 
at y — oo. The case where a.\ and a2

2 are 
eonjugate complex always yields two con-
jugate values for Ica with positive real 
parts; the coefficients a' and a" in [8] are 
then also eonjugate complex, and the 
functions of y between brackets in [8] 
would reduce to decreasing exponentials 
multiphed by sinusoidal functions (see 
Appendix III) . 

(The case where one a t least of the 
roots a2 is real non-positive is considered 
in Appendix II). 

3 . T H E VELOCITY EQUATION. 

In expression [8], a and a" are thus 
functions of the elastic constants, of the 
initial stress 8, and also of the wave velocity 
c, which appears in equ. [7]. Tliis velocity 
will now be determined by the boundary 
conditions [4], 

Substituting u and v in these conditions, 
one finds: 

a' (a + /?') + a" (a" + P") = 0 

a' {B21 - B22a' p') + a" (B21 - B22 a" p") = 0 

[9] 

whence the condition of consistency, which 
is also symmetrical in a and /?: 

(a - a") (B2l + -B22 P' P") + 
+ (p' - p") (Bn + B22 a' a") = 0 [10] 

The P' and p" ai'e to be deduced from 
the system [6], which has been made con-
sistent by [7]. We find: 

p' - p" = - (Bn - pc2) (a' - a") ! 
I A,, a'a" -A13 (a - a")/A12 

P' P" = (Su - QC*f I [11] 

/ A\2a a"~AU (Bn - gc2) (a'2 + a"2)/ 

/ ^12
12 a' a" + A\3 a' a" / -42

12 

and substituting, we note tha t the assump-
tion a' = a" allows the remo vai of the 
factor («' - a " ) from [10]. We have then: 

a'2 a"2 B22 A13 (A13 - A12) -
- a' a"A12 [B21 (A13-Al2)+B22 (BU-(?C2)] -

- (a'2 + a"2) B22 A13 (Bn - ec2) + 

+ (Bn-sc*)[B22(Bn-Qc*)-B2lAl2]=0 [12] 

expression which contains only the sum 
and produets of the roots a'2 and a" 2 of [7]. 
These can be easily formulated in terms of 
the coefficients of [7], and their substitution 
in [12] yields, af ter rationalisation, the 
deceptively simple equation: 

B22 (ec2 - ^32) (QC2 - Bn + B\/B 22)2 -
- A13 (ec2 - Bn) (ec2 - 8)' = 0 . [13] 

Put t ing 8 = 0 (absence of initial stress) 
one falla back on the velocity equation 
given by Stoneley [7], which, in the present 
notation takes the form: 

B22 (qc> - B331 2) ((?c2 - Bu + B\2 / 
I B22f - (gc2 - Bu) B33 / 2 = 0. 

I t is worth noting tha t the speed e given 
by [13] under an initial stress 8 could also 
be computed starting from a ficticious 
unstressed medium, of characteristics o', 
B'n, B'22ì B\2 = B'21 and B ' 3 3 , by taking: 

gc" - S = q'C2 Bn — S = B ' u 

B33-8 = B'33 B12 + S = B'12=B'21=B21 

and B22 = B'22 
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Fig. 5. - Roo t s £ of t h e veloci ty e q u a t i o n in f u n c t i o n of Blu, fo r a pres t ressed mediu 
witli X = /t. Permiss ib le areas are shaded . 
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Having then determined the roots oc2, 
one gets e = )j(q'c2 + 8 ) / q . 

4 . DISCUSSION OF THE VELOCITY EQUATION. 

Equ. [13] is the wave velocity equation. 
Rewriting it in terms of the different po-
wers of the unknown gc2, we fìnd: 

(oc2)3 (B22 - A13) -
- (QC2)2 [B22 (A32 + 2 B ) - A13 (Bn + 2 8)] 

+ gc2 [B22 B(B + 2 A32) -
A13S (8 +2Bn)] -A32B22B2 + A13Bn8* = 0 

[14 ] 

where we have put: B = Bn — B2
21 / B22. 

