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SUMMARY. — The antisqueal problem of brake linings is a very complex 
one. As a result, the solutions which are obtained are always provisional 
or only approximate. 

In fact, acoustic-vibrational problems involve « many degrees of free-
dom » which imply more « natural modes of motion », natural or resonant 
frequencies; it can be shown that an »-degree-of-freedom vibrational system 
has n real natural frequencies. 

However, in this Study, it is hoped that some new aspects of this pro-
blem have been sufficiently clarified. 

I t is evident that the « antinoise » problem, of which a general solution 
has been given, is not independent but closely related to other wear problems, 
mechanical strength and failures, which on closer examination require further 
developments. 

EXASSUNTO. — Il problema di smorzare lo stridio di superficie interne 
frenanti, è molto complesso. Le soluzioni che si yono ottenute sono state sem-
pre provvisorie o approssimative. 

In realtà, i problemi acustici-vibratorii implicano « molti gradi di liber-
tà » i quali comprendono più « modi naturali di moto », frequenze naturali o 
risonanti; si è potuto dimostrare che un sistema vibratorio ad n gradi di 
libertà, ha n frequenze naturali reali. 

Tuttavia, in questa nota, si è sperato di avere sufficientemente chiarito 
alcuni nuovi aspetti di questo problema. 

E evidente che il problema « dell'antirumore », del quale è stata data 
una soluzione generale, non è indipendente ma strettamente legato ad analoghi 
problemi, meccanici e non, i quali richiedono, per uno studio più approfondito, 
ulteriori sviluppi. 

T H E O R Y OF VIBRATION IN B R A K E S 

1. - I t is known that acoustic oscillations are manifest in the motion 
of «rubbing», subject to dry friction: acoustic energy of high intensity 
often accompanies vibration, « chattering slip », random, periodic or 
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transient acoustic noises. These oscillations are generally, in a periodic 
condition, being therefore, only in the nodal points and are of variable 
width, usually detached from the harmonic form (superharmonic and 
subharmonic vibrations). 

Many mechanical systems posses «non linear» characteristics, e.g.: 
simple pendulum, simple spring-mass system with snubber action, 
« stretched string with concentrated mass» or «belt friction system». 
These systems involve a «non linear» characteristic depending upon the 
dry friction between the mass and the moving belt, etc. 

One distinguishing feature between linear and non-linear behaviour 
is the dependence of the period of the motion, in non-linear vibration, 
on the amplitude (non-isochronous systems). 

Sometimes the oscillations assume a «relaxation» or «discharging» 
form with a rapid decrease of elongation, by leaving the unstable equili-
brium (static or dynamic), condition of finite length of time, allowing no 
relative speed, and therefore static friction coefficient u during one 
part of the cycle. 

A Coulomb-friction force generally results from the relative motion 
of two solid members held together under pressure: Ff is directly pro-
portional to the coefficient of friction /i, the unit pressure Pn between 
the surface and the area S of contact is: 

Ff = II 8 Pn. 

The coefficient of friction ¡i is a function of the materials at the 
interface where relative motion occurs. In steady-state vibrations, 
the relative velocity becomes equal to zero, twice during each cycle. 

Owing to a casual correlation between the vibratory motions in 
real dissipative cases and the recurrent friction, the coefficient fj, must 
either be intrinsically dependent on time — with alternate law —, resulting 
in «forced» oscillations or otherwise the coefficient ^ must provoke the 
vibratory stimulus depending on the relative motion, and therefore 
only indirectly dependent on time, with activation of self-excited 
vibrations. 

The vibration of a mechanical system is self-induced if it results 
from conversion, within the system, of non-oscillatory excitation to oscil-
latory excitation. The oscillation of a system is forced (forced vibration), 
if the response is imposed by the excitation. If the excitation is periodic 
and continuing, the oscillation is a steady-state. Considering the non 
linear equation of motion known as Van der Pol's equation, the principal 
feature of this self-excited system is in the damping term; for small 
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displacements the damping is negative and for large displacement the 
damping is positive. 

In a self-excited vibration the alternating force that sustains the 
motion is created by the motion itself; if the motions stops, the alternating 
force disappears. In a forced vibration the sustaining alternating force 
exists independent from the motion and persists when the vibratory 
motion is stopped. 

