Mantle phases recorded at Guam for distances between 1° and $52^{\circ}\left(^{*}\right)$

N. J. Le Tourneau - R. Piermattei - D. A. Walker (**)

Received ou May 2nd, 1972

Summary. - An analysis of P^{\prime} and S arrivals recorded at Guam from 175 earthquakes which occurred along the seismic belt in the Western Pacific reveals differences between the travel times to that station and those recorded at Marcus, Midway, and Wake islands from earthquakes occurring in the same general area. Three possible explanations are offered to account for the observed discrepancies: (1) compressional phases observed at Marcus, Midway, and Wake are mantle-guided phases of the $P n$ type; (2) systematic errors in epicenter determinations of the type reported by Japanese authors for earthquakes in the Kurile, Japan, and Izu trench region are present; and (3) real differences exist in the upper-mantle velocity structure of the two regions in question through which the phases travelled. Either of the last two hypotheses is considered more acceptable than the first. The travel times to Guam are found to be similar for earthquakes north and south of the station, but for eartliquakes to the north at distances greater than $\simeq 26^{\circ}$, energy being transmitted to Guam appears to be absorbed or blocked. This may be explained by a high attemuation zone along paths sub-parallel to the Marianas, Izu, Japan, Kurile trenchs or by a shadow zone at Guam produced by the lateral refraction of energy by the downgoing lithospheric slab.

[^0]Riassuxto. -- Un esame di 175 scosse sismiche con epicentri situati lungo la cintura sismica del Pacifico occidentale e registrate a Guam rivela differenze fra i tempi di tragitto a questa stazione equelli alle stazioni delle isole Marcus, Midway e Wake ottenuti per scosse con epicentri nella stessa zona in altri studi recenti. Tre possibili spiegazioni sono proposte in questo studio per giustificare le differenze osservate: 1) le fasi osservate a Marcus, Midway e Wake sono fasi guidate dal mantello, del tipo $I^{\prime} n ; 2$) errori sistematici del tipo menzionato da autori giapponesi per scosse nella zona delle fosse delle Kurili, del Giappone e di Izu sono presenti nelle determinazioni degli epicentri; 3) l'andamento della velocità con la profondità nel mantello superiore nelle regioni attraversate dalle fasi registrate a Guam è diverso da quello nelle regioni attraversate dalle fasi registrate a Marcus, Midway e Wake. Gli autori considerano le due ultime ipotesi più accettabili della prima. I tempi di tragitto a Guam sono simili per scosse a nord e a sud di questa stazione, ma per eventi a nord a distanze epicentrali superiori a 26°, l'energia sismica propagata verso Guam sembra essere assorbita o bloceata. Questo può essere spiegato o da una zona di forte assorbimento lungo tragitti sub-paralleli al sistema di fosse del Pacifico nord-occidentale (arco delle Isole Marianne, Izu, Giappone e Kurili) o da una zona d'ombra a Guam prodotta da rifrazione laterale dellenergia da parte della zona inclinata della litosfera sotto le fosse oceaniche.

Introduction

The purpose of the present work is to obtain a clearer picture of the velocity-depth distribution under the Western Pacific Ocean. Additional information on this region is presented here using earthquakes recorded at Guam during the period 1965-1971. This study was prompted by the observation of high frequency P and S phases recorded at hydrophone stations on Wake, Midway, and Eniwetok (${ }^{8}$) and by results obtained from compressional and shear arrivals recorded at seismograph stations on Marcus, Midway, and Wake (${ }^{6}$). The hydrophone arrivals, interpreted as mantle-guided phases possibly of the $P n$ and $S n$ type $\left({ }^{5,6}\right)$, imply a zone of low attenuation for these frequencies in the upper mantle under the Northwestern Pacific Basin and under the East Caroline Basin-Ontong Java Plateau-Nauru Sea area. The seismograph arrivals suggest differences between the mantle velocity structure under the two regions as well as departures from the Jeffreys-Bullen model.

Data (events vorth of Guam)

The data analyzed consists of 73 shallow- and intermediate - focus earthquakes located along the portion of the circum-Pacific belt extending from Kamchatka to the Marianas Islands recorded at Guam, a

Fig. 1.
station which is part of the World-Wide Network of Standard Seismographs. The epicenter and station locations are shown in Figure 1. In general the events used here are from the same portion of the circumPacific belt as the events studied by Sutton and Walker (${ }^{6}$). The range of epicentral distances is also about the same except for the range $1^{\circ}-5^{\circ}$,
for which Sutton and Walker have no data due to the absence of earthquakes at these distances from their stations.

Table 1 -- United States Coast and Geodetic Survey Data for Events Nortil of Guam

