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SUMMARY. — The evidence bearing upon the rheology of the " tecto-
nically significant l a y e r s " of the Ear th (" tectonosphere ") in the interme-
diate time range (4 hours to 15000 years) is analyzed. This evidence is 
based upon observations of rock-behavior in the laboratory, of seismic 
aftershock sequences, of Ear th tides and of the decay of the Chandler wobble. 
I t is shown tha t of the rheological models (Maxwell-material, Kelvin-material, 
and logarithmically creeping material) advocated in the literature, only that 
based on logarithmic creep does not contradict any of the observational 
evidence available to date. In addition, a strength limit may be present. 

RIASSUNTO. — Viene analizzata la validità dei risultati ottenuti dallo 
studio della reologia degli «strati tectónicamente significativi» della Terra (tec-
tonosfera) in un intervallo intermedio di tempo (da 4 ore a 15000 anni). La 
prova di questa validità è basata sulle osservazioni del comportamento della 
roccia in laboratorio, su serie di repliche sismiche, sulle maree terrestri e sulla 
variazione della posizione dell'asse polare (Chandler wobble). È dimostrato che 
dei modelli Teologici (Maxwell, Kelvin, deformazione logaritmica della ma-
teria) richiamati in Bibliografia, solo quello basato sulla deformazione lo-
garitmica non è in contraddizione con la validità dei dati ottenuti dall'os-
servazione. Si presenta inoltre l'ipotesi dell'esistenza di una fortezza limite 
(creepstrenght) della quale ancora non si è potuto fare una determinazione. 

1 . - I N T R O D U C T I O N . 

The scales of geodynamic phenomena reach spatially and temp-
orally over a vast range. In the different time ranges, the response 
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of the material involved to the prevailing stresses is quite different. 
Some fourteen years ago, the present writer (21) summarized the then 
available knowledge of the rlieologic behavior of the " tectonicallv 
significant " layers of the Ea r th (" tectonosphere "). The layers com-
prising the " tectonosphere " are the crust and a rather illdefined 
part of the upper mantle. The " rheological behavior of the tectono-
sphere " refers to its average behavior; conceivably the uppermost 
crust and the upper mantle could behave individually quite differently, 
but the scheme presented here refers to the combined effect of these 
possibly different individual responses. Since the earlier paper was 
written, much new evidence and observational data have been 
accumulated. 

In the earlier paper, the time range of geodynamic phenomena, 
reaching from a fraction of a second (period of seismic waves) to 
hundreds of millions of years (continental drift) was divided into three 
intervals which were termed " s h o r t " (up to 1 lioms), " intermediate " 
(4 hours to 15000 years) and " l o n g " (longer than 15000 years). 

I t is the purpose of the present paper to review the new data 
pertaining to the " intermediate " time range and to interpret them 
in terms of their possible significance regarding the rheology of the 
tectonosphere for tha t time range. The jirovenance of the data is 
from direct measurements, from seismology, from tidal investigations, 
and from observations of wobbles in the Ear th ' s rotation. In connect-
ion with this, it should be noted tha t the phenomena listed above 
may involve progressively larger portions of the Ear th . Nevertheless, 
it is believed that all these effects concern mainly the upper parts 
of the Ear th , and it will be seen tha t the rheological information tha t 
can be gleaned from them, all points in the same direction. A com-
parison with the earlier paper will show tha t two entirely new types 
of observations have been added; bu t with regard to those types which 
were taken into account earlier (viz., seismology and the wobble), 
entirely new data are now available whose interpretation will lead to a 
completely new assessment of the rheology of the Ear th 's tectonosphere 
in the intermediate time range. I t will be seen tha t the commonly 
adopted Kelvin model for the description of the rheological behavior 
of the tectonosphere is inadequate. An alternate model, tha t of loga-
rithmic creep, however, is compatible with all the new evidence. In 
the rheological discussion given here, the stresses refer to the stresses 
above a possible yield limit; it is difficult at this time to determine 
the possible existence and value of the latter. 



T H E RHKOLOGY OF T H E E A R T H JN T H E I X T E R M E O I AT E TIME RANGE 2!) 