Compressed air can be used to excite a structure in its fundamental 
mode of vibration (self-excited type). 

In connection with such occurrences there are further theories, 
e.g.:«welded joints»of Bowden, the«electrostatic theory» of Schnurmann 
and Warlow-Davies,«friction self-excitation» of Eayleigh, the latter being 
the least contradicted. 

The theory of « welded joints » or « stable bonds », between solids in 
contact, as a consequence of high temperatures and high pressure, with 
the real surfaces in contact (limited in regard to those apparent), as a 
result of geometric disuniformity, gives an explanation of the disuniform 
character of the sliding friction. 

These micro weldings, formed by external forces in action, disappear 
witli time. A friction contact alternatively static and kinetic (stick-slip) 
may be carried out in the relative discontinuous motion. A swing motion 
descends with physical characteristics inherent to « rubbing» solids, 
which reflect on the micromelting apart from the shear strength. 

This theory, wherein one necessarily expects the possible disconti-
nuity of the relative motion (which however, does not always appear) 
does not provide explanations as to the conditionally periodic character, 
always found in oscillations maintained by friction. 

In effect, the hypothetical formation of «welded joints » does not 
necessarily afford periodical characters. 

The electrostatic theory is inefficient if one considers electrical con-
ductor solids in friction (e.g. drums). 

As stated before, it seems evident that for the recurring of « self-
excitation » in « rubbing » bodies, the friction is required to vary non 
linearly with the speed, and that it admits a minimum, decreasing from 
the beginning of the motion. Conditions, which are expressed in analo-
gical terms, are known for their strength associated with mechanical or 
electrical stable oscillator phenomena. 

For this purpose, one must remember that in the motion of single-
degree-of-freedom Vibrator (linear retourning), the dry friction strength 
expresses a characteristic function of the relative speed: f (V0 — i ) 
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(resultant from the uniform component V0, and from the periodic x), 
which can be represented with a complete differential equation in as, 
with the function / as coefficient of the term in x. 

If the upperterms of the series of expansion of Taylor of the same 
function f (Vo — x) are neglected, (a proper choice of origin reference), 
the integral of this equation — with a real exponential factor, divergent or 
convergent according to the assumption ^ 0 —, puts into evidence motions 
respectively unstable or « freestart». Then, if the assumption is null, 
the oscillator, formally conservative, does not go away from the quiet-
ness state, in every instant the kinetic energy integral being 0. Prom 
that one excludes the possibility that in the oscillator of elastic retourning 
(resistance 0 or linear resistance ^ 0) the motion begins if there is a 
failure of periodic or steady activation energy. On the other hand, 
if one admits that for the divergency of the amplitude the retourning 
remaining linear, the higher terms of the series of expansion of / obtaining 
importance — discarding the linearity premise of the strength — it is possi-
ble to realize stable vibrations. If for«strength», a binominal law decreasing 
with the increasing of x is assumed (for small x) and increasing with x 
(for great x) then Van der Pol's equation holds, which allows with ap-
proximation, a periodic integral, showing the stability of the oscillations 
whenever the law of dependence of strength — previously mentioned— oc-
curs from x (which is identified when the minimum condition is expressed). 

One can attain from any other law of strength, analogical results, 
provided that it conforms with the conditions already stated. To inte-
grate similar equations, one must proceed by means of graphs due to the 
lack of functional-integrals (Duffin, Kryloff, Ritz, etc.). 

In such a way, one can present the attenuating influence of the 
damping strength of the self-exicted vibrations on the amplitude (to 
total damping), and also the influence of pressure between «rubbing» 
bodies with even characteristics and relative speed (Dudley & Swift). 
The abovementioned non linear and initially decreasing characteristic 
of the kinetic friction (coeff. ¡i) has been examined under a. physical aspect 
by Forrester. I t is recognized that the contact area between solids in 
friction through which a material's continuity is realized, and therefore 
a strength motion, decreases with the increasing of speed, and— fundamen-
tally — for the time factor influence on the stress/strain characteristics. In 
addition, the action of time will reflect the diffusion between materials 
in contact (forming alloys or sinters, materials harder than the compo-
nents), and therefore the transitor bond strength made up of such sinters 
will generate friction. 
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The increase of relative speed influences only initially the friction, 
whereas following the progressive adaptation of the surface contacts, 
attenuating the load concentration will remarkably reduce the influence 
of the arising thermic factors. If the « self-excitation» can sufficiently 
(but not necessarily) explain the vibratory friction, one must point out 
that the conditionally periodic vibrations exist, together with friction 
in dynamic conditions of the oscillator, not always suitable to insure 
self-excited motions. 