Table 1 continued

$\begin{array}{\|l\|} \hline \text { Event } \\ \text { No. } \end{array}$	Date			$\begin{aligned} & \text { Origin Time } \\ & \qquad m s \end{aligned}$	Coordinates		Depth (km)	Mag.	
				Lat.	Long.				
42	4	Dec.	1969		085021.6	$40^{3} .7 \mathrm{~N}$	$144^{\circ} .7 \mathrm{E}$	20	5.7
43	29	Mar.	1965	104737.6	$40^{\circ} .8 \mathrm{~N}$	$142^{\circ} .8 \mathrm{E}$	33	6.1	
44	25	Jul.	1965	133305.2	$41^{\circ} .3 \mathrm{~N}$	$146^{\circ} .6 \mathrm{E}$	33	5.9	
45	12	Nov.	1966	124943.6	$41^{\circ} .8 \mathrm{~N}$	$144^{\circ} .1 \mathrm{E}$	33	5.8	
46	6	Dec.	1970	202052.2	$41^{\circ} .8 \mathrm{~N}$	$143^{\circ} .5 \mathrm{E}$	48	5.7	
47		Sept.	1968	130558.2	$42^{0} .2 \mathrm{~N}$	$142^{2} .6 \mathrm{E}$	33	5.9	
48		Jan.	1970	173305.4	$42^{\circ} .5 \mathrm{~N}$	$143^{\circ} .0 \mathrm{E}$	46	6.3	
49	14	Aug.	1969	141901.6	43°. 1 N	$147^{\circ} .5 \mathrm{E}$	33	6.1	
50	13	Aug.	1969	225707.4	$44^{\circ} .0 \mathrm{~N}$	$148{ }^{\circ} .1 \mathrm{E}$	33	5.6	
51	18	Mar.	1969	161639.6	$44^{\circ} .1 \mathrm{~N}$	$151^{\circ} .0 \mathrm{E}$	44	5.7	
52	7	Dec.	1966	171742.0	$44^{\circ} .3 \mathrm{~N}$	$151^{\circ} .7 \mathrm{E}$	26	5.3	
53		Jun.	1965	033344.9	$44^{\circ} .7 \mathrm{~N}$	$148{ }^{\circ} .7 \mathrm{E}$	47	6.0	
54	10	Mar.	1970	045826.2	$44^{0} .8 \mathrm{~N}$	$148^{\circ} .9 \mathrm{E}$	40	6.0	
55	20	May	1968	210944.8	$44^{\circ} .8 \mathrm{~N}$	$150^{\circ} .3 \mathrm{E}$	38	5.8	
56	10	Jun.	1970	161748.7	$44^{\circ} .9 \mathrm{~N}$	$149^{\circ} .5 \mathrm{E}$	57	5.7	
57	19	Mar.	1967	040136.7	$45^{\circ} .4 \mathrm{~N}$	$151^{\circ} .3 \mathrm{E}$	33	6.5	
58		Aug.	1969	234344.9	$45^{\circ} .6 \mathrm{~N}$	$150^{\circ} .9 \mathrm{E}$	38	5.6	
59		Sept.		030852.0	$46^{\circ} .6 \mathrm{~N}$	$153{ }^{\circ} .5 \mathrm{E}$	33	5.4	
60	5	Feb.	1970	124638.2	$47^{\circ} .0 \mathrm{~N}$	$154^{\circ} .2 \mathrm{E}$	33	5.5	
61	8	Jan.	1971	144529.5	$47^{\circ} \cdot 4 \mathrm{~N}$	$154^{\circ} .4 \mathrm{E}$	32	5.6	
62	20	Aug.	1969	075005.5	$47^{\circ} .9 \mathrm{~N}$	$153^{\circ} .6 \mathrm{E}$	73	5.8	
63		Mar.	1966	032528.0	$48^{\circ} .3 \mathrm{~N}$	$154^{0} .3 \mathrm{E}$	45	5.9	
64	13	Jun.	1969	084829.5	$49^{\circ} \cdot 4 \mathrm{~N}$	$155^{\circ} .5 \mathrm{E}$	64	5.9	
65	3	Oct.	1965	144526.8	$49^{\circ} .5 \mathrm{~N}$	$156^{\circ} .5 \mathrm{E}$	33	5.9	
66	22	Jun.	1969	023352.8	$49^{\circ} .2 \mathrm{~N}$	$158^{\circ} .5 \mathrm{E}$	33	5.6	
67		Jun.	1966	230625.9	$50^{\circ} .1 \mathrm{~N}$	$157^{\circ} .8 \mathrm{E}$	14	5.8	
68	16	Dec.	1967	205358.3	$51^{0} .2 \mathrm{~N}$	$157^{\circ} .7 \mathrm{E}$	24	5.5	
69	8	Apr.	1966	014644.9	$51^{0} .2 \mathrm{~N}$	$157^{\circ} .7 \mathrm{E}$	47 R	5.9	
70	8	Oct.	1970	045321.8	$53^{0} .8 \mathrm{~N}$	$160^{\circ} .4 \mathrm{E}$	53	5.6	
71	6	Feb.	1970	001149.6	$54^{0} .6 \mathrm{~N}$	$163^{\circ} .6 \mathrm{E}$	43	5.6	
72	28	Mar.	1965	132257.6	$55^{\circ} .1 \mathrm{~N}$	$162^{\circ} .1 \mathrm{E}$	33	5.9	
73	22	Nov.	1969	230937.2	$57^{\circ} .8 \mathrm{~N}$	$163^{\circ} .5 \mathrm{E}$	33	6.3	

United States Coast and Geodetic Survey (C\&GS) epicentral data are given in Table 1; and epicentral distances, observed travel times, and residuals based on expected travel times as taken from the JeffreysBullen ($\mathrm{J}-\mathrm{B}$) tables $\left(^{2}\right.$) are given in Table 2.