2 . - R E V I E W O F R H E O L O G T . 

The Theological equations of a body (sometimes also called equa-
tions of state) represent a relationship between the stress and strain 
tensors and their derivatives. The simplest relationships are linear 
ones. If the stresses depend linearly on the strain, one has an elastic 
material; if the stresses depend linearly on the strain rates, one has a 
viscous fluid. The standard rlieological models that are then used to 
describe the behavior of different substances are materials showing 
various combinations of elastic and viscous behavior. 

Let us specify this somewhat by focussing our attention on an 
isotropic, incompress'ble material. Then, only the off-diagonal ele-
ments of the various tensors above a possible yield limit are of im-
portance. This is the case which applies in creep and is sufficient for 
the discussion of what follows. 

Thus, as noted above, a linear connection between shearing stress 
a (above a possible threshold) and shearing strain 2e (e is the tensor 
component) leads to an elastic material. One usually writes 

a = 2/j.e [1J 

where /i is called the rigidity of the material. Similarly, one obtains 
a viscous fluid by setting 

a = 2i{e [2] 

where r] is called the viscosity. 
One then commonly considers two possible combinations of 

Eqs. |1] and [2]. The first is 

£ = f + ; [3] 
2/i ii] 

which represents a " Maxwell " fluid. Given a constant stress, the 
strain increases continuously linearly witli time. The second pos-
sibility is 

a = 2/is + 2 rjs - [1] 

which represents a " Kelvin-material" . Given a constant stress a0, 
the strain adjusts itself exponentially to its final value a0j(2/i): 

2 n ( l - e ^ ) . [5] 
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Of particular interest is the behavior of a Kelvin-material when 
oscillations occur. The equation of motion for such oscillations can 
be written symbolically 

/¿e + ?/£ = — Ge . 

If one makes the hypothesis that the oscillations are given by 

e = exp [(a + ico) i] 

one obtains 

and 
« = — »?/(2C) [7] 

showing that such oscillations will be damped. One can then eli-
minate the factor G which yields a relation between the eigenfrequency 
M and the damping factor a 

a2 + J — + w2 = 0 . [8] 
V 

This allows one to estimate the ratio rjl/u, f rom measurements of co 
and a. The presence of the damping in the Kelvin equation not only 
causes eigenoscillations to be damped, but causes also a phase-shift 
(a lag) in forced oscillations. The Kelvin equation of motion in this 
case may be written as follows 

Ce t]E + /<£ = A sin cot 

where rj is again the Kelvin viscosity, tu the rigidity, G a constant of 
the system and A sin ojt the disturbing force. The solution of the 
above equation is 

A/G 

u \2 ?? 
sin [co(t — Ô)] [9] 

I ( f . - 02 

with 

ô = ' arctan J - — = — arctan _ _ [101 
co filC — co2 co fi— co2G 

Noting tha t 

n = V/i/C fll] 
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is the circular eigenfrequency of the undamped system, one can esti-
mate the value of the Kelvin viscosity for the model in question. 
One again has to eliminate the unknown constant C 

G = fi/n'- [12] 

and has then 

, 1 , mo 1 , mo 
o = arctan ' = — arctan — [13] 

(o a — m2ujn2 Co / o)2\ 

or 

V / I tt>\ 
T = — I 1 tan d(o . [14] 

/ll \(0 1l2j 

For large n (i.e., n > co), this becomes (9) 

r ~ — tan ¿co . [15] 
co 

The last equation enables one to get the ratio of the material 
constants r\\(i from an observation of the phase-shift in forced oscil-
lations. 