Vibrations then originate when the dynamic specifications of the 
oscillator do not allow self-excited motions, which is a basic point to be 
kept in mind. 

The causes for similar oscillations are revealed necessarily 
dependent 011 the intrinsic variability (of time) of the mutual action 
between solids in contact during « chemical treatment ». These intrinsic 
variabilities have structures due to thermical and chemical treatment, 
wear of the materials of discreet measure and not continuous, and con-
sequent discontinuity in the motion, inhomogeneity effects, the whole 
being out of influence of the motion. 

In conditions of relative motion, the process of« adiabatic distortion» 
takes place, which is limited around the actual contacts between the 
« rubbings », this process leading to cohesion and sliding. 

Then the conditions of the motion controlled by other inherent 
factors of the oscillator and friction characteristics, are to allow that the 
process evolves towards mobility or solidity of the parts in contact. 

Therefore, micromelting and microshearing through intermediary 
stages of fastness phase, particular cases of a general phenomenuin 
of thermodynamic equilibrium, follow with individuality and consec-
utiveness. One finds therefore, distinct intrinsic physical-chemical 
components of discontinuity (associated with coeff. ¡x) of the friction-me-
chanical oscillations coherent with the kinetic friction between rubbing 
solids. 

If in any frictiongramm.es it appears that the vibrations maintained 
by friction have the natural frequency of the oscillator (which is favoured 
by this theory), then this frequency is excluded in general from the 
procedure of the characteristic of kinetic friction. 

The «Friction Oscillator» in conclusion, is subjected to a complex 
exciting action, either by the components of limited energy or of great 
energy: Free Vibration, Forced Vibration, Besonauce, Self-excited Vi-
bration, Steady state, periodic—random — transient Vibration; linear, non 
linear, undamped, damped, complex damping Vibrating Systems; Vibrat-
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ing Mass, Spring Rate (suspension, tyre, roll); Vibration of vehicle 
suspension systems (bounce, pitch, roll), etc. 

Some of these components, inherent to the many abovementionecl 
frequency bands, are able to produce peak resonance, peak-to-peak am-
plitude, not on a simple frequency— as has been believed up to now — but 
on numerous natural frequencies on the vibrational system, which is 
primarily recognized. 

2. - Starting point then is the motion of the vibrating lining in a 
form already elaborated upon in the first part of this study: 

x + [a L/m) x + (b/m) x = (/u0 + a V0) L/m [1] 

m = mass per unit area, 
= initial friction, 

Es — shear elastic constant, 
b = Es/t, 
a = change in ¡j, with speed, 
L — load force per unit area, 
t = thickness of the lining. 

The drum rubs against the lining with a speed V0, lining moving at 
a speed x. 

Assuming: 
¡x = ¡Xo + a (V0 — x) 

the integral of [1] is placed in a convenient form (Basford-Twiss): 

x = A exp. (— a L t/2 TO) sen [(4 6 m. — a2 X2)1'2-1/2 m + B]. [2] 

A, B, arbitrary constants, for the present purposes need not be evaluated. 
Prom [2] one obtains: 

¿max = 2 7i co A exp. (— a Lj8 TO co) [2'] 
with 

(4 l) m _ «2 ¿2)1/2 
co = , (natural frequency of lining) [3] 

4 TO 

and 

(E)t-o = —2E0aL/2m 

where Ea is local and transient excess of potential energy. 
All things being equal, the « Probability of Noise » will be propor-

tional to: — a L[2 TO. 
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From [2] one deduces that an initial displacement x in the lining can 
grow into an acoustical vibration (starting squeal) only if the following 
condition occurs: Es > t Ll (a2/4 TO). 

If a < 0, one has self-reinforcing: if a > 0, one has self-damping 
vibrations. 

Self-reinforcing always becomes more accentuated according to 
Es/t, having low medium and high values, with predominant « stick vi-
brations » with the increasing of Es/t. 

The joint-effects of dfi/dv and Es/t, in determining vibration, reflect 
back differently on the form of vibration — according to the region of 
low — medium or high shear elastic mod./thickness of lining. 