Table 2 - Travel Times and Residuals ror Events Nortif of Guam

Erent No.		1 ' Travel Times		$\begin{gathered} P \text {-residual } \\ \text { (secs) } \end{gathered}$	S Travel Times		$\begin{gathered} S \text {-residual } \\ \text { (secs) } \end{gathered}$
		$\begin{gathered} \text { J-B } \\ \text { (secs) } \end{gathered}$	$\begin{gathered} \text { Observed * } \\ \text { (secs) } \end{gathered}$		$\begin{gathered} \mathrm{J}-\mathrm{B} \\ \text { (secs) } \end{gathered}$	Observed * (secs)	
1	0.7	13.2	13.1 (14.1)	-0.1 (+0.9)	22.9	N.C. (N.C.)	
2	1.7	28.3	27.6 (27.6)	-0.7 (-0.7)	51.4	N.C. (N.C.)	-1
3	2.0	32.5	32.2 (32.2)	$-0.3(-0.3)$	59.2	N.C. (N.C.)	-)
4	2.9	44.7	44.1 (46.6)	$-0.6(+1.9)$	78.6	N.C. (N.C.)	(-)
5	3.7	57.0	57.1 (57.1)	$+0.1(+0.1)$	100.7	N.C. (100.6)	$\cdots(-0.1)$
6	4.7	70.3	70.0 (N.C.)	$-0.3(-)$	124.2	123.2 (N.C.)	-1.0(-)
7	4.9	72.4	74.4 (73.9)	+2.0(+1.5)	125.5	N.C. (N.C.)	(-)
8	4.9	73.2	72.4 (72.4)	$-0.8(-0.8)$	129.2	N.C. (N.C.)	-)
9	6.3	93.5	95.6 (94.6)	$+2.1(+1.1)$	164.4	N.C. (N.C.)	(-1)
10	6.8	99.6	98.9 (98.9)	-0.7 (-0.7)	173.6	N.C. (174.9)	- $(+1.3)$
11	7.4	107.9	N.A. (N.A.)	- (-1)	189.2	N.A. (N.A.)	- (-)
12	8.0	117.2	116.6 (116.6)	$-0.6(-0.6)$	207.9	203.6 (203.6)	4.3 (-4.3)
13	8.7	127.1	128.7 (127.2)	$+1.6(+0.1)$	225.4	N.C. (223.2)	(-2.2)
14	9.2	136.1	N.A. (N.C.)	- $(-)$	241.0	N.A. (N.A.)	-1)
15	10.5	149.6	152.5 (153.5)	$+2.9(+3.9)$	266.3	N.A. (265.5)	(-0.8)
16	11.2	162.2	162.4 (162.4)	$+0.2(+0.2)$	288.0	N.A. (290.4)	(+ 2.4)
17	14.1	199.2	198.8 (198.8)	-0.4 (-0.4)	355.3	N.A. (355.8)	$(+0.5)$
18	14.6	205.2	N.A. (N.A.)	- $-(--1)$	366.1	N.A. (N.A.)	(-)
19	17.0	236.8	237.7 (237.2)	$\div 0.9(+0.4)$	423.4	N.A. (N.C.)	-1)
20	17.5	242.6	243.9 (243.9)	$\underline{+1.3(+1.3)}$	434.1	N.A. (441.9)	(+7.8)
21	19.4	267.0	266.0 (264.0)	$-1.0(-3.0)$	478.9	N.C. (482.0)	$-(+3.1)$
22	19.8	271.0	274.1 (274.1)	$+3.1(+3.1)$	487.3	N.A. (N.C.)	(-)
23	20.3	275.8	N.C. (N.C.)	- (-)	496.7	N.A. (N.A.)	-
24	20.6	280.2	N.A. (N.A.)	(-)	504.5	N.A. (N.A.)	-1)
25	21.2	284.4	286.6 (287.6)	$+2.2(+3.2)$	512.9	N.A. (515.6)	$(+2.7)$
26	21.6	292.0	290.0 (290.0)	-2.0 (-2.0)	526.2	N.A. (530.2)	$(+4.0)$
27	22.1	293.5	291.5 (291.5)	$-2.0(-2.0)$	529.8	N.A. (533.5)	$(+3.7)$
28	22.1	293.5	294.6 (294.6)	$+1.1(+1.1)$	529.8	N.A. (540.6)	(+10.8)
29	22.2	294.5	293.0 (293.0)	$-1.5(-1.5)$	531.7	N.A. (536.0)	$(+4.3)$
30	22.2	295.1	293.3 (293.3)	$-1.8(-1.8)$	532.7	N.A. (535.3)	$(+2.6)$
31	23.1	303.2	N.C. (N.A.)	- $(-)$	547.4	N.A. (556.5)	$(+9.1)$
32	23.3	306.0	310.3 (312.3)	$+4.3(+6.3)$	552.5	N.A. (554.3)	$(+1.8)$
33	24.0	311.7	N.C. (N.A.)	- ${ }^{(1-5)}$	562.8	N.A. (568.3)	(+5.5)
34	24.9	320.0	318.5 (318.5)	$-1.5(-1.5)$	577.4	N.A. (581.5)	(+4.1)
35	25.3	323.7	N.C. (322.4)	- (-1.3)	583.9	N.A. (590.4)	$(+6.5)$
36	26.0	333.1	332.7 (330.7)	$-0.4(-2.4)$	600.3	N.A. (612.7)	$(+12.4)$
37	26.0	330.8	328.3 (328.3)	$-2.5(-2.5)$	596.4	N.A. (N.C.)	(-)
38	26.3	334.0	N.C. (331.3)	- (-2.7)	602.1	N.A. (605.3)	(+3.2)
39	26.4	330.7	N.C. (N.C.)	- (-)	596.1	N.A. (N.C.)	(-)
40	26.8	339.0	N.A. (341.0)	- (+2.0$)$	611.1	N.A. (617.0)	$(+5.9)$
41	26.9	337.7	N.C. (N.A.)	(-)	608.7	N.A. (N.C.)	(-)
42	27.2	344.0	N.A. (N.A.)	- (-)	619.8	N.A. (N.A.)	(- -)
43	27.3	343.7	N.C. (343.4)	- (-0.3)	619.3	N.A. (622,4)	(+3.1)
44	27.8	348.0	N.C. (N.A.)	(-)	627.0	N.A. (N.A.)	(-)
45	28.3	352.3	N.A. (N.C.)	- (-2)	634.5	N.A. (N.C.)	-1
46	28.3	351.0	N.C. (347.8)	- (-2.2)	632.2	N.A. (629.8)	(-2.4)
47	28.7	356.4	N.C. (349.8)	$-{ }^{-}(-6.6)$	641.9	N.A. (637.8)	(-4.1)
48	29.0	357.6	357.1 (357.1)	-0.5 (-0.5)	644.1	N.A. (646.6)	$(+2.5)$
49	29.6	364.5	N.C. (364.4)	- (-0.1)	656.5	N.A. (N.C.)	(-1)
50	30.6	372.8	N.A. (N.C.)	- (-)	671.3	N.A. (677.6)	(± 6.3)