The above Theological equations are all linear; they lead to expo-
nential creep. However, the creep behavior of various materials, 
particularly of rock, is often not exponential, but logarithmic. In 
order to describe this case, Scheidegger (23) has proposed the following 
rlieological equation: 

a = '2Vs + P(e — C)2 [16] 

where rj is the viscosity and /3 a creep factor. For a constant stress cr0, 
the strain becomes now a logarithmic function of time. One obtains 
upon integration of [16] 

e = A + ^ In (1 + Bt) + Gt [17] 
P 

or 

e = ~ In (a + bt) + Gt [17'] 
P 

where A and B (or a and b in the second form) are constants of 
integration. Furthermore, oscillations of such a material are no 
longer harmonic; their eigenfrequency depends on their amplitude. 
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A special case of Eq. [17] is the so-called Lomnitz ( u ) law which 
is valid for a constant acting stress aa 

a0 s = - 1 + a In (1 
V 

Bt) [ 1 7 " ] 

where ¡x is the rigidity. In the terminology of [17], this implies 

A = (To 2 f ) Go 

ß = % 

Jeffreys (6) has taken this law as a stress-strain relation containing an 
explicit t ime dependence (rather than as a solution of [16] for particular 
boundary conditions), so tha t he writes, for variable stresses 

s = 

i« 
1 + 5 log 1 + £ ( i — T ) da(r) . [18] 

However, in view of the fact tha t the stress-strain relation [16] is no 
longer linear, it does not seem entirely justified to apply the super-
position principle implied in [18]. Nevertheless, if [17"] is taken as a 
stress-strain relation valid for variable stresses, Jeffreys (5~7) showed 
that the phase lag ôa> induced in forced oscillations (cf. [9]) is ap-
proximately 

ÔCO — — 71(1 [19] 

irrespective of frequency. I t would, thus, be possible in principle to 
determine the constant q from a measurement of a phase lag in an 
oscillatory system. 

.3. - D I R E C T O B S E R V A T I O N S . 

If one wishes to ascertain the rheological condition of the tecto-
nosphere, one might first of all think of direct stress-strain measure-
ments. Such measurements have been performed in the laboratory. 

The difficulty in all such measurements is tha t the 6onditions 
obtaining in the tectonosphere are not easy to at tain: whilst the time-
element in the " intermediate " range (weeks or years) does not pre-
sent an unsurmountable obstacle, the pressure and temperature condi-
tions can generally not be reproduced. Thus, with direct stress-strain 
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measurements one lias to confine himself to the conditions prevailing 
in the uppermost parts of the Ear th ' s crust. This is less than tho 
ideal situation, but still gives one an idea about what may be ex-
pected of the rheological behavior of certain rocks tha t make up the 
tectonospliere. 

In this instance, we note that long ago Andrade (*) empirically 
analyzed the behavior of various materials under constant loading 
(a = const) and came up with a general equation of the form 

E = A + BE(t) + Ct [20] 

where A, B and G are constants and E(t) is an empirical time-function. 
I n the above equation the term Gt is obviously characteristic 

of Maxwell-type creep; G is zero in creep recovery. 
The evidence regarding the time-function E(t) was recently col-

lected by Morlier (15). Accordingly, for some rocks one has 

E{t) = A (1 — e-*<) [21] 

which corresponds to the behavior of a Kelvin-material. For rocks 
exhibiting this type of behavior, Morlier (15) [Table VI, p. 98] gives 
relaxation times of 

r = y ~ 1 to 16 days . 
Ic 

Using the ordinary short-term rigidity ¡i = 2 x 1012 cgs, this yelds a 
viscosity range of 

r\ 1 .7 to 27 X 1017 cgs . 

Most rocks, however, do not have an exponential time-function, 
but a logarithmic one for a constant stress a0\ a most common form is(u) 

e = - 1 + S l n ( l + Bt) [17"] 

so tha t A = ao\ii; B = q<y„l/i-, E(t) = In (1+J3i); and 0 = 0 in Eq. [20]. 
This can no longer be described in terms of linear models; 

one has to use in this case the nonlinear equation [16] derived 
by Sclieidegger (23). The behavior of various rocks has been ana-
lyzed in" terms of Eq. [17'] by Parsons and Hedley (l7) [p. 332]. 
These authors assume in Eq. [17'] a = 0, and obtain therewith values 
for the factor 2jj/j8 ranging from about 5 .5 x 10"6 for sandstone to about 
6.7 Xl0~5 for potash. For potash, they require a Maxwell-term as 
well (G = 170 xlO- 6 hr-1, Eq. [17]), but this term is very small for 
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sandstone (G = 4x1.0"" In-1). At any rate, the lower of these limits 
seems to be more appropriate for an extrapolation to the Ear th ' s crust 
rather than the higher one. The values given above may be taken as 
characteristic (in order of magnitude) for the "tectonospliere". 

