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Introduction - In another paper (l), that we here indicate as I, we 
have considered the effects of the heiglit variation of the Earth's radius 
vector R and of the gravity acceleration g on atmospheric tides. We 
have reconsidered the classical theory on the presumption that, since the 
atmospheric tides are a resonance phenomenon, the effects of such height 
variations may be rather considerable. On the other band, the tidal 
phenomenon extends to a rather high atmospheric level; for example 
the values of R and g at a height of 100 km above the ground are 
respectively 1.5% greater and 3 % less than the corresponding values at 
ground level. 

In I we have worked only the theory of the gravitational oscdlations 
and have quantitatively considered a very simple case of an atmosphere 
whose scale height E does not depend upon the height. Although this 
model is very ideadzed, liowever, it is able to give some interesting in-
formation on the effective importance of the corrective terms introduced 
in the classical equations: in some respects (for example in the ampli fcude 
of the pressure oscidation and the height of the eventual nodal points), 
the difference between the generadzed and the classical results may be 
considerable, both as a percentage and as actual values. 

In the present paper, we consider the theory for both gravitational 
and thermal oscdlations in our more general formulation and study some 
numerical cases representing the effective physical conditions of the 
atmosphere. 

(*) Is t i tu to Nazionale di Geofisica, Roma — Is t i tu to di Fisica della 
Università, Perugia. 
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1. - The mathematical theory. 

1.1. - The notation is that used by previous authors (2'3'4): 

2, i), 0 = height on the ground, colatitude and longitude of 
a point in the atmosphere 

R = radius of the earth 
g(z)=GR?/(R-\-z)2 = acceleration of gravity; G its value at ground 
co = angular velocity of the earth 
u,v,w = southward, eastward and upward components of 

air velocity at (z, 0) 
Voi Gì» T0 = static pressure, density and temperature (functions 

of z only) 
p, n, T = departures of pressure, density and temperature 

from static values p0, g0, T„ 
p, o, T = total pressure, density and temperature 
li = gas Constant for unit mass of gas 
y — the ratio of specific heats cp and cv, at Constant 

pressure and at Constant volume 
H = RT0/g = scale height of atmosphere (function of z only) 
2n/a = period of tidal oscillation 
/ = a/(2 co) 
tl(z, 0) = tide-producing potential 

The only noticeable differences from the previous authors lie in 
writing the radius rector as R + « and the acceleration gravity as 
g(z) = GR2/(R + z f . In our new hypotheses the divergence of velocity, 
assumes the following expression, containing a corrective terni 2w/(R-\-z) . 

*> = ( R + l ) senfl ^ V (W 8 e n ^ + (E + z) sen $ H + ^ 
W W 

+ - + 2 . 
^ Ss; ^ R+z 

1.2. - If we use the expression [1] of •/ , and indicate as GcvQ/ R the 
amount of heat received per unit time per unit mass by an element of 
gas of fixed mass, the fundamental equations, are the equation of state 

P = R T Q [2] 
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the continuity equation 

DÒ 
= —e i [3] Dt 

and the equation expressing the thermal balance 

èQQ = y f n M 

If : (i) we remember that p = p0 + p, o = q0 + q, T = T0 + T 
and neglect the second order terms of the quantities p, o, T, y ; (ii) Q is 
of the sanie order of y ; (in) we assume a time faetor (iv) the ellip-
ticity of the Earth is negligible; (v) the vertieal aceeleration is negli -
gible; then the above equations [3] and [4] may be written as follows: 

ìoq + f t , x = 0 [5] 

O Q0 Q = i a p — w g q0 + y p0 y% ; [6] 

this last equation may assume the different forni 
cLT 

0 Q/Ii = ioT +w — + (y — 1) T. x • [7] a z 

In the same hypotheses, the equations of motion assume the forni 

i a u — 2 cov cos 0 = — / p
 1 . f — + il) [8] (R + z) a & \ Q0 ) 

i a v + 2 ani cos •& = — , \ ^ ( ~ + l i) [9] 
(.R + z) sen •& 7><P \ q0 ) 

noi 
T — - < / < ? - [ i o ] 

Concerning the tide-producing potential Si, its dependence on height 
z may be written (6) in the forni o oc (R -j- zf/R2. 