If we assume that the two-dimensional 
anisotropy is only induced by the initial 
stress 8, and that without it Hooke's law 
would be valid, we must write: 

Bn = B22 = X + 2fi A12 = X + n 
B12=B21-S = X-8/2 A13=fi-8/2 
B2l = X +8/2 A32=m + 8/2 [l0] 

B33 = 2fi, 

where X and fi are the constants of Lamé. 
Putting gc2/fi = | , equation [14] becomes: 

|3 [1 + 8/2 (X + fi)} - | 2 [8 - SX/fi (X + 0)] 
+ | [(24A + 3 2 ^ - 8 SX/fi — 
- A?2 [ (2 f i - 8) (3A + 2fx) - 4X2] / 
/ 4/i» (X + fi) + 8i/16ju2 {X+fi)] / (X + 2fi) 

— [ ( 1 6 (X + fi) + 88 -
_ s2 (4X + 6p) jfx2 + 83 (2X2 + 2fi2 + 3X/u) / 

/ 2fj? {X + fi) + (4X + fi) / 
/16/li3(X+fi)+ 85/32 fi" (X+fi)]/(X+2 fi) = 0. 

[16 ] 

I t is readily verifìed that this expression 
reduces itself to the known equation for 
the Rayleigh waves, when we take 8 = 0. 
Its roots give the values of the velocity 
in a medium naturally isotropie, where the 
anisotropy is induced by the initial stress 
8. One sees at once that the effect of this 
stress on the value of the roots as deduced 
for the isotropie case S — 0 is small at 
the sanie time as 8/fi. 

If f 0 is the value of a root for the un-
stressed medium, an estimate of the in-
fluence of 8 is easily obtained by putting 
| = | 0 (1 + e) and assuming e small, like 
8/fi, so that higher powers can be neglected 
For X = fi, the smallest root | 0 is (0.9194)' 
(see for ex. [9]). We find then: 

e = 1.01 8 / f i . 
As an application to geophysics, taking 

fi of the order of 0.63 • IO12 dynes/cm2 

(see [9], p. 153), and on the verge of frac-
ture, it can be assumed that a maximum 
value of the stress is 8 = ± 10° dynes/cm2. 
In that case we have e = ± 0.0016 and 
the relative change on the velocity is negli-
gible, being smaller than one thousandth. 

As it was to be expected, the change 
would be an increase of the velocity for 8 
positive (tension), and a decrease for a 
compression; this can be put in relation with 
the earliest stage of a "buckl ing" process. 

Because of its interest for a later discus-
sion (see Appendix II) the curves for the 
three roots | 1 ; | 2 and | 3 of equation [16] 
have been sketched in fìg. 5, in function 
of the parameter 8/fi, assuming again X = fi. 
The first root becomes negative, (thus e 
imaginary and instability indicated by the 
transformation of sinusoidal functions of t 
in hyperbolic functions), for 8/fi < — 1.33. 
On the other hand, the second and third 
roots are complex for values of 8/fi larger 
than a certain value of the order of + 0.2. 

An important remark must be made here 
regarding the values of the elastic constants. 
As long as there is a surface wave propa-
gating with a reasonably high velocity, 
isentropic values should be used. 

On the other hand it is obvious that a 
standing wave with zero frequency, which 
is the buckling case, calls for isothermal 
constants, which imply lower values of 
the criticai compressive stress (— 8). To 
be strict the study of very slow waves 
should be thermodynamical in nature and 
involve the equation of heat conduction. 

5 . CllITICAL VALUES OF T H E INITIAL STRESS. 

We have seen that the wave velocity 
can vanish for some so-called criticai values 
of 8, it is easy to show that at least one 
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such value lies in the following interval: 

- B33 < 8cr < 0 . 

It must satisfy equ. [14] when c = 0 , 
and therefore is a real root of the equation: 

f ( S ) = - (B* 
+ (B33 

-S)[BnB2 

• 8 ) B U B 2 2 S* = 0 [17] 

rubber, where S can assume values of the 
sanie order of magnitude as //, which must 
be determined at the considered value of 
8. The initial strain due to S can be large, 
and the anisotropy induced by the initial 
stress distribution quite important. The 
linear equations [2] remain valid for the 
displacement components u and v measu-
red from the predeformed state, as long as 

(28 ) (A = o o ) 

( 2 8 l i -

.—̂ ^ ̂  

/ / 

£ ( y v 
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^ « s 
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- 2 
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i 

0 
5 / f 2 

Fiff. 6 

obtained from [14] by replacing the A's 
by their expression in the B's and S. Ali 
the B's in this equation being positive, 
except possibly Bl2, one sees immediately 
that /(o) is negative, and / (— B33) positive. 
Further / (8) remains positive for 8 < — Bm 
and negative for 8 > S33. 