4. - T H E S E I S M I C E V I D E N C E . 

Seismology is concerned with the phenomena produced by earth-
quakes. As is well known (22) these phenomena belong to two types: 
phenomena of wave propagation, and phenomena a t the source. Much 
information has been accumulated on both these topics during the past 
ten years. However, it should be noted tha t the information on wave 
propagation, including tha t on the free oscillations of the Ear th , in-
volves stress cycles whose prevailing periods are significantly below 
the " intermediate " time range. 

Hence, the only important information for the "intermediate" 
time range to be gleaned from seismology is from the source-mechanisms, 
particularly from the time-evolution of aftershock series. Commonly, 
one has used the Benioft'-strain rebound model to explain the mechanism 
of aftershocks. This model assumes tha t the main shock relieves 
the built-up stresses and tha t the subsequent aftershocks are the 
expression of the adjustment of a Kelvin-material to the stress-redi-
stribution. Scheidegger (21) has calculated the relaxation time r re-
quired for this model from an analysis of aftershocks and obtained 

r ~ 2 days , 

leading to an estimate of the Kelvin viscosity, using the ordinary 
short-term rigidity /t = 2 x l 0 1 2 cgs, of r/ = 3 x l 0 1 7 cgs. 

However, the new information adduced over the last ten years 
showed tha t the Benioff model, and therefore the Kelvin model for 
the rheological behavior of the material in which the aftershocks take 
place, can no longer be maintained. I n this instance, Ranalli and 
Scheidegger (20) made a careful analysis of a number of aftershock 
sequences and showed tha t aftershocks are the discontinuous mani-
festation of overall plastic creep by which the " tectonosphere" 
readjusts itself to the changing stress distributions. Accordingly, the 
material in the tectonically active layers of the Ear th must be regarded 
(beyond the elastic limit) as a plastic substance exhibiting the pheno-
menon of creep as response to a stress-change. The details of the 
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argument may be found in the cited paper of Ranalli and Scheidegger (20) 
and need therefore not be repeated here. 

Thus, we note tha t for an instantaneous stress change, the tec-
tonosphere responds by creep. The aftershock-series corresponds to a 
recovery curve for macroscopic strain: this is the ratio of the total 
deformation divided by the total (not individual aftershock) earth-
quake volume. 

Ranalli and Scheidegger (20) have shown tha t the (plastic macro-
scopic) strain e is proportional to the energy. Because of magnitude 
stability, the strain rate is proportional to the aftershock frequency 
n(t); the latter is given by Omori's law 

n(t) = at-P [22] 

where ~ 1, and estimates of the parameter a (ia) range from about 4 
to 150 (dimensionless for /? = 1) for various aftershock sequences. 

Thus, we have 

s(t) = const • n(t) = const atr1 

and the strain rate curve (writing the constant as 1:) is given by the 
integral of the expression above, leading to 

e(t) = lea In qt 

which represents a form of logarithmic creep; o is a constant of in-
tegration. 

The last strain-time equation corresponds again to the logarithmic 
creep equation [17'] with 

a = 0 
b = Q 
C = 0 

Unfortunately, no estimates of the ratio 2/;//3 of the material con-
stants can be made inasmuch as we see no way at the present time 
to estimate the proportionality constant lc between shearing strain rate 
and earthquake frequency. Nevertheless, the fact that logarithmic 
rather than exponential creep is found in the analysis of seismic after-
shock sequences is in conformity with the findings from laboratory 
experiments with rock creep. 
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In conclusion, it should perhaps be mentioned tha t Pshennikov (18) 
tried to fit a Maxwell-material to seismic aftershock sequences. How-
ever, his model fits the phenomenology of the aftershock process only 
very poorly and must be rejected [cf. the discussion by Ranalli and 
Scheidegger (20)]. 

5 . - T I D E S A N D R I E E O L O G Y . 