If equation [6] is differentiated and use made of equations [5] and 
[10], we can write 

~òw „ S y G D w 
7 7 = * + - ,o0 i 7 + 2 "R+7 + [11] 

i a a il 
g a z 
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If the expressions of u and v deduced from [8] and [9] are now sub 
stituted in [1], we obtain the fundamental equation 

— 2 :— = . . Lff. .. F(P- + f t ) [12] 7. a « R 4 co2 (R + zf Qo 

where F is the differential operator 

F = 
+ 

1 3 
seni? a § 

1 
f2 — cos2 

sen # 
/2 — cos2 

i cotg & 

a cotg •& 
f 

f ì> -&~Ò0 

a 0 
l a2 

sen2 # 

+ 

We now differentiate equations [11] and [12] with respect to z, then 
add the equations that we obtain and rearrange their terms, neglecting 

w a2 g ì> g a o a2 o 
those containing which are of the (R +z)2 ' a z2 ' a z a 
second order with respect to 1/(R + z) or I /E. 

If we make appropriate substitutions, the resultant equation may 
be written as follows 

y E 

+ 

Z x 
a «2 

i a 

y 
dE 
dz — 1 

^ E 

4 w2 (R + z)2 

dE ' 

f a) \Qo 

iJL 
a « 

+ 

2̂  
R^z - 2 - ^ + a z 

i + dz 
i a 

4 cu2 (R + zy 

a -j (fi + 
a « \ 

F 

R2 
a Q + 

"A- ( - + « a « \ g0 

a « 

= o . 

[13] 

The main difference in the above equation with respect to that 
obtained by Wilkes, is the presence of a term which containes a 
factor 2/(R + z). 

By making use of equations [6] and [12] in the equation [13] we 
may thus write the equation 

y E r a «2 y 

+ 2 

dE 
d z 
E 

R + z 

2JL + 

X R y —3 —2 ——— a 2 R + z 
a \ (R+ z)2 

a « ( 
l 

R2 

4w2(R + z)2 F 

a 0 4 co2 (fi + z)2 

2 
- z 

Q 
ìs + E 

1 . 1 dE 
E dz 

F dE 

+ 

G Q "TX E 

dE 
d z 

_ 2 _ 
R z 

+ 
[14] 
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We at once see tha t if Q = 0 and with the same approximations, our 
equations [13] and [14] are equivalent to equation [11] of I . Concerning 
the supplementary terms with respect to the corresponding equation of 
Wilkes, we see that in our approximation we can neglect the term in w 

which is of the second order in ,, ' : on the order hand, the term in 
R +z ' ' 

a w 
— may be eliminated if appropriate use of equation [11] is made. 

1 . 3 . - We now put 

X = 1 (*) V (#> <P) 
Q (z, 0) = q (Z) y> (0, 0) 
ìì(z,-&,4>)=Q(z)yj(&, 0) 

R r = 

[15] 

Thus in the equation [14] we can separate the variables » and (0, 0) ; 
if we retain only the terms of order zero and one with respect to the pa-
ramet r, we obtain the final equations in and ip 

R2 co2 

F w + 4 ~g1T v = 0 
[16] 

and 

y z + y 

+ y — i 
g 

Eh 

— 8 r 

d ti' 