In normal circumstances elastic instabi-
lity would only be observed if the compres-
sion — 8 could, without rupture of the 
material, reach values which are not too 
small compared to the elastic constants, 
which everytime must be determined in 
the prestressed state. 

This is of course exceptionnal for most 
materials, but there is a case in point for 

these components are small as it is assumed 
liere for the surface waves. 

Now rubber is to be considered as a 
nearly incompressible material, and we 
will assume the limit value 0,5 for Pois-
son's ratio v. We have then X = oo, and 
the equation [16] takes then the forni: 

£3 _ f . ( 8 _ + f (24 - 8 Sl/i + 8*/^) — 

- 1 6 + 4 S V - &I/*3 = 0 • [18] 

Fig. 6 gives the variation of the first 
root | „ for — 2fj, < 8 < + 2fi. The two 
other roots are complex in this range. 

The root becomes negative, and there 
appears tlius instabihty, for 8 > — 1,679 ju. 



106 P. BUCKENS 

This is the only real value of 8 for which £ 
vanishes, for 

83/fi3 - 4 S2//i2 + 16 = (8/,2 + 1,679) • 
• [8/fi - (2,8395 + s. 1,22)] • 
• [8/fi - (2,8395 - s. 1,22)] . 

In the same drawing the curve of 
for X = fi has been reproduced, in dotted 
lines, for comparison. 

Taking new orthorhombic or hexagonal 
crystals in order to obtain orders of ma-
gnitude, one can every time apply the 
present resulta to three cases for the for-
mer and two cases for the latter, by as-
suming the direction of propagation of the 
Rayleigh waves parallel to distinct axes 
of symmetry. 

As a very first approximation of the 
criticai value of 8, which satisfies / (8) = 0, 
(see [17]), one can assume a straight line 
for / (8) between the points 8 = 0 [for 
which f(0)= - B33 (Bn B22 - Bl2y], and 
8 = - B33 (for which / ( - B33) = 2 B33 Bn 
B22), and write 

„ 7> f j O ) 
c r ~ 33 f i - B ^ - f ( 0 ) -

-B33 (BnB22- B\2f 
' 2 B233 Bn B22 + (Bn B22 - B\2)2 

For example taking beryl for which, in the 
case 8 ^ 0 

B33 = 2G u = 13,2 X IO11 dynes/cm2 

Bn = Gn = 28,5 » » 
B 22 = C33 = 25,0 » » 
B12= C13 = 7,0 

8cr ^ 8,43 X IO11 dynes/cm2 

and assuming here these values unchanged 
with 8 (for lack of fur ther information), 
we find: 

8cr ^ — 8, 43 X IO11 dynes/cm2 

which is not too different from the exact 
value: — 9,925 X IO11, but in every case 
very much above the breaking point. 

For zinc 

B33 = 8, Bn = 16, B22 = 6,1, Bl2 = 5 
tiines IO11 dynes/cm2 we get : 8cr ^ — 
—2,37 X IO11 dynes/cm2, which is a value 
proportionnally smaller, but stili high above 
the limit of rupture. (Here the approxima-
tion gives only on ordes of magnitude, 
for tlie exact value is 8cr = — 4,87 X IO11). 

6 . GEOPHYSICAL CONSIDERATIONS. 

Turning now to geophysical applications 
cases of genuine anisotropy, witli or without 
initial stress 8, are more difficult to discuss, 
mainly because of the lack of experimental 
da ta on the values of the elastic constants. 

A few indications given by von Moos 
and de Quervain (6) show large differences 
between the moduli of elasticity as measur-
ed in directions parallel and perpendicular 
to the layering of certain rock formations. 
Lack of information especially on the 
shear constants B33 prevents however the 
determination of the elastic constants of 
equ. [13], 

For instance, these authors report the 
following data, 

Modulus of elasticity (lcg/cm2) Inverse Poisson'i 
E (par.) E (perp.) ratio, m 

layered granite 400.000 250.000 — 

layered biotite 280.000 80.000 — 

layered sandstone 
fine grained 80.000 to 30.000 to 6 to 10 

150.000 50.000 
thick » 30.000 to 15.000 to 6 to 10 

50.000 30.000 
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In this table m is the ratio between 
longitudinal and transverse deformations. 
Of course its value should depend on the 
direction of the tension, and when this 
last is not perpendicular to the layers, on 
the transverse direction. This must ex-
plain at least part ly the dispersion of the 
values reported in (6). 