The gravitational attraction of the Moon and the Sun upon the 
Ear th produces deformations in the latter; these are commonly called 
" Ear th tides " . Because of the time-constants of the orbital motions 
of the Moon and the Ear th , the periods of these tidal deformations fall 
into the " intermediate " t ime range, as defined in this paper. 

In a first approximation, the tidal deformations of the solid Ear th 
are elastic, implying an instantaneous proportionality between the 
surface-displacement (strain) and the tide-potential. This fact gives 
rise to the introduction of Love's and Shida's numbers expressing 
this proportionality (13) [p. 109]. However, it soon turned out tha t 
there is, in fact, no instantaneous proportionality between potential 
and displacement but generally a significant pliase-lag (except 
for an insignificant advance in coastal Western Europe) of, in the 
semidiurnal wave, about 1.7° in Central Europe and 3.5° in the USSR, 
Asia and Japan (14'16); MacDonald (12) quotes an average of 2.1(5° from 
astronomical observations. Such a phase-lag must cause energy dis-
sipation in the Earth-Moon system, thereby affecting the evolution of 
the orbits in question (2>8). 

The physical explanation of the observed phase-lag has been 
generally sought in a linear-type of anelasticity (13) [p. 350 ff.]. 
Indeed, in an oscillating system in which the damping is proportional 
to the velocity (strain rate), forced oscillations show a phase-lag with 
regard to the imposed oscillation force (cf. Sec. 2). From this phase-lag 
one can estimate the Kelvin viscosity of the tectonosphere. For the 
Ear th , we have approximately (in hours) 

2n (approximate lowest frequency mode of the free 
1 oscillation (24)) 

2 n 
M = — (approximate frequency of the Mi tide) 

dco = 2.16°; tan ¿w ~ 0.0378. 
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Thus the " relaxation time " r = rjl/x becomes (cf. Eq. [14]) 

/ 6 2n 1 \ 
T = X — • 0.0378 = 0.0351 hrs ~ 126 sec. 

\2n 6 4n2 J 

This is a value tha t is very small. Using the ordinary short-term 
rigidity of 

[x = 2 x 1012 cgs 

yields for the Kelvin viscosity -q 

r] = 2.5 X 1014 cgs . 

This is again a value which is very small. I t does not agree with 
the values obtained from creep experiments of Kelvin-type rocks (see 
Sec. 2) nor does it agree with the value obtained from seismic after-
shock sequences (see Sec. 3) if the latter are " forced " into a Kelvin 
model (Benioff strain rebound theory). 

Since, in seismology, the Kelvin model has been shown to be 
inadequate in the " intermediate " time range (as evidenced by the 
decay of aftershock series) in any case, one will have to search for 
an explanation of tidal friction by models other than tha t of a Kelvin 
body. 

A review of some such possibilities has been given by Lagus and 
Anderson (10). Accordingly, it may be expected that about one-half 
to two-thirds of the tidal energy dissipation may occur within the 
shallow seas. MacDonald (12) suggests tha t some of the dissipation o£ 
tidal energy in the solid parts of the Ear th may be due to the grating 
of crustal blocks against each other. This idea comes rather close to 
an assumption of solid friction as a dissipative mechanism which, if 
it were assumed to occur in microscopic volumes rather than macro-
scopic blocks, would phenomenologically be that of logarithmic creep. 

Thus, one concludes tha t the mechanism of energy dissipation in 
the Ear th 's tides is not yet very well understood. Assuming a Kelvin 
model requires viscosities which are much lower than those required 
by assuming the same model for other phenomena in the "intermediate " 
time range. Since the Kelvin model has been shown to be inade-
quate in other intermediate time range phenomena, it is probably 
best to abandon it in connection with the possible explanation of 
tidal dissipation as well. As an alternative possibility, friction in the 
shallow seas and logarithmic creep in the solid parts of the Ear th 
could be invoked, and thus one might assume tha t a fundamental 
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stress-strain relationship of the type of Eq . [16] is applicable in pro-
ducing the phase-lag of the tides. 