- 2 r 

dE 
d z — 1 

d v \ dE , 6 r-ff — ^ + y + d z ( dz 

2h — y E — 3yh — 2z(y + y — l 

d z 
dq ^ d 

\ di d z 

+ 2 r 

E 

Eh 

1 + 

dE 
dz 

H + z + ±h 1 + 
dE 
dz , 

+ 

+ 
dE 
d z 

d*q 
dz 

M ( l + 2 r z ) = 0 [17] 

where h is a Constant of separation of the variables. 
The equation [16] is the same considered by Wilkes and the other 

authors who have elaborated the tidal theory. 
Its solution can be written (3) in the form 

xp 0) = 6 (•&) éis0 [18] 

where s is an integer, provided that the separation Constant h has certain 
discrete values h, (r = 1, 2 , . . . ) depending on s and a. The equation [17] 
instead obviously coincides with the classical equation if we put x — 0. 
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Now the new expressions of the velocity components u, v, iv, and 
of p/qo, which reduce to the classical expressions as we put r = 0, are 
the followinjr 

Qo O 
d'I 
d z 

q t d E . , 

dq 
— , — 2 i Gli 

d z a X ì y [2 E — 2h — z)x + E {z + 2h) di 
d z + 

+ 1 2 h —3E +2z + 2(h+z) dH 
d z 

d q 
— 2 (z + li) 0 (§) eis0 eiat• d z ) 

[19] 

ti 
i a 

4w*(R+z)(f* — cos'tf) \o0
 + 1J)\d& + / ) U m e 6 

V = f p \ / cos & d 
4w*(R+z) (f—cos2#) + j \ / llì) ^ s e n & 

iat 

[20] 

J e (&) e™0 eiat 

[21] 
ioQ 

G (l+2xz + 6rh) + h E A TT dy 
Y\-h—l)X+v3 A 

H 1 

+ 3 (z + h) 

1_ dH 
E dz 

dj. 
d z 

dq 
dz 

+ E 

(2 li + 3 z) 

2h — 3E+z\3 

+ 2hr^2y 

E> 
h 

dz 

(E — h — z)x + 

dE (2 h + 3 2 ) 
d z 

d ì I „isG> Jat 
d Z e (•&) ev 

+ 
[22] 

If we write &'r and xsr the expressions of 0(&) and x(z) corresponding 
to the value li, of h, the general solution y of the equation [14], including 
the t ime factor, i.s, in forni of a doublé series 

X (», = FR («) 0 SR ( # ) E I ( S , P + A V 

where Ars are Constant coefflcients. 

[23] 

1 . 4 . - The tidal equation [17] is of the second order, so that the neces-
sary boundary conditions are two: one obvious condition is that the verti-
cal velocity component w {z) vanishes on the ground; the second condition 
is that either that the total energy in the tidal wave has a finite value (6) 
or that at high level, just below the region where the energy is finally 
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absorbed, the direction of propagation must be upwards (3); the physical 

meaning of this last condition (radiation eondition) is that, in cffect, 

the upper atmosphere absorbs the t idal energy dux f rom the ground, 

without reflecting i t . 

2. - The solution of the tidal equation 

2 . 1 . - We shad study separately both the cases of gravitational 

and thermal oscdlations, assuming a height variation of the scale height 

E, indicated in fig. 1. We do not consider other different height varia-

tions of E, because many results on this aspect of the problem have 
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Fig. 1. - Height variation of the scale heiglit II. The qùantities II and z 
are in km; the temperatures Ti are in °K. 

already been given by Jacchia and Ivopal (7). The model of the atmo-

sphere of fig. 1 is the linear approximation of the most satisfactory profile 

obtained by these authors. A n interesting point is that our assump-

tions E = a Constant or E = a linear function of z are not the same as 

T = a Constant and T = a linear function of z, because E = KT0/g, 
so that, for example the hypotheses E = a Constant is equivalent to 

the other T0 oc g = (}(l — 2rz) , i. e. to a very slight linear height varia-

t ion of the temperature. 
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We study the resonance spectrum of the atmosphere at ground 
level and the height variation of the pressure oseillation for the cases 
r = 0 and r # 0. 