The relations which bind the E's and 
the m's, to the B's are given in Appen-
dix IV. I t is shown tha t even when the 
different m's should be more precisely 
given, the shear Constant B:a would stili 
be lacking. 

Even if the value of Ti:a were given in 
the cases above, the constants could only 
be safely used in the velocity equation for 
small values of the initial stress 8. Moreover 
large values of 8 applied for a certain t ime 
in the geological scale bring changes in 
the elastic characteristics of the material. 
In fact there arises then a problem of slow 
change which in itself is rheological in 
nature, and in a first approximation it 
could be handled not only by considering 
the elastic constants as functions of 8 and t, 
but also by introducing in these " const-
ants " operators of the forni djdt. 

Concentrating now on the stability pro-
blem, one can assume tha t in certain cir-
cumstances the slow change in the elastic 
constants, always under values of 8 beneath 
the breaking point, could reach a i>oint 
wliere instability appears. Jus t before 
buckling the time operators djdt and d-fdt2 

would play a negligible role, letting elastic 
criteria determine the onset of buckling, 
by an equation of the forni [17], where 
now ali the constants B are to be con-
sidered as functions of 8. 

This type of buckling, where the wave 
length must be kept small with respect to 
the thickness of the terrestrial crust, should 
be put in contrast with the one considered 
by Jeffreys which involves large scale 
bending of the terrestrial shell. 

One of the shortcomings of the present 
theory lies in the assumption of homogenei-
ty; neglecting the change of the rheological 
characteristics of the material with deptli 
should restrict any application to small 
scale orogeny, with reasonably short wave 
length. 

The indeterminacy of the wave length, 
(there is no length scale in a semi infinite 
medium), allows a Fourier superposition 
to give shape of wave. In particular, a 
standing wave solution could always be 
adapted to a piane strip of finite extension. 

The presence of initial irregularities of 
the surface has not been taken in account 
and would not doubt influence the buckling 
process. There is however a difference 
with the role of bilateral initial deformation 
in compressed columns. I t is to be su-
spected tha t the largest irregularities would 
influence the forthcoming pat tern of buck-
ling. 

7. CONCLTJSION. 

The simplest problem involving the 
effect of initial stresses on the propagation 
of Rayleigh waves in a case of two-dimen-
sional symmetry with transverse aniso-
tropy, has led to the solution [5], with 
equ. [7] and [13] to determine the coeffi-
cients Be(a) of exponential amplitude de-
creasewitli depth, and the wave velocity e. 

The two-dimensional character of our 
problem avoids the complication met more 
generally by Stoneley (n), who already for 
homogenious cubie crystals found that , 
with respect to directions of propagation 
different from the principal axes or their 
bissectrices, the surface waves either do 
not exist, or exhibit vertical oscillation 
planes which are inclined to the direction 
of propagation. 

As it had already been shown by Sto-
neley ( l l) and Synge (12) for unstressed 
media, we find tha t the distinction between 
compressional and distorsional waves does 
not exist any more in an aeolotropic me-
dium, and fur ther tha t the purely exponen-
tial decay of the Rayleigh wave with depth 
must be generalized to an exponentially 
damped sinusoidal oscillation. Such a gene-
ralization does not occur however in the 
case of the naturally isotropie medium, for 
normal values of the initial stress 8. 

The direct effect of a compressional 
initial stress 8 on the velocity c is a decrea-
se, which for practical purposes is usually 
negligible. A $-dependant variation of the 
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elastic constants lies presently outside the 
scope of experimental data, but may bring 
interesting results in the field of small 
scale orogeny, when near-buckling proces-
ses could be involved. 

On the other hand, besides purely physi-
cal application», the theory may also offer 
some technical interest, for most materials 
from wliich machine parta are made of, 
not only may be prestressed, but can also 
exhibit some kind of polycrystalline aniso-
tropy near the surfaces. Accordingly the 
behaviour of surfaces waves with very 
high ultrasonic frequencies could in cer-
tain cases shed some light on the state of 
the material near the surfaces. 