Indeed, the discussion of Jeffreys (5) of the origin of the phase-lag 
in a system with forced oscillations based on Lomnitz ' ( u ) law, can 
be applied to the tidal dissipation problem. Equa t ion [19] leads to 

dai _ 2.16° 
¡271 _ 90° 

q = - = — — = 0.024 I 1 — llAn 

Unfortunately, this cannot be t ranslated into terms of since, for 
this purpose, a„ and ii would have to be known. Fur thermore , Eq . [19] 
is based on a superposition principle whose validity, for an evidently 
nonlinear stress-strain law, is doubtful . The forced oscillations mus t 
be assumed to be no longer harmonic and thus the phase-lag is probably 
determined by the ampli tude of the oscillations, not only by the ma-
terial constants. 

6 . - E I I E O L O G Y A N D T H E C H A N D L E R W O B B L E . 

The final effect concerning the E a r t h which we shall investigate 
regarding its implications upon the rheology of the tectonosphere is 
the Chandler wobble. This wobble (4) manifests itself by a periodic 
variat ion of the astronomically determined lat i tude of an observatory; 
the period is 430 days. I t seems the variat ions become excited at 
irregular intervals; generally, it is now believed tha t the excitation 
is caused by the occurrence of large earthquakes (25). After excita-
tion, the oscillations decay with a relaxation t ime (in amplitude) of 
some 10 (5 to 30) periods. I t s tands to reason t h a t some inferences 
can be made from the pa t t e rn of decay upon the rheology of the 
tectonosphere causing this decay. 

I n this vein, Scheidegger (21) has calculated the implications of 
the observed damping in terms of the Kelvin model. In this case, 
Equat ion [8] can immediately be used to make an est imate of the 
factor rjlfj, f rom a measurement of co and a. One obtains, with T = 
•ln\(x> = 420 days and 1 ¡a = 4200 days, 

V T = - ^ 2 days ~ 1.7 X 105 sec . 

This is a value for the relaxation t ime r which is not too different 
f rom t h a t obtained by applying a Kelvin model to seismic aftershock 
series. 
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However, the above is not the only interpretation possible for 
the origin of the decay of the Chandler wobble. Thus, it has been 
tried to ascribe this decay to a Maxwell effect (»). Upon this basis, 
using a particular model of the structure of the Ear th , Gerstenkorn (3) 
found tha t the observed damping can be explained by assuming for 
the Maxwell-material in question 

T = '' .10s sec . 

Using the ordinary short-term rigidity ¡i ~ 2 x 1012 cgs, this yields a 
Maxwell viscosity of the earth of the order of 2 x l 0 2 0 Poises. This 
is not too far from the order of magnitude of the very long-time visco-
sity deduced from such observations as isostatic adjustment (usually 
quoted as r\ ~ 1022 to 1023 Poises). 

Finally, some at tempts have also been made to explain the damp-
ing of the Chandler wobble by the assumption of some logarithmic 
creep law in the tectonosphere. Thus Jeffreys (°) used the form [17"] 
of Lomnitz' law and applied it to the damping in question. He obtain-
ed tha t this model would lead to a lag of 1/40; using formula [19] this 
yields for q 

which is substantially less than the corresponding value obtained from 
an analysis of the Ear th ' s tides. I t does not agree with the damping 
values calculated from deep penetrating waves, either, but in tha t 
case the time-range of the stress-cycles is much shorter so that , in 
our opinion, no agreement can be expected. 

Nevertheless, the above discrepancies prompted Jeffreys to mo-
dify the logarithmic creep law. However, we do not hold this to be 
necessary inasmuch as it is very doubtful that the superposition prin-
ciple as used by Jeffreys (Eq. [18]) is correct. If the logarithmic 
creep law is the solution, for particular boundary conditions, of some 
nonlinear stress-strain relation (cf. Eq. [16]), then the superposition of 
solutions embodied in [18] is not admissible. 

We therefore hold tha t it is probable tha t a solution for variable 
stresses of some nonlinear creep equation, corresponding to logarithmic 
creep under constant stress, will produce the required damping. Un-
fortunately, such calculations are not yet available. 
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7 . - E V A L U A T I O N . 