In the above partieular model of the atmosphere, the fundamental 
equation [17] may be written in the form 

+ a + (b + cz) x = L(z) for E = a Constant 1 (hZ CLZ 

d2X , A-\-B (z—zi) dX + ( [24] 
dz2 1 + 0 (z—zi) dz 

D +Ez 
1 +G(z-zi) 

D + Ez + ——t x= L(z) for E ^E*-^(z — zi)\ 

where L(z) is the known terni and E* = E(z = Zi). 
The algebraic expressions of the constants a, b, c, A, B, 0, D, E, 

whose numerical values are di fferent in the different height intervals are 
given in the appendix A.l . 

Concerning the known term L(z), we see from equation [17] that it 
is determined if we assume the analytical expression of q(z). The more 
general case is that of an arbitrary height variation of q(z)-, however, 
the heating and coohng effect is effective only in a thin layer above the 
ground level, so that we can consider some simple expression of q(z)] we put 

q ( z ) = q 0 é - k Z [25] 

where the coeffìcient h is (in km-1) of the order of some units, so that the 
function q(z) is practically different from zero only near the ground, in 
the height interval 0 — zx. In the following we put, then: 

— kz ) q (z) = q0 e for z < z1 (E = a Constant) I 
q (z) = 0 for z > % j 

[26] 

If use of [26] is made, we obtain for z < Zy the following espression 
of the known term L(z) 

L(z) = q0(f^ +vz)e~kz [27] 
where we have put 

>l=-yE 
k 1 / 4 1 

i r + * + n r - 2 n " + T r + T r 
[ 2 8 ] 
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For atmospheric levels z ^ zu on the other hand, we pnt L(z) = 0. 
A solution of equation [24] has to be found for which, corresponding 

d y 
to each height Zi, both y(z) and — must be continuous. d z 

2.2.- The case of purely gravitational òscillations. The solution of 
equation [24] for the particular case L(z) = 0 can be written in the forni 

X>) =|«X*(z) [29] 

where ~/*(z) is the particular solution for which 

X* («) = 1 • PO] 

If use is made of the conditimi wz=0 = 0, the integration Constant 
a may be evaluated: neglecting terms of order r2 and writing Q0 for 
Q[0), it has the form 

io®o 1 + 

" = m (He- + '®„ ' 
The second boundary condition is that, for z ^ z^, the solution 

X ( z ) satisfles the first equation [24], obviously with L = 0, being continuous 
with its first derivative (see appendix A.2). 

From the physical point of view, we are chiefly interested in ascer-
taining the pressure oscidation at ground level (or at some other level); 
in effect, we may write 

v = -Po ^ r r r ^ 1 + 2 r h [32] Gh 
h ÌK a 1 \ dz 

where the quantity X is the " resonance magnification ". We have 
calculated the resonance spectrum as a function of the parameter h, 
for r = 0 and r ^ 0; precisely, in fig. 2, we show the diagrams of the quan-
tity 10 log101 p and of the phase-angle <p of p; for the tide-producing 
potential at the ground, we have assumed Qn = IO4 C.G.S. As an 
effect of considering the height variation of g and of the radius 
vector, the resonance spectrum exhibits a sdght shift to the right; 
the resonance occurs for h — \ = 7.955 when r = 0 and for 
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h = hz = 7.843, instead, when r # 0. The corresponding variation 
of the resonanee period is (') from 11.96 to 12.01 hours, i. e. about 
three minutes. 

The second resonanee period also slightly increases from 10.88 to 
10.94 hours, i. e. about three minutes. 