Table : continued

Event No.		P Travel Times		$\begin{gathered} P \text {-residual } \\ \text { (secs) } \end{gathered}$	S Travel Times		$\begin{gathered} S \text {-residual } \\ \text { (secs) } \end{gathered}$
		$\begin{gathered} J-B \\ (\text { secs }) \end{gathered}$	Observed * (secs)		$\begin{gathered} J-B \\ (\operatorname{secs}) \end{gathered}$	$\begin{gathered} \text { Observed * } \\ \text { (secs) } \end{gathered}$	
51	31.0	375.5	N.A. (N.A.)	(-)	675.9	N.A. (N.A.)	-
52	31.3	380.2	N.A. (N.A.)	- (-)	684.3	N.A. (N.A.)	- $(1-0)$
53	31.3	378.1	N.C. (379.1)	- (+1.0)	680.5	N.A. (681.1)	$-(\pm 0.6)$
54	31.4	379.8	N.C. (N.A.)	- (-)	683.6	N.A. (677.8)	- (-5.8)
55	31.6	381.3	N.C. (N.C.)	- (-)	686.3	N.A. (N.C.)	- (-7.8)
56	31.6	379.5	N.A. (N.C.)	- $(-)$	683. 1	N.A. (675.3)	- (-7.8)
57	32.3	388.1	N.A. (N.C.)	- (-)	698.4	N.A. (705.3)	- ($-\frac{6.9}{1}$)
58	32.5	388.8	N.A. (N.A.)	- (-)	699.8	N.A. (701.l)	$-(+1.3)$
59	33.8	401.2	N.A. (N.C.)	- $(-)$	722.1	N.A. (N.A.)	- (-)
60	34.3	405.7	N.A. (N.A.)	- (-)	730.0	N.A. (N.A.)	-- 1 -
61	34.8	409.4	N.A. (N.A.)	- $(1,0)$	736.8	N.A. (N.A.)	- $(1,-1$
62	35.1	408.2	N.C. (408.5)	$-(+0.3)$	734.7	N.A. (742.5)	$-(+7.8)$
63	35.6	415.3	N.A. (N.A.)	- (-1)	747.5	N.A. (N.A.)	- $(-$
64	36.9	424.2	N.A. (422.5)	- (-1.7)	763.7	N.A. (N.C.)	- (-
65	37.2	429.8	N.A. (N.A.)	$(-)$	773.8	N.A. (N.A.)	(-
66	37.4	431.2	N.A. (N.A.)	- (-)	776.5	N.A. (N.A.)	- $(-$
67	38.0	439.7	N.A. (N.A.)	- (-)	791.4	N.A. (N.A.)	- $(-$
68	39.0	446.6	N.A. (N.A.)	- (-)	804.2	N.A. (N.A.)	(
69	39.0	443.8	N.A. (N.C.)	- (\quad -)	799.5	N.A. (N.A.)	- (-)
70	42.1	468.1	N.A. (N.A.)	- ($-\cdots)$	843.3	N.A. (N.A.)	(
71	43.6	481.5	N.A. (N.A.)	- (-)	867.8	N.A. (N.A.)	
72	43.6	483.1	N.A. (N.A.)	- (-)	870.1	N.A. (N.A.)	- (-)
73	46.4	505.2	$506.3(500.8)$	$+1.1(-4.4)$	909.9	N.A. (N.C.)	-)
```* N.A., Not apparent; N.C., Not clear; (( ), Arrivals on LPZ seismographs.```							

Compressional Arrivals, $0^{0} .7-26^{\circ} .0$ (Events No. 1-37).
The frequency of the observed arrivals on the short-period vertical seismograph (SPZ) appears to be that of the refracted mantle $P(\simeq 1 \mathrm{~Hz})$; lower-frequency components of the phase appear on the long-period vertical seismograph (LPZ). The travel times on both SPZ and LPZ are generally in good agreement with the times expected from the J-B tables. In only one case, event No. 32, do both SPZ and LPZ readings give a travel time residual larger than 4 seconds. No other significant phases, other than the first arrivals, are observed. Poor signal-to-noise ratios, low magnitudes, or combinations of both are the possible reasons for which some events (Nos. 6, 11, 14, 18, 23, 24, 31, 33 and 35) in this group do not have clear (N.C.) or apparent (N.A.) arrivals.

Compressional Arrivals, 260.3-46 ${ }^{\circ} .4$ (Events No. 38-73).
In this distance range the refracted mantle $P$ is either not apparent or not clear on the SPZ, and with the possible exception of surface waves no other phases are observed. The travel times of the few compressional arrivals seen on the LPZ within this distance range generally agree with the expected times from the $\mathrm{J}-\mathrm{B}$ tables. In two cases, events No. 47 and 73 , the residuals are larger than 4 sec, however LPZ readings are less precise than SPZ readings due both to lower record speed and to lower-frequency content of the arrivals on these records.

Shear Arrivals, 0 ․7-10․ 5 (Events No. 1-15).
There is little data on shear arrivals within this distance range, the to difficulty in picking the beginnings of these phases. When the beginnings can be identified on either the SPZ or the LPZ seismograms, the residuals are mostly negative.

Shear Arrivals, 110.2-320.5 (Events No. 16-58).
All shear arrivals are observed on the LPZ seismograms and are the normal long-period $S$. Most show positive travel time residuals, in a few cases the residuals being quite large ( 10.8 sec for event No. 28 ; 9.1 sec for No. 31 ; and 12.4 sec for No. 36). The generally larger size of the $S$ travel time residuals compared to that of the $P$ residuals is explained by the lower speed of the LPZ records and lower frequency content of the $S$ phase.

Shear Arrivals, 330.8-460.4 (Events No. 59-73).
With the exception of one event (No. 62), showing a positive residual, no $S$ arrivals are observed on either the SPZ or LPZ instruments in this distance runge.

Discussion (Events north of Guam).