From the theoretical point of view, one 
effect of initial stresses is to set up a higher 
degree of anisotropy by destroying the 
symmetry of cross elastic constants. I t 
would be interesting to extend the general 
theory developed by Synge (12) for the 
21-constants aeolotropic, but unstressed 
medium, to the case of initial stress. Keep-
ing the assumption of uniformity, this 
would bring fìve new parameters in an in 
infinite medium (the fìve independant c.om-
ponents of the stress deviatoi'), and three 
only for a semi-infinite medium, due to 
the boundary conditions. 

Appendix I. 

The case where roots a\ and a2
2 of equ. [7] 

are equal does not introduce any substan-
tial change in the preceding results. The 
discriminant of [7] must vanish, and by 
eliminating oc2 between this relation and 
the equation [13], which of course holds 
in the limit, one fìnds a relation which must 
be satisfìed by the elastic coefficients of 
the medium. 

The limiting process whereby the elastic 
coefficients are varied in order to make 
the roots a2 coalesce, gives us immediately 
the correct forms of the solution [8]. These 
expressions can be replaced by the more 
eonvenient linear conibinations: 

u = )(«i/2) [exp (— a7cT/) + exp (— a'ky)] + 

+ [ e x P ( - «'ky) ~ e x P ( - <*"%)]] 

• sin \k (x — et)] 

v=) («i/2 [p' exp ( - a'ky) +/S"exp ( - a"ky)] + 

+ ,a*. „- [p'exV(-a'ky) - j 8 " « p ( - a " f c y ] | 
a — a 

• cos [k (x — et)] 
[19] 

so tha t in the limit, for a = a" = a: 

u = (a1 — a2ky) exp (— aky) sin [k (x — et)] 
v = [ai/S + a2 (dp/da) — a 2 / % ] exp (— aky) 

cos [fc (x — et)] 
[20] 

the values of /? and (dp/da) being given 
by [11]: 

(dp/da) = — (Bn - qc2)/A12 a2 - A J A l t 
P2 = (Bn - QC*Y/A\2 a2 - 2 A13 ( B n - Q c 2 ) / 

/A\2 + a2 A\3 / A\2 
[21] 

Assuming the discriminant equal to zero, 
equ. [7] yields: 

a4 = (qc2 - Bn) (QC2 - A32) / B22 A13 

and, due to [13] this becomes 

a2 = ± (QC2 - Bu) (gc2 - S) / B22 

(QC2 - Bn + B221 / B22) [22] 

with the proper sign for which the discri-
minant vanishes. If a2 is positive, it is 
its positive real square root which is in-
troduced in [20]. Now if a2 is negative, its 
roots are pure imaginary conjugates. This 
case belongs to Appendix I I . 

Appendix I I . 

Let us suppose tha t one a t least of the 
roots of equ. [7], say ai2, is real negative. 
We have then two eonjugate pure imagin-
ary values, al and — al = ai, and their 
substitution in expressions of the forni [8] 
would give oscillatory non-decreasing func-
tions of y in the semi-infinite medium, so 
tha t physically the corresponding coeffi-
cient must vanish, (at least for a propaga-
ting wave of finite energy). If both roots 
a2 are negative, no Rayleigh wave of finite 
energy could propagate through the semi-
infinite medium, at least at the considered 
velocity. 
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Now it is easy to see that if the roots a2, 
are real, both are of the same sign, for 
their product is: 

P = (pò2 - Bn) (QC2 - A32) / B22 A13 

and following [13] this is: 

p = (gc2 - P u ) 2 (qc2 - sy i 
I B\2 ((oc2 ^ Bn + B2

2l I B22)2 [22] 

which is positive. This supposes of course 
c real, which is the condition for a wave 
of bounded amplitude. 