Then, the fundamental action of bond-shearing friction mod. Es on 
which the noise depends, may be exceeded at a given threshold level. 
The noise may be eliminated by conferring to the brake lining: 

Es < t a2 L2/i TO . 

The natural frequency of the drum and that of the vehicle support 
co-vibratings have been left out in this theory (suspension springs, coupl-
ing springs, anchorages, dampers, inertial excitations, etc. able to rebound 
on the friction vibrations). The repercussions of the co-vibratings are 
frequently predominant, and this may be shown by the following con-
siderations: 
continuing from the simplest position of induced forced vibrations 
and having the forcing frequency Q: 

x + (a L/m) x + (b/m)x = L (//„ + « V0)/m + A sen Qt [1'] 

(equation of self-exicted and forced vibrations). 
With an inertial excitation (frequency and impedance remaining) 

the coefficient of sen Q t will be A Q2 instead of A, that is to say a 

sonic intensity or a sound wave Fq < F , ratio = Q1, because: 

r = 2 c Qo Jt2 P A2, Fq = 2 CQoJi2f2 A2 Q* watts /to2 where 

/ = frequency, 
cq0 = characteristic impedance of the acoustical medium, 
g = densities, 
c = wave's velocities. 

7"I 
The remarkable ratio ~ ~ induces deleterious stress-amplifications 

and failures and acoustical fatigue, owing to the noisier energy which 
increases wear. 



2 2 B. B E L I . U I G I 

The solution to [!'] consists, it is noted, of a « complementary func-
tion » plus a « particular integral ». 

The complementary function has the following characteristics: 

a = — a LI2 m ± (a2 L2 — 4 E./t)1'2^ m 

which according to a2 L'1 it 1 E,/t gives standard results, as in the case 
of « dampers » (over, critical, underdamped). 

In the first case of the abovementioned disequality, since 

(a2/L2 — 4 Es/tyz/Z TO < a L/rn, 

the roots of a are negative (—y, —<5), and since a = X, x = 0 for 
t — 0, one lias: 

x = Xe-^KÔ — y) + X ë~ôtl(y — ô) 

In the second case (two roots of complementary function are equal): 

Es = 1/4 a2 L21. 

In the third case (conditions of vibrational insurgency): 

x = A a~nt P sen (mt + y>) 

where n, TO, P, ip are constants deducible from the initial conditions. 
The periodic time of the motion becomes: 

T = 
(4 E./t — a2L2Y'2 ' 

The particular integral is obtained if 

x = B sen Q t (disturbing force) + L/b ([i0 + a Vo) is considered. 

Putting these values into equation [1'], one obtains: 

sen Q t (— Q2 B + b B/m —A) + fc Q B cos Qt = 0. 

For 

Q = n/2 , B = -,, A ^ . 
' ' b/m — Q2 

Therefore, the displacement x becomes: 

x = e~"' g sen (mt + yi) + A sen Qt • (b/m — Q2)-1 + Lt [fi„ + aV0)/Es 

with evident resonance for Q = |'Eo/m t . 
The condition for the elimination of noise: 

Es < a2 L2 i/4 m , 
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is no longer sufficient; it is necessary to add to it the condition: 

E.jmt Qi2. 

Therefore, it is necessary to recognize the amplitude and frequencies 
of the forced vibrations Qi firstly, comparable with the Fourier compo-
nents, which are multiplied by the « amplificator factor»: 

{b/m — Qi2)-1 

and to avoid for that reason that the values E,/mt coincide with those 
relative to Qi2. 

In other words, one adds the particular outside frequency acting on 
the brake lining with individual vibratory, which induces resonant-peaks, 
with intensity up to oo (according to the progressively decreasing values 
of a L\m). Or corresponding with the frequency ratio 1 = r = Q/co, 
variable parameter a L/m, decreasing till 0, the dynamic Magnifier 
M = oo, after M decreases again from oo or from the relative max. 
r = Q/w = 1, up to values < 1. 

This result, analogous to that with the motion of a single vehicle on 
an undulating road, persists if the periodic sinusoidal function, relative 
to the forced vibration has a phase cp, and the quantity B becomes: 

B = A{{m2 — Q2) + a2 L2lm2yii2. 