The resonanee amplitude of p at ground level for r 0 is approxi-
mately 1.5 times smaller than for r = 0. Such a remarkable difference 
is not surprising, for the very reason that one is concerned with a reso-
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nance phenomenon; on the other hand, also the numerica! results of 
Jacchia and Kopal clearly indicate that even smad differences in the 
model atmosphere give remarkable differences in the resonance magnifi-
catimi. A more important feature, of which we must take account, is 
the fodowing: for values of h, greater than ht and smader than h2, the 
phase angles 9? in the two cases r = 0 or t ^ 0 are very different in 
consequence, for a given model atmosphere, we may obtain opposite 
signs of plp0 in either case. This fact may have important effects in the 
practical application of tidal theory, i. e. in the interpretation of expe-
rimental data. 

I v I 
Fig. 3. - The height variation of log10 — — and <p*. The phase-angle cp* 

is in degrees; the height z in km. 

Concerning the height variation of the resonance magnification, we 
see from fig. 3 that the ratio of the amplitudes in the two cases is approxi-
mately Constant. With regard to the phase 9?*, the greatest difference 
between the two cases is about 10°; however, notwithstanting such a 
slight difference, there is the important feature tha t the phase-angle <p* has 
the value 270° at considerably different heights: at about 35 km if r = 0 
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and at abont 80 km if r ^ 0. Such a feature may be more clearly seen 
V if one draws the diagram of the real part of (which is the effective 

Vo 
V 

value of -— at time t = 0). In other words the nodal point of the pres-
so 

sure oscillation occurs at remarkably different heights, in the two cases. 

2.3.- The case of purely thermal oscillations. In t](z) is a solution, in 
the interval 0 < z ^ zlt of the equation [24] satisfying the conditions 

j = 0 for z > z1 (appendix A.3) and ~/{z) is the solution 

[29] for the gravitational case, we can write the general, non homoge-
neous, solution yjz) in the form 

x ' w B f e w + m [33] 

which automatically satisfles the boundary condition at z = zs. 
We are studying the pure thermal oscillations, so that in the ex-

pressions of w, p, etc. we may esclude the term depending on the gravi-
tational potential Q(z). 

Application of the condition w — 0, neglecting terms of order 
T2, gives 

(di V 
\ dz l. 

io ì 
v [ h 

+ 

+ * + 2 T ) . [34] 

If use is now made of [31] and [29], we may replace the left hand terni 
Ì 0Qn 

of the above expression by the term (1+2rh), so that we fìnally y G h 

obtain the following expression connecting q0 and _Q„ 

. „ 1 + 2 r h Q ° = L A Q " Z T t i — 1 — R - — ( E A - — U d M ~ Gh ~ W - H 2 t - y ——1 \Ma-yE h E 1 ) r\h I " r \ dz . 
[35] 

From the above expression we may draw the graphs of q0 as a func-
tion of the parameter h\ the function M(z) is defìned in Appendix A.3. 
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Concerning the pressure oseidation p' at ground level, if use is made 
of [32] and [35] we may write 

p' = p 1- (1— y E M 0 ) ( 1 + 2 T A ) 

Xh 
= i2<yQ„ X' 

[36] 

where p and X are those given in [32] and the quantity A' is the new 
" resonance magnification " factor, which has to be compared with the 
corresponding X we have obtained in 2 . 2 . By easy calculation, we may 
see that the above results are the same as those of Wilkes, if appropriate 
sustitutions are made with r = 0. 

Fig. 4. - Dependence of the ratio A'/A (lower diagrams) and of its phase-
angle (upper-diagrams) on the parameter li, respectively when r = 0 
(case a) and r # 0 (case b). The parameter h is in km and the phase-
angle in radiants . 

The physical meaning of the equation [36] is that if X is smad, then 
the purely thermal pressure oscidation p' may be considerably different 
from the corresponding value p of the gravitational case; however, when 
X is great, i. e. in the effective case corresponding to the resonance, the 
term 1 . . . j in [36] is very dose to unity, so that in effect the pure ther-
mal oscdlations are substantiady identical with the pure gravitational 
oscdlations. Such a conclusion is confirmed by figs. 4 a and b, which 
show the values and the phase angles of the ratio X' jX. The relative 
shift of the diagrams in the cases r = 0 and r ^ 0 is as might have 
been expected from the resonance spectra of fig. 2. 
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Equation [35] gives us the amplitude q0, corresponding to any value 
of Q„, of the heat transfer which produces approximately the same 
pressure oscillation determined by a gravitational potential whose value 
at ground level is just Qa. 