Thus there is no wave whose velocity 
would be sueh tha t the roots a2, be real 
(discriminant of [7] positive), and their 
sum negative, tha t is for which: 

[A13 (qc2 - A32) + P22 (QC2 - B11) + A\2] I 
I B22 A13 > 0 

The condition on the discriminant becomes 
then: 

( q c 2 - A 3 2 ) / B 2 2 + ( Q C 2 - B 1 1 ) / A 1 3 + A 2
1 2 I B 2 2 A 1 3 

> 2 l 'fec2 - Bn) I A13][QC2- A32)/B22] [23] 

the square-rooted quantity being always 
positive, following [13]; the brackets liave 
thus the same sign. If they are both po-
sitive, the " admissibility " condition be-
comes, by reversing inequ'dity [23]: 

[( r(QC* ~-~A~) TB^2 - YJ^-Bn) 

+ A\2 / B22 Aì3 < 0 [24] 

and if they are both negative: 

•4212 / P22 A13 < 
< 1'-(qc2-A32)/B22 + ì/-(Qd'-B11)/Au\t 

[25] 
Let us consider the normal case: B22 

A13 > 0. 
Then [24] is impossible; thus for a pas-

sing wave, both bracketts must be negative 
and [25] should be true. The Constant B22 
being positive, we assume Al3 > 0. or 
8 < B33. The conclusion is then tha t oc2 

must be smaller than the smallest of 032 
and B^. If B33 < Bn, (in an isotropie 
medium this demands X > 0), the velocity 
of a passing wave satisfles the condition: 

QC2 < (B33 + S)/2< B33 [26] 

plus the condition [25]. 

Por a pre-stressed isotropie medium, the 
assumption C13 > 0 gives S < 2 f i , and con-
dition [25] becomes: 

$ 2 /4 — 2[x(X-\- 2/j.) -{- qc2 (A + 3/^ — S/2) < 2 • 

' <S2/4—gc2(/a—iS'/2)] [(X+2fiY-QCl(X + 2i4\ 
[27] 

This is satisfied if the first member is 
negative, t ha t is 

gc2 > [2^ (X + 2/i) - S2/4]/(A + 3ju- SI2) [28] 

For S = 0 and X = fi, the last member 
reduces to 3^/2, which indeed is large than 
the first root already mentioned: (qc2//i = 
= (0.9194)2). 

Would [28] not be effective, then both 
members of [27] can be squared, and qc2, 
being larger than [28], should be included 
Itetween the two values 

S S2 (X + + S/2) — 4 8 (X + fi) (X + 2p) ± 

±2 8 \'2(X+~p) (X+2/j,) (X+3fj,)+S2li | • 

• [4 (X + p ± S/2)2]-> [29] 

In fig. 5 the curves of the expressions 
[28], [29]+ and [29]"" have been plotted in 
function of S/ju, af ter dividing tliem by 
in this case X has been taken equal to [i. 
The possible velocities for progressive waves 
are given by the shaded areas, and we see 
tha t if the whole range of the lowest root, 
from A to B, is valid, the second and the 
third roots would only be permissible resp-
ectively fOr the values of S/ju on the left 
of T) and F. 

In the case X/p = oo already considered, 
the only real solution of fig. 6 remains 
below the limit prescribed by [28], which 
is 2(x. The condition [29] are then irrelevant 

gl 
in the range — 2 < — < 2 of fig. 6. 

Appendix I I I . 

The fact tha t the roots a2, of equ. [7] are 
real or complex has an important incidence 
on the character of the surface wave; in 
the lattei' case the classical exponential 
decay of the Rayleigh wave amplitude with 
depth must be replaced by an exponentially 
damped sinusoidal oscillation. This seems 
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to have been first met by Stoneley (6) in 
a study of surface waves in an unstressed 
cubie crystal, and more generally to have 
been recognized as a generalization of the 
Eayleigh type of surface wave by Synge (7). 

The deciding criterium is the sign of 
the discriminant of [7]: 

D = [ ( q c * - A 3 2 ) A13 + (QC2 - J h ) -B-22 + ^12]2 

- 4 B22 Al3 (qc2 - Bn) (QC2 - ^32) 

which also writes: 

D = [ ( q c 2 - A 3 2 ) A 1 3 - ( O C 2 - B u ) B 2 2 + A 2
1 2 ] 2 + 

+ 4 A\2 B22 (QC2 - Bn). [30] 

The value of qc2 should be extracted from 
[13] to allow a discussion of the influence 
of the elastic constants and also of the 
initial stress 8, contained in the A's. It, 
seems simpler to discuss the boundary case 
D = 0, by extracting qc2 from this equation 
and substituting it in [13]. But the com-
plication of the formulas is such that the 
general procedure seems unrewarding. 