Most of the $P$ travel times of this study are generally in agreement with the times given in the J-B Tables, in contrast, somewhat, to the results of Sutton and Walker. In their study, $P$ travel times of shal-
low - and intermediate - focus events were consistently early for epicentral distances less than $23^{\circ}$ and close to $\mathrm{J}-\mathrm{B}$ times for distances greater than $23^{\circ}$. Their data were recorded mostly at Marcus Island (but also at Midway and Wake) from earthquakes having their epicenters in locations similar to those of the earthquakes used in this study. A discussion of three possible explanations for these differences follows.

One possible explanation is that the compressional arrivals observed on seismographs by Sutton and Walker at distances less than $23^{\circ}$ are not, as they suggest, normal refracted mantle $P$ phases; but are, in fact, $P n$ phases. But, if this were the case, the apparent frequency of the $P n$ 's should be higher than actually observed ( $\simeq 1 \mathrm{~Hz}$ ) by Sutton and Walker since $S n$ 's, which generally have less energy than $P n$ 's at higher frequencies, were observed on the seismographs to have frequencies greater than 1 Hz . Such an explanation therefore does not seem probable at this time.

Another explanation is systematic errors in epicenter determinations. Utsu ( ${ }^{7}$ ), Yamakawa et al. ( ${ }^{9}$ ), Kishio and Yamakawa $\left.{ }^{(3}\right)$, and Ichikawa ( ${ }^{1}$ ) all found that epicenter locations for the Kurile, Japan, and Izu trench regions, based on data from local stations, generally lie 20 to 30 km on the oceanic side of C\&GS epicenter determinations. Similar findings have been obtained by Mitronovas et al. (4) for Tongan earthquakes. If these locally determined epicenters are more accurate than the C\&GS determinations, some of the early arrivals on seismographs at Marcus, Midway, and Wake could be attributed to errors in epicentral determinations, since a 20 or 30 km error would account for 3 or 4 seconds of the 3 - to 7 - second residuals generally observed. Also, because of the orientation of these epicenter errors (essentially E-W in the Japan area), C\&GS and locally determined epicenters would have similar travel times to Guam. Thus, for epicentral distances of less than $23^{\circ}$, discrepancies between the results of our two studies could, in part, be attributed to systematic errors in epicentral determinations.

When considering distances greater than $23^{\circ}$, residuals at Guam, Marcus, Midway, and Wake are similar in travel times; i.e., on time. However, the locations of the earthquakes and the arguments just presented indicate that these arrivals also should be early at Marcus, Midway, and Wake and on time at Guam. Instead, we find that travel times are generally on time at all stations. This observation seems to weaken the argument that errors in epicenters may be the cause of differences in the two studies.

The third and final explanation which will be offered here is that the discrepancies observed in the two studies are real. In general great circle paths to Guam for events up to $26^{\circ}$ of epicentral distance are confined to the Marianas-Izu-Japan trench region, while for distances greater than $26^{\circ}$, the paths to Guam from epicenters distributed along the Kurile trench, traverse a region better described as typical oceanic basin. Paths for all distances to Marcus, Midway, and Wake could also be described as typically oceanic. Thus a comparison of the results of this study and those of Sutton and Walker suggests that the velocity structure of the uppermost part of the mantle under the Marianas-Izu-Japan trench system differs from that under the Northwestern Pacific Basin. A change is suggested from a model characterized by higher than $\mathrm{J}-\mathrm{B}$ upper-mantle velocities under the region sampled by the oceanic basin-type paths studied by Sutton and Walker to the J-B type of upper-mantle velocities for paths along the trench system above the sinking slab of the lithospheric plate, as in the case of the data presented here from the Guam station.