For Q -> 0, B — A \mtjEs, and for Q < E,/t, B 0 . 
The examination of function B is facilitated when one observes that the 
maximum value of the amplitude BmaK of the forced vibration (which 
is obtained with d/dQ — 0), is: 

Bmax = 2 m A/a L (4: b m — a2 tf/m*)1'2. 

The system is said to resonate with the corresponding frequency 
fr = Qm[2jt. The dynamic Magnifier M is in this case: 

M = [(1 — r2)2 + r2a2L2t/mEs]-112 

with r frequency ratio. 
The vibrational displacement for the forced motion is expressed in 

the following closed forms: 

x = —sen cp sen (Qt + (p)mA/aLQ, tgq? = —-aLQm(E,/t — mQ2), 

particularly when the velocity of the motion is of more interest or signi-
ficance than the displacement: 

x — — sen cp cos (Q + <p) mA/aLQ . 
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Usually, the coefficient of the sinusoidal term A in the forced 
vibration, which represents the max. of the inciter force, is considered as 
a constant amplitude, independent from the frecpiency. Since this is not 
always true, especially if the inciter or exciting force is unbalanced, then 
the maximum of A varies with the square of the frequency, and instead 
of A, one has AQ2 and B¿ = — mA/aLQ = ?-2_B. 

In conclusion, having demonstrated that for Q2 = b/m the forced 
vibrations fall into resonance, one lias to modify the «limitations» 
E, ^ aLt/2m, of incipient vibratory, obtained from the specific lining 
contribution. 

It is indicated too that, when developing an « antinoises lining», 
it is necessaiy to recognize above all, according to the types of vehicles 
on which they will be applied, the frequency bands of the assembly, of 
the single parts and of those in a position to vibrate much more. 

The shear elastic moduli Es of these lining-systems (having 
distributed mass and elasticity) have values outside those oj the 
spectrum-limits. 

In the following formula the antinoise conditions are summed up, 
(with an exception made for improbable «white noises »): 

Es/t ^ Qi2 < a2 L-¡i TO . 
Finally, no « free vibrational zones » exist, which are distinctly sepa-

rate from the «unfree zones» or «pseudofree zones». However, they could 
exist if Es/t Qi2 (frequencies of the vehicle identified in advance). 
Otherwise the limitation < would not be of value, free and forced 
vibrations, resonant or not, could arise on all sides; same lining can be 
acoustic in one vehicle and not in another. 

Moreover, the probability of noise in the « unfree zone» can be rein-
forced, etc., being daily experienced. 

A single lining may be quiet on one brake and noisy on a brake of 
different design. Linings with substantially equal may be very different 
in their tendency to noise. The types of vibration and its occurrence 
are greatly influenced by the dynamical properties of the mechanical 
system involved. 

The really vibrational phenomenon of « rubbing-bodies » in relative 
motion, of interfacial contact, gives numerous casues of squeal, 
and cannot be left out of consideration from the repercussions of the 
« brake-systems » and relative « mountings ». 

Any antisqueal lining (or adsorber) must always be considered 
relative to its brake assembly, and to its vibrational couplings. Among 
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these, the lining-drum resonance (ovaling drum vibrations), the shoe 
vibrations, and other inadequate fittings, lining-shoe, defective brake 
shoes, pivot distortions, etc. are to be remembered. 

I t has been observed that the brake squeal sometimes occurs when 
the natural frequency of a brake shoe is near one of the natural frequency 
of the brake drum. 

In the first part of this study it has been hoped to have shown a 
«rating» of «deadening selective linings»; here it has been demonstrated 
that it is possible to manufacture a wholly antisqueal material. 

The conclusions that have been drawn seem relative to excessively 
high mathematical schemes; however, they are still less than those of 
preceding authors. 

The more concrete vibrating systems, with more degrees of liberty, 
have been the main concern of this study; e.g.: mass moving up and 
down together with different amplitudes (one mass moving up when the 
other moves down), and the results do not change. 

The equations of motion of mass wx and w2 (elastic vertical cou-
pling brake linings-bearings) are: 

xx + 7c1as + w-f x + o)j2 (xx — x2) = 0 , x2 + co'2(x2—xx) = 0 

k = eg I , wx2 = kxgjw1, co22 = lc2g/iv2, co212 = k2g/wx. 
Placed as usual, so that the displacements xx and x2 will vaiy sinusoidally 
with time: 

x2 — a2 sen (Q2t + cp) , xx = ax sen Qx t , 

cp (phase angle for the motion a2); cp # 0 is an essential condition since 
it must not be assumed that this motion is in phase with xY. 