When we survey the discussion of the previous chapters, we note 
that basically three different Theological models have been advanced 
to describe the stress-strain behavior of the tectonosphere in the inter-
mediate time range. These are: (a) Maxwell model, (b) Kelvin model 
and (c) the logarithmic creep model. The possible applicability of 
these models to the various phenomena under discussion here is set 
out in Table I . 

An inspection of this Table I shows that the only interpretation 
of the rheological behavior of the tectonosphere in the intermediate 
time range tha t does not contradict some phenomenon, is that based 
on the logarithmic creep model. 

To discuss the " score " for the individual models in detail, we 
may make the following remarks: 

(a) The Maxwell model. I t fits some of the direct laboratory 
measurements on rocks, bu t cannot be used for the explanation of 
seismic aftershock sequences. I t does not seem to have been used in 
connection with the tides of the solid Ear th , inasmuch as the response 
of the Ear th to changing gravitational potentials is, in the first ap-
proximation, obviously elastic and not viscous. A Maxwell-material, 
however, can be used for the treatment of the Chandler wobble. 

(b) The Kelvin model. I t fits the direct laboratory measur-
ements on some rocks, but for most i t is a poor model indeed. I t 
cannot be used any longer for the explanation of the behavior of seismic 
aftershock sequences in the light of new evidence, although it used to 
be very popular in this context (" strain rebound theory "). I t can 
be used in connection with the Chandler wobble and tidal friction, but 
the difference in the required material constants (e.g., r) in those two 
cases constitutes a severe difficulty. Thus, the Kelvin model must 
be rejected as a model of the rlieological behavior of the tectonosphere 
in the intermediate t ime range. 

(c) The logarithmic creep model. I t fits all the phenomena di-
scussed here, although in many instances not enough data are available 
as of yet to make a meaningful comparison with regard to the values 
of the material constants tha t are necessary to obtain a good fit between 
model and observations. Nevertheless, the logarithmic creep model 
seems to date to be the only one which must not be a priori rejected 



Table 1 

Model | Phenomenon Direct .Measurements Seismic 
Aftershocks Tidal Friction Chandler 

Wobble 

| constants 
C = 4 to 170 X 10-6 hr - 1 

for some given stress 
est imate not 

possible not a t tempted T ^ 108 sec 

Maxwell ' 

1 fit 
" ul t imate creep " 

seems to be of this type 
poor possible 

| constants 
r = 1 to 16 days r ^ 2 days r ~ 126 sec r ^ 2 days 

| constants (>; ~ 1.7 to 27 X 1017 cgs) (?j~ 3 X 1017cgs) (/? ~ 2.5 x 1014cgs) (>1~ 3 x 1017cgs) 
Kelvin ' 

1 fit 
fits some rocks 

but usually poor 
poor possible possible 

1 constants 
logarithmic ) 

~ 5.5 XlO-6 to 6.7 X10-5 

P 
estimate not 

possible q = 0.024 q = 0.016 

creep 

I fit good good possible possible 



4 2 A. E . SCHEIDEGGEl t 

fo r t h e e x p l a n a t i o n of t h e rheological b e h a v i o r of t h e t e c t o n o s p h e r e 
iii t h e i n t e r m e d i a t e t i m e r ange . 

I n all t h e a b o v e models , t h e r e m a y be a possible t h r e s h o l d s t ress 
be low whieh t h e y a re n o t app l icab le . T h e r e is some ev idence t h a t 
such a s t r e s s - th resho ld (" c r eep - s t r eng th " ) exis ts , b u t no de t e rmin -
a t i o n of i t c a n be m a d e a t t h i s t i m e . 

A C K N O W L E D G M E N T . 

T h e wr i te r wishes to t h a n k D r . Giorgio R a n a l l i of t h e B e d f o r d 
I n s t i t u t e in D a r t m o u t h , N o v a Scot ia , C a n a d a , fo r r e a d i n g a n d crit ic-
izing t h e m a n u s c r i p t of t h e p r e s e n t p a p e r a n d fo r m a k i n g p e r t i n e n t 
sugges t ions for i ts i m p r o v e m e n t s . 
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