Before moving on to a discussion of shear arrivals, it should be noted that while the normal-refracted mantle $P$ comes in at Guam with travel times consistent with those expected from the J-B tables for distances less than $26^{\circ}$, this phase is either absent or poorly recorded for epicentral distances beyond $26^{\circ}$. Therefore, for distances greater than $26^{\circ}$, it would seem that compressional energy of approximately 1 Hz is effectively blocked or absorbed when travelling towards Guam, while towards Marcus, Midway, and Wake it is efficiently propagated. Possible explanations for this apparent loss of energy are: (1) changes in the attenuation which seems to become very high in a direction sub-parallel to the trench system; (2) a shadow zone at Guam produced by the lateral refraction of energy by the downgoing lithospheric slab.

On comparing the shear arrivals presented here with those of Sutton and Walker, it appears that while throughout the whole epicentral distance range only the normal long-period $S$ is observed at Guam, at Marcus, Midway, and Wake it is observed only for distances beyond $\simeq 20^{\circ}$, while for shorter distances the high-frequency (guided) $S$ is observed at these three stations. This absence of $S n$ arrivals at Guam has previously been reported by Molnar and Oliver ( ${ }^{5}$ ). In the distance range where the long-period $S$ is observed both at Guam and at Wake, Midway, and Marcus, both the size and the sign of the residuals are in agreement, i.e., later than Jeffreys-Bullen.

Data (events south of Geim)

The data analyzed consists of 102 shallow- and intermediate-focus earthquakes located along that portion of the circum-Pacific belt extending from the Caroline Islands to the Fiji-Tonga area recorded at Guam. Given in Table 3 are C\&GS epicentral data for the events south of Guam; and epicentral distances, observed travel times, and residuals based on expected travel times as taken from the J-B tables ( ${ }^{2}$ ) are given in Table 4. The epicentral locations are shown in Figure 1. These locations coincide with those of only a few of the events studied by Sutton and Walker at Marcus and Wake (no arrivals were recorded from this region at Midway). Also, due to the immediate proximity of Guam to the earthquake zone, additional data are available for the epicentral distance range $1^{\circ}-6^{\circ}$, the range not covered by Sutton and Walker. Throughout the entire distance range the compressionalarrival travel times to Guam agree with the expected times from the J-B tables. In only four cases, events Nos. $96,110,115$, and 169 are the residuals larger than $\pm 4$ seconds. The shear arrivals are almost never well recorded at distances less than $\simeq 17^{\circ}$ and their residuals are randomly positive and negative and occasionally become quite large. The same considerations made for the events north of Guam, concerning the relative size of $P$ and $S$ residuals and the " not clear" and "not apparent" arrivals, are also valid here. The observed phases appear to be the normal refracted $P$ and $S$ mantle arrivals at all distances.

## Discussion (events south of Guam)

Great circle paths for this group of events are affected by the New Britain, New Hebrides, Vityaz, and Tonga trenches, the extent depending on epicentral distance and the paths could not be defined as typical oceanic basin paths. The compressional-arrival travel time residuals show that the J-B model would be an acceptable one for the region sampled by these paths to Guam. Our negligible travel time residuals and the consistently late travel times for paths from the same region to Marcus and Wake indicate differences between the two studies for which an explanation should be found. We will again consider the three explanations already presented for differences in the two studies for the area to the north of Guam and examine their applicability to the differences in the two studies for the area to the south of Guam.
'Table 3 - United States Coast and Geodetic Survey Data for Evests Soutil of Guam

Event No.	Date	Origin Time $h$ m s	Coordinates		$\begin{gathered} \text { Depth } \\ (\mathrm{km}) \end{gathered}$	Mag.
			Lat.	Long.		
74	16 Sept. 1970	014920.5	$13^{0} .0 \mathrm{~N}$	$144{ }^{0} .4 \mathrm{E}$	47	6.0
75	28 Mar. 1965	181840.0	$13^{\circ} .4 N$	$145^{\circ} .8 \mathrm{E}$	43	4.4
76	14 Nov. 1970	045137.8	$12^{0} .6 \mathrm{~N}$	$143{ }^{\circ} .3 \mathrm{E}$	95	5.5
77	4 Mar. 1970	033035.4	$12^{\circ} .1 N$	$143^{\circ} .7 \mathrm{E}$	33	6.2
78	19 Nov. 1967	172348.0	$12^{0} .0 \mathrm{~N}$	$143{ }^{\circ} .5 \mathrm{E}$	22	4.6
79	23 Dec. 1970	114247.4	$12^{0} .3 \mathrm{~N}$	$142^{\circ} .9 \mathrm{E}$	49	5.7