2.4. - The temperature oscillation - The theoretical and numerical 
results of the foregoing sections allow us to write the height dependence 
of the temperature oscillation T; in the following, we are interested in 
the evaluation of the orders of magnitude so that, for the sake of simpli-
c.ity, we at once assume r = 0. If use is made of equation [7], we obtain 

JL 
Ta ~ io HT0 T0 dz (y ) x To 

e ^ . [37] 

If h = 7.955 and 2 = 0 (ground level) we have T = 0.071 e i 1698 "C 
and T — 0.091 e *217 °0, respectively for simple gravitational and 
simple thermal oscillations. In a similar manner, in the tropopause, 

clT 
where we may consider - 0 = 0, we obtain, with T0 = 288 "K, the fol-d z 
lowing values 

s (km) | r | (oC) S 

10 0.0446 1.756 
20 0.0968 4.69 
30 0.678 4.76 

These numerical results indicate that the amplitude of the semi-
diurnal temperature oscillation is of the order of tentlis of a Celsius (or 
a Kelvin) degree, both at ground level and in the tropopause; however 
it is quickly increasing with the height z. 

3. - Concluding remarks. 

The results we have obtained allow us to conclude that the 
assumption of the effective height variation of the gravity acceleration 
and of the Earth's radius vector implies some important refinement of 
the tidal theory. As concerns its application to practical cases, such 
refìnements may lead to considerable differences in the interpretation 
of experimental data (for example metereological or cosmic ray data), 
if we assume r ^ 0 or r = 0. On the other hand, the difference in the cal-
culated values of the parameter h corresponding to the resonanee im-
plies that the construction of a more refìned model atmosphere requires 
the use of the tidal theory in the actual forni. 
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Appendix A . 1. - The algebraic expression of the constants in the 
equation [24] are the following 

1 „ , y — 1 „ / 2 3 

7?= 6r E* 
2 3 

; c= 4 t 

; c 

t—y . 

yhH* ' 

hH ' 

H* 

y 
3/? 

Appendix A. 2 . - We put 

n = I b cz. 
V» 

y 

3 | c | 
2 

3 iel 
a2 + cz 

3/2 

where a, b, c are tlie constants of equation [24] relative to the heiglits z ^ za 

Then a solution of the first equation [24], may easily be expressed 
by modifìed Bessel functions of the second kind as follows 

X* = Pie~"' ylsKlk (y) if b — a2 + cz8 < 0 4 

or, by Bessel functions of the third kind, 

X* = /?,«-»" °y'3r5,° H[yl(y) if b czs >0 

The constants /Si and /?2 have values which satisfy the condition [30], 
i. e. x* (zs) = 1. Tlie second boundary condition is instead expressed 
in the forni 

dy * \ a 
dz )z. = ~~ 2 
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or, respectively, 
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dz k 2 ^ 
K W 
< <«> 

Appendix A . 3 . - The function rj(z) satisfying the conditions 

v (*) = l - j L Y = 0 for 2 

may be found as follows. 
We put 

x — [k —- (z1 — z) 

— k Zi — (z — 
r] (z) = q0 M (z)= q0m e 2 ¥ (x) for z < 

with m = j" + VZl 
W—ak+b 

If moreover we put 

cz. and f.i, v given by equations [28]. 

s = 
CZy 

Va 

k 2 
(/j, +vz1)(lc — ® j 

(k2 — a k + b+czjik — 
s = the sign of ( 6 —- — a2J

rczl j 

we have to flnd the function ¥(x) for which 

d2 ¥ 
— + es2 ¥ — r (1 + es2) x ¥ = (1 + es2) (1 —Ix) e* . a x2 

The parameter r is very small, so that the equation may be solved 
by the perturbation metliod, putting 

¥ [x) = ¥ (x) + r ¥ (x) 

The initial conditions of rj (z) may be written in the forni 

¥ (0) = ¥ ' (0) = ¥ ( ( ) ) = ¥ ' (0) = 0 for » > ^ . 