The special case of a naturally isotropie 
medium, (i. e. the anisotropy is only in-
duced by the initial stress 8), is simples 
enough; the discriminant D can be reduce 
to the form: (see form. [15]), 

D = (qc2)2 (X+ fi + 8/2)2 + 2 qc2 > 4 (A + fi + 
+ 8/2) [(A + fi) (A + 2/x) + 82/16] — 
- (A + fi) (A + 2 f i ) 8\ + 
+ S2 [(A + fi) (A + 2 f i ) + 82/16], [31] 

One sees that if < 2 (A + fi), D is 
certainly positive, and thus the decay with 
depth of the Bayleigh wave remains purely 
exponential. I t is interesting to note in 
case of further discussion that the discri-
minant of D takes itself a simple form: 

(A+ia)2(A+21a)[16(A+//+S/2)(A+/a)(A+2/M) + 
+ S2 (A + f i + 8/2) + 82 (A + 2,0]. [32] 

Let us dose here by noting that for an 
unstressed (8 = 0) medium with a vertical 
axis of tranverse isotropy, Synge (7) has 
shown that for one of one of the velocities c, 
corresponding to a spheroidal sheet of the 
slowness surface, the Bayleigh wave retains 
its classical exponential profìle. 

Appendix IV. 

Let us designate by the suffix 3 the direc-
tion perpendicular to the strata of a layered 
formation. I t is also the axis of a symmetry 
of revolution in the elastic properties, so 
that the relations between normal stress 
and displacement in the absence of initial 
stresses are given by: 

°11 = Cu «1,1 + CL2 u2i2 + C13 M3I3 

(T22 = C12 UlìX + C n «2,2 + C13 «3,3 [33] 
C33 = C13 «1,1 + C13 «2,2 + C33 «3,3 

If an effort is exerced 011 a specimen in 
the direction 3, without stress in direction 
1 and 2 (alx = a 2 2 = 0), then 

-^perp ~ fy33/u3i3 = 

CU 6 \ 2 C13 | C U C 1 2 0 
— CI 2 CU C I 3 | : C I 2 CU 0 

C 1 3 C'13 C33 1 ! C13 C13 1 
= C33 - 2 C\31 (Cu + C12) [34] 

Wlpcrp = — («3,3 / « 1 , 1 ) = — («3,3 / «2,2) = 

Cu C12 0 0 Ci 2 C13 ! 
Ci 2 Cu 0 0 Cu C13 1 
C13 C13 1 1 Cl3 C33 1 

= (Cu + Clt) I G13 . [35] 

If the effort is exerced in the direction 1 
(or 2), witliout stress in the direction 3 
and in the direction 2 (or 1), thus for 
example a u ^ 0 a22 — a33 = 0, one has: 

-®par -= CT11 / «1,1 = 

Cu Ci 2 C13 j 1 C12 Cl3 
^12 Cu C13 ; : 0 Cu C13 
C'l3 C13 C33 0 C'l3 C33 

C u [Cl2 (CI 2 C 3 3 C213) + C 2 I 3 (CU C12)]/ 

/ (Cu C33 - C213) [36] 

par : = «1,1 / «3,3 -

1 Ci 2 C'i3 Cu Ci 2 1 

0 Cu C'13 : ! C12 Cu 0 1 = 

1 0 C'l3 C33 1 ! C13 C13 0 

= (Cu C33 -" C2
13 ) / ( C u - C12) C13 [37] 
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m" par = — «1,1 / «2,2 = 

1 Ci 2 Cj3 Cn 1 C13 

= 0 Cn C13 C12 0 Cu 
0 C13 C 33 C13 0 C33 

= (Cu C33 - c\3) I (C12 C33 - C\3) [38] 

Had we taken a22 0, and (rn = a33 =0, 
we should find the same values for: 

Epar = °*22 / «2,2 J ^ par = «2,2 / «3,3 

and m " p a r = — « 2,2 / « i,i • 

The following expression emerge: 

Ppcrp =0,3-2 C13l mperp [39] 

-Epar = — C13 / m'par — Cl2 / m" p a r [-10] 

and its is also clear tha t there is a relation 
between the Ave E's and m's for they can 
be expressed in function of the four coef-
ficients Cu, Cl2, C13 and 033. 