80	7 Jan. 1967	$133+48.3$	$11^{0.8 N}$	$142^{\circ} .7 \mathrm{E}$	36	5.6
81	7 Dec. 1966	165929.2	110.9 N	$142^{\circ} .6 \mathrm{E}$	33 R	5.1
82	25 Aug. 1967	225848.3	$12^{\circ} .2 \mathrm{~N}$	$140^{\circ} .9 \mathrm{E}$	33R	5.1
83	26 Aug. 1967	005000.6	$12^{\circ} .2 \mathrm{~N}$	$140^{\circ} .8 \mathrm{E}$	33R	4.5
84	25 Aug. 1967	225418.3	$12^{0.2 N}$	$140{ }^{\circ} .8 \mathrm{E}$	33 R	4.9
85	26 Aug. 1967	020708.9	$12^{\circ} \cdot 2 \mathrm{~N}$	$140^{\circ} .8 \mathrm{E}$	30	5.3
86	26 Aug. 1967	003642.1	$12^{\circ} .2 \mathrm{~N}$	$140{ }^{\circ} .7 \mathrm{E}$	33	6.1
87	26 Aug. 1967	005317.4	$12^{0} .2 \mathrm{~N}$	$140{ }^{\circ} .7 \mathrm{E}$	14	5.3
88	26 Aug. 1967	032958.5	$12^{\circ} \cdot 2 \mathrm{~N}$	$140{ }^{\circ}$. 7 E	30	4.8
89	26 Aug. 1967	014149.8	$12^{0} .2 \mathrm{~N}$	$140^{\circ} .7 \mathrm{E}$	33R	4.9
90	26 Aug. 1967	102513.5	$12^{\circ} .2 \mathrm{~N}$	$140^{\circ} .7 \mathrm{~F}$	33R	4.6
91	26 Aug. 1967	052517.4	$12^{\circ} .1 N$	$140^{\circ} .7 \mathrm{E}$	33 R	4.7
92	26 Aug. 1967	122423.6	$12^{\circ} .1 \mathrm{~N}$	$140^{\circ} .7 \mathrm{~F}$	42	4.8
93	26 Aug. 1967	054650.1	$12^{\circ} .1 \mathrm{~N}$	$140^{\circ} .6 \mathrm{E}$	33 R	4.8
94	26 Aug. 1967	075500.0	$12^{\circ} .1 \mathrm{~N}$	$140^{\circ} .6 \mathrm{E}$	33R	4.8
95	24 Apr. 1965	215526.5	$11^{0} .4 \mathrm{~N}$	$140^{\circ}$. 1 E	59	5.7
96	4 Mar. 1967	224114.5	$7{ }^{0} .8 \mathrm{~N}$	$146^{\circ} .2 \mathrm{E}$	20	5.1
97	12 Jan. 1971	144215.2	$9^{0} .9 \mathrm{~N}$	$138^{\circ} .2 \mathrm{E}$	33	5.5
98	27 Jan. 1969	131524.4	$8^{0} .8 \mathrm{~N}$	$137^{\circ} .7 \mathrm{E}$	5	5.5
99	19 Apr. 1965	052130.3	20.95	$147^{\circ} .6 \mathrm{E}$	5	5.0
100	23 Oct. 1968	210441.3	$3^{0} .3 \mathrm{~S}$	$143^{\circ} .3 \mathrm{E}$	12	6.1
101	14 May 1970	083242.2	$3^{0} .4 \mathrm{~S}$	$145^{\circ}$. 2 F	29	5.6
102	4 Jan. 1967	163028.0	$3^{0} .2 \mathrm{~S}$	$142^{\circ} .2 \mathrm{E}$	19	5.5
103	10 Jan. 1965	234538.0	$3^{0} .45$	$146^{\circ}$. 1 E	24	5.2
104	17 Apr. 1968	195703.0	$3^{0} .65$	$145^{\circ} .3 \mathrm{E}$	23	5.0
105	28 Feb. 1969	155744.2	$3^{0} .45$	$142^{\circ} .9 \mathrm{E}$	80	5.7
106	10 Jan. 1971	074347.1	$3^{0} .0 \mathrm{~S}$	$139^{\circ} .7 \mathrm{~F}$	33	5.9
107	10 Jan. 1971	075352.6	$3^{0} .0 \mathrm{~S}$	$139^{\circ} .7 \mathrm{E}$	33	5.6
108	10 Jan. 1971	104506.8	$3^{0} .0 \mathrm{~S}$	$139{ }^{\circ} .6 \mathrm{~F}$	36	6.1
109	10 Jan. 1971	160745.9	$3^{0} .15$	$139^{\circ} .8 \mathrm{E}$	33	5.7
110	10 Jan. 1971	193422.3	$3^{0}$. 1 S	$139^{\circ} .7 \mathrm{E}$	39	5.7
111	15 Jan. 1971	072838.4	$3^{0}$. 0 S	$139^{\circ} .5 \mathrm{~F}$	33	6.0
112	12 Jan. 1971	145711.6	$3^{0} .2 \mathrm{~S}$	$140^{\circ} .0 \mathrm{E}$	33	5.8
113	10 Jan. 1971	071703.7	$3^{0}$. 1S	$139^{\circ} .7 \mathrm{E}$	33	7.3
114	10 Jan. 1971	084432.6	$3^{0}$. 2 S	$139^{\circ} .7 \mathrm{E}$	21	5.5
115	10 Jan. 1971	142956.3	$3^{0} .2 \mathrm{~S}$	$139^{\circ} .8 \mathrm{E}$	28	5.8
116	10 Jan. 1971	191336.8	$3^{0} .2 \mathrm{~S}$	$139^{\circ} .8 \mathrm{E}$	33	5.8
117	10 Jan. 1971	221437.4	$3^{0} .2 \mathrm{~S}$	$139^{\circ} .9 \mathrm{E}$	30	6.1
118	21 Jul. 1968	060941.8	$3^{0} .2 \mathrm{~S}$	$150^{\circ} .5 \mathrm{E}$	33 R	5.4
119	21 Jul. 1968	055210.4	$3^{0} .2 \mathrm{~S}$	$150{ }^{\circ} .7 \mathrm{E}$	5	5.3
120	10 Jan. 1971	163836.0	$3^{0} .4 \mathrm{~S}$	$148^{\circ} .0 \mathrm{E}$	27	5.5
121	16 Jan. 1971	151624.4	$3^{0} .4 \mathrm{~S}$	$139^{\circ} .5 \mathrm{E}$	33	5.9
122	16 Apr. 1969	012247.5	$3^{0} .5 \mathrm{~S}$	$151^{\circ} .0 \mathrm{E}$	39	5.7
123	1 Nov. 1970	110740.7	$4^{0} .8 \mathrm{~S}$	$145^{\circ} .7 \mathrm{E}$	33	5.5

Table 3 continued


Table 4 - 'Travel Times and Residuals for Events South of Guam

Event No.		$P$ Travel Times		$\begin{gathered} P \text {-residual } \\ \text { (secs) } \end{gathered}$	$S$ Travel Times		$\begin{gathered} S \text {-residual } \\ \text { (secs) } \end{gathered}$
		$\begin{gathered} \mathrm{J}-\mathrm{B} \\ \text { (secs) } \end{gathered}$	Observed * (secs)		$\begin{gathered} \mathrm{J}-\mathrm{B} \\ \text { (secs) } \end{gathered}$	Observod * (secs	
74	0.7	14.7	13.5 ( 13.5 )	-1.2(-1.2)	26.2	N.C. ( N.C.)	$)$
75	0.9	16.4	15.5 (N.C.)	$-0.9(-)$	29.1	N.C. (N.C.)	)
76	1.8	30.7	31.2 ( 31.2)	$+0.5(-0.5)$	58.8	N.C. (54.2)	-4.6)
77	1.9	30.0	28.4 ( 28.6 )	$-1.6(-1.4)$	52.6	N.C. ( N.C.)	$-1$
78	2.1	34.1	33.0 (N.A.)	-1.1 -	59.5	56.0 ( N.A.)	$-3.5(-)$
79	2.3	36.7	35.1 ( 35.1)	$-1.6(-1.6)$	65.6	N.C. ( 60.6)	$-(-5.0)$