One can easily express the function ¥ in the forni 

¥ (x) = 1 21 
1 — s2 

1 +1 

Ixj e* 

1 + s2 

1 — s2 

1 + 
21 

1—s2 
- cosli s x -J-

senh s x 
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if e = — 1; the corresponding expression of W(x) for the case e = + 1 
is obtained by substituting is in the place of s in the above expression. 

The function W has instead the form 

W (x) = I x 

1 —< l+l 

1 — s! 

5 + s2 

l 
6 „ 5 + s2 1 

x2 — x 4- 2 1 

1 —s2 (1—s22 

- T ^ T 1 + 2 4 s1 

1 — s! 

l 

cosh s s + 1 1 + j 2 

s 1 — s2 1 + 4 

e x + 

senh s x + 

1 —s1 (s2x2 senh sx — sx cosh sx + senh sx) + 

4 ' ' ~ ' 
, 1 + • (sx cosh sx — senh sx) 

if e— — 1; the quantity s has again to be substituted by is if e = + 1 . 

ABSTRACT 

In this paper, we reeonsider tlie general theory of atmospheric tidal 
oscillations, assuming the correct height variation of the JEarth's radius 
vector R and of the acceleration of gravity g. The fundamental tidal equa-
tion is solved separately for the case of purely gravitational and purely 
thermal oscillations. In the condition of resonance the pressure oscillation 
p is substantially identical in the two cases; with respect to the classical 
case of Constant R and g the resonance period in our generàlized case is 
some minutes greater than the period calculated by Wilkes and the resonance 
spectrum, as a wliole, exhibits a slight sliift. 

Concerning the amplitude of p it is approximately 1.5 times smaller 
than in the case of Wilkes; an impoHant feature is that the height of the 
nodal point of the pressure oscillation p, i. e. the heiglit at which the sign 
of p is changed, is considerably greater in our case (^ 80 km) than in the 
Wilkes case 35 km). 

RIASSUNTO 

In questo lavoro si considera in forma generale la teoria delle oscil-
lazioni di marea della atmosfera, di origine sia gravitazionale sia termica, 
assumendo la corretta variazione con la quota della accelerazione di ara-
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vità g e del raggio vettore R. La equazione fondamentale che descrive il fe-
nomeno di marea viene risolta separatamente nei due casi di oscillazioni 
puramente gravitazionali e di oscillazioni puramente termiche, per un mo-
dello di atmosfera {fig. 1) ottenuto approssimando con tratti lineari la ef-
fettiva variazione con la quota della scala delle altezze H. 

Rispetto al caso classico che g ed R non variino con la quota, si con-
stata nel caso puramente gravitazionale un aumento del periodo di riso-
nanza della atmosfera di qualche minuto-, la ampiezza di risonanza al suolo 
è invece circa 1.5 volte inferiore-, il più notevole effetto è tuttavia un note-
vole innalzamento, da circa 35 a circa 80 km, della quota a cui la oscilla-
zione di pressione cambia di segno. Risultati sostanzialmente analoghi val-
gono per la oscillazione di origine puramente termica, in quanto in condi-
zioni di risonanza le oscillazioni della pressione nei due casi tendono a 
identificarsi. 

Si calcola infine la ampiezza di oscillazione della temperatura prodotta 
dalla oscillazione di pressione e si trova che essa è dell'ordine dei decimi 
di grado centigrado, in accordo con le indicazioni sperimentali. 
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