Their expressions in terms of the B's 
used in this text are found, in the case 
8 = 0, 

a) if the axis 3 is vertical, by writing: 
C33 = B22, C13 = B12, On = Bn (and C12 = 
= -B13); 

b) if the axis 3 is horizontal, in the direc-
tion of the wave by putt ing C33 = Bn 
C13 = B12, Cn = B22, (and C12 = B.a). 

In both cases B33 = 2 044 does not ap-
peal', and this Constant being bere indepen-
dant, it cannot be determined by the con-
sidered pure tension test, unlike thus the 
isotropie case. 

RIASSUNTO 

Si deriva l'equazione di velocità per le 
onde superficiali del tipo Rayleigh nel caso 
di un mezzo idealizzato di uniforme aniso-
tropia bi-dimensionale-, si presume che le co-
stanti elastiche siano ovunque le stesse, ma 
differiscano a seconda che si tratti di dire-
zioni orizzontali e verticali-, è inclusa, inoltre, 
la possibile interferenza di sollecitazioni ini-
ziali uniformi (tensioni orizzontali 0 com-
pressioni). 

Si debbono, quindi, considerare cinque co-
stanti elastiche indipendenti invece di quat-
tro, al fine di studiare la propagazione di 

un'onda superficiale tridimensionale, poiché 
l'effetto di una sollecitazione trasversale ini-
ziale è quello di distruggere la simmetria del-
le costanti elastiche trasverse. 

Questo genere speciale di anisotropia po-
trebbe apparire in media in determinate por-
zioni della superficie terrestre, e lo scopo del 
presente lavoro è di determinare il suo ef-
fetto specifico sulla velocità delle onde di 
Rayleigh, confrontato con il caso isotropico. 

È importante introdurre l'anisotropia pu-
ramente elastica, quando si studia l'influenza 
delle sollecitazioni iniziali, dato che spesso 
un effetto di tali sollecitazioni è quello di mo-
dificare, a lungo andare, le caratteristiche 
elastiche del materiale. 

Sebbene sia dimostrato che, generalmente, 
le sollecitazioni iniziali influiscano diretta-
mente molto poco sul valore della velocità 
dell'onda, la modificazione apportata alle 
costanti elastiche, potrebbe avere una signi-
ficativa influenza. 

Nel caso presente è difficile un'applicazione 
speciale ai problemi geofisici, per la mancan-
za di dati sperimentali sulle costanti elastiche 
nelle formazioni geologiche anisotrope, per 
non parlare, poi, delle loro modificazioni 
sotto forti sollecitazioni elastiche iniziali. 

Viene discusso il manifestarsi di insta-
bilità statica dovuto a sollecitazioni di com-
pressione; viene considerata, in particolare, 
la sua possibile incidenza su problemi oro-
genici di scarso rilievo. 

ABSTRACT 

The velocity equation for the surface ivaves 
of the Rayleigh type is derived in the case 
of an idealized medium of uniform two-
dimensional anisotropy: the elastic constants 
are assumed to be everywhere the same bui 
different as far as vertical and horizontal 
directions are concerned, and moreover the 
possible inference of uniform initial stresses, 
(horizontal tensions or compressions) is in-
cluded. There are then five independant 
elastic constants instead of four to be taken 
in account, in order to study the propagation 
of a tivo-dimensional surface-wave, the ef-
fect of a transverse initial stress being to 
destroy the symmetry of the cross elastic 
constants. 
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This special kind of anisotropy may ap-
pear on an average in certain portions of 
the earth surface, and the purpose of the paper 
is to determine its specific effect on the velo-
city of the Rayleigh wave, as compared to the 
isotropie case. 

It is important to include purely elastic 
anisotropy when investigating the influence 
of initial stresses, for often one effect of such 
stresses is to modify on the long run the 
elastic characteristics of the material. 

Although it is shown that initial stresses 
affeet usually very little in a direct way the 
value of the ivave velocity, the modification 
brought to the elastic constants could have 
a significant influence. 

A special application to geophysical pro-
blems is difficult in the present case, because 
of the lack of experimental data on the ela-
stic constants in anisotropie geological for-
mations, not to mention their modification 
under large initial stresses. 

The oecurrence of static instability under 
compressive stresses is discussed-, in particular 
its possible incidenee on small scale orogenic 
processes is considered. 
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