Substituting the values [x1 and x2 in equation-system, two other 
equations are derived, and since these equations must hold for all values 
of t, t may be put equal to 0. 
The first equation becomes: 

— coj2 a2 sen cp = 0 . 
Because: 

ft>i2 ^ 0 , » 2 ^ 0 , sen cp = 0, n, 2n, ... 

and the preceding equation may be written in general as: 

sen [— axQ2 + IcQ^ + at (wj2 + co22)] — co212 a2 sen (Q2t + 9?) = 0. 

Since the coefficients of the sen terms, in this equation, are indepen-
dent of time, it follows that the equation can be satisfied for all values 
of t, only if = Q2 = Q. 
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With simple transformations, an equation can be obtained so that 
the ratio aljai from the two equations separately, and equaling the two 
parts gives the values of Q: 

Q4 + k Q3 + cox2 Q2 + k co22 Q + co22 (oh2 + co22 — m\2) = 0. 

There are four independent modes of vibration: the lower frequency can, 
approximately, approach the frequency of the mass w2 (w2 > 7ox) if 
io! -9- 0, and the higher frequency is approximately equal to that of the 
mass wx, if the mass 7o2 were held fixed. 

If ft)22/w12 = 7I-2 ivjk and w2 -> 0 (w2 > w1 real situation), from the 
first equation the following occurs: a>\2, cô /cô  -> 0, and one can draw: 

(co22 — Q2) [Q*!w\ + kQ/(0„ + (CO!2 + C022)/C0l2] = 0 , 

at the limit one has: 

O = co2 = | >Es/t 

Q2 Q E, a2L2 
or: + k + 1 = 0 , which is the usual condition < . 

Wi w,8 t m 
Therefore, in the ranges Es/t < a-L2\m, it is necessary to recognize, 

given a certain thickness t of the lining, which frequency coincided with 
Es/t, to operate above all: Es ^ Q2t. 

With these conclusions one must reflect on the «industrial deafness », 
« safety engineers», «industrial and insurance medicine» (otology). 
Is besides the elasticity Es one has to keep into account in the structure 
of the lining, the visco-elastic quality (as in reality), dissipative forces 
are then assumed to be proportional to the particle velocity. 

In such a case, another term J)37//i)a;2i>i has to be added for the 
equation for a wave in elastic medium: 

<M/ 32 V 52 '/ -r 32 V , ,r, - - = c2 - ' - , o — = M — , c = M p where 3i2 ~ix2 ^ 7) t2 3 a?2 

y = particle displacement, 
x = distance in direction of propagation, 
c = wave velocity. 

Assuming then a solution, such as y = A exp. [ — i (cot + kx)] this is 
substituted by the preceding equation. 

However, the modulus and « dissipation coefficient» cannot ve taken 
as constants, since both the elastic and loss properties of the material 
vaiy widely with frequency. The complex longitudinal bulk wave mo-
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dulus M° is related to the complex bulk compression modulus K°, and 
the complex shear modulus G°, M° = K° + 1/3 G° . 

These complex moduli are related to the elastic and loss moduli: 

K° = K' + i K" , G° = G' + i G" . 

The displacement is: 

y = y0 exp. [icot — (a + ico/c) x] , — w2q — M° (a + ico/c)2, 

from which real and imaginary parts M' and M" are: 

M' = qc2 (1 — r 2 )/( l + r2)2 , M" = 2 g c 2 r (1 + r2)2 , 

a = attenuation in nepers/cm. 
r = a c/co, 
c = phase velocity. 

In the same way it may be derived for G', G", E', E", which are 
the relationships for obtaining the real and imaginary distortional wave 
constants. 

When the attenuation for wavelength is small r2 can (to a first 
approximation) be neglected in the above equations, the elastic modulus 
taken simply as qc2 and the loss modulus as 2gc3a/ft>, referring back 
to the cases already studied. 

I t must be remembered that brake squeal frequencies cover a range 
from 2000 to 50000 cps. (range of annoyance = .10000 to .15000 cps.). 