80	2.8	43.0	43.7 ( 45.7 )	$+0.7(\div 2.7)$	75.9	74.7 (N.C.)	$-1.2(-)$
81	2.8	43.2	42.3 (N.C.)	$-0.9(-)$	76.1	N.C. ( N.C.)	- $(-)$
82 83	4.1 4.2	62.4 63.7	63.7 ( N.C.)	$\div 1.3$ ( - )	110.3 112.6	N.A. ( N.C.)	-
84	4.2	63.7	65.2 (N.C.)	$+1.5(-)$	112.6	N.A. (N.C.)	- ( - )
85	4.2	64.0	65.1 ( 67.1)	$+1.1(\div 3.1)$	113.1	N.A. (N.C.)	- $(-)$
86	4.3	65.0	64.4 ( 63.9)	$-0.6(-1.1)$	114.9	N.A. (N.C.)	-)
87	4.3	67.0	66.6 ( N.C.)	$-0.4(-)$	118.0	N.A. (N.C.)	-)
88	4.3	65.3	65.6 ( 65.5)	$+0.2(-\cdots)$	115.4	N.A. (N.C.)	-)
89	4.3	65.0	65.2 ( N.C.)	$+0.2(\cdots)$	114.9	N.A. ( N.C.)	-
90	4.3	65.0	64.5 ( N.C.)	$+0.5(-)$	114.9	N.A. ( N.C.)	-)
91	4.4	65.5	66.1 ( 66.1)	$+0.6(\div 0.6)$	115.7	N.A. ( N.C.)	-)
92	4.4	65.4	65.4 ( N.A.)	+0.0 ( - )	115.5	N.C. ( N.C.)	-)
93	4.4	66.8	65.9 ( N.C.)	-0.9 ( --)	118.1	N.C. (N.C.)	-)
94	4.4	66.8	67.0 (N.A.)	$+0.2(-)$	118.1	N.A. (N.A.)	-)
95	5. 2	76.7 88.3	76.5 ( 76.5 )	$-0.2(-0.2)$	134.1	N.C. (137.5)	- $(+3.4)$
96	5.9	88.3	83.0 (N.A.)	-5.3 ( - )	156.2	N.C. (N.C.)	- $(-)$
97 98	7.5 8.5	109.9	108.6 ( N.C.)	$-1.3(-0)$	194.9	192.6 (192.6)	$-2.3(-2.3)$
98	8.5	126.9	127.1 (127.1)	$+0.2(\div 0.2)$	224.6	214.6 (N.C.)	-10.0 ( - )
99	16.7	235.7	N.C. (N.A.)	-0.6 $(-0.6)$	420.5	N.A. (N.A.)	- $\quad$ - )
100	16.9	238.]	238.7 (238.7)	$+0.6(+0.6)$	425.2	N.C. ( N.C.)	-1
101	16.9 17.0	236.4 237.8	236.8 (235.8) N.A. (N.A.)	$+0.4(-0.6)$	422.7 424.8	N.A. (N.C.)	)
103	17.0	237.5	N.A. ( N.A.)	-1)	424.5	N.A. ( N.A.)	)
104	17.1	239.7	N.A. (N.A.)	-)	428.4	N.A. ( N.A.)	- )
105	17.1	234.6	N.A. (N.A.)	- ( - )	420.1	N.A. ( N.A.)	)
106	17.3	240.8	242.4 ( N.C.)	$\div 1.6(-)$	430.7	N.C. ( N.C.)	-)
107	17.3	240.8	241.9 (N.C.)	+1.1( - )	430.7	N.C. ( N.C.)	-)
108	17.4	241.0	242.2 ( N.C.)	$+1.2(-)$	431.1	N.A. ( N.C.)	(-1)
109	17.4	241.6	244.1 (N.C.)	$+2.5(-)$	432.2	N.A. (434.1)	$(+1.9)$
110	17.4	241.6	$245.7(245.7)$	$-4.1(+4.1)$	432.3	N.A. (441.7)	$(+9.4)$
111	17.4	241.5	N.R. (N.A.)	- (-)	432.1	N.R. ( N.A.)	$(-)$
112	17.4	242.1	N.C. (N.A.)	- $-(-1)$	433.1	N.A. (N.C.)	-
113	17.4	242.0	$241.3(241.3)$	$-0.7(-0.7)$	432.9	N.C. ( N.C.)	(
114	17.5	244.6	246.4 (N.C.)	$+1.8(-1)$	437.3	N.A. ( N.C.)	( - )
115	17.5	242.8	248.7 (246.7)	$+5.9(+3.9)$	434.4	N.A. ( N.C.)	( - )
116	17.5	242.8	N.C. (N.C.)		434.4	N.A. (437.2)	(+2.8)
117	17.5	242.8	246.6 (246.6)	$+3.8(+3.8)$	434.3	N.A. (438.6)	$( \pm 4.3)$
118	17.6	244.6	242.7 (N.C.)	-1.9 (-)	437.6	N.A. ( N.C.)	( - )
119 120	17.7 17.7	248.8 245.6	248.6 (248.6)	-0.2 (-0.2)	444.4 439.3	N.A. (445.6)	$( \pm 1.2)$
120	17.7 17.8	245.6 246.3	N.C. (245.0)	- (-0.6)	439.3	N.A. (446.0)	$( \pm 6.7)$
121	17.8	246.3 249.8	N.A. (N.A.)	$-1.3(-1.3)$	440.7	N.A. ( N.A.)	$(-1$
123	18.4	249.8 253.6	$248.5(248.5)$ 253.6 (251.3)	$-1.3(-1.3)$ $-0.0(-2.3)$	447.1 454.0	N.A. ${ }^{(456.5)}$ N.A. (456.3)	$\left(\begin{array}{l}+ \\ (+2.4) \\ +\quad 2.3)\end{array}\right.$
124	18.4	254.1	253.7 (253.7)	$-0.4(-0.4)$	455.1	N.A. (460.7)	$-(+5.1)$

Table 4 continued

$\begin{gathered} \text { Event } \\ \text { No. } \end{gathered}$		$P$ Travel Times		P-rasidual   (secs)	$S$ Travel Time:		$\begin{gathered} \text { S-rasidual } \\ \text { (secs) } \end{gathered}$
		$\begin{gathered} \mathrm{J}-\mathrm{B} \\ \text { (secs) } \end{gathered}$	Observed * (secs)		$\begin{gathered} \mathrm{J}-\mathrm{B} \\ \text { (secs) } \end{gathered}$	$\begin{gathered} \text { Observed * } \\ \text { (secs) } \end{gathered}$	
125	18	256.6	N.A. (N.C.)		459.6	( N.A.)	
126	18	259.2	259.6 (259.6)	$\div 0.4(+0.4)$	463.8	N.A. (471.6)	(+7.8)
127	18.7	258.2	259.5 ( N.C.)	$+1.3(-)$	462.2	N.A. (468.5)	$\div 6.3)$
12	18.9	261.4	261.9 (261.9)	$\bigcirc 0.5(\div 0.5)$	467.9	N.A. ( N.C.)	
129	19.3 19.9	264.7 266.5	$261.3(261.3)$ $265.1(265.1)$	-3.4 (-3.4)	475.0 480.3	N.A. (N.C. $)$ N.A. (479.1)	
131	20.1	269.8	268.7 (268.7)	$-1.1(-1.1)$	486.2	N.A. ( N.C.)	
132	20.1	271.0	270.2 (270.2)	-0.8 (-0.8)	488.4	N.A. ( N.C.)	
133	20.2	273.7	272.3 (272.3)	$-1.4(-1.4)$	492.9	N.C. (N.C.)	
134	20.3	274.8	275.6 (275.6)	$+0.8(+0.8)$	495.1	N.A. ( N.A.)	
135	20.3	273.6	272.7 (272.7)	$-0.9(-0.9)$	493. 1	N.A. (501.7)	+ 8.6)
136 137	20.6	276.6	276.9 (276.9)	$+0.3(+0.3)$	498.7	N.A. ( N.C.)	
13	21.1	282.8	281.5 (N.A.)	-1.3	509.9	N.A. (N.A. )	
139	21.2	284.9	285.3 (285.3)	$+0.4(+0.4)$	513.7	N.A. (N.C.)	
14	21.7	290.2	291.1 (291.1)	$+0.9(+0.9)$	523.7	N.A. (528.6)	+ 4.9)
141	21.9	291.5	290.9 (290.9)	-0.6 (-0.6)	526.0	N.A. (518.9)	7.1)
142	22.0	290.6	288.1 (288.1)	-2.5 (-2.5)	524.7	N.A. (516.1)	8.6)
143	22.1	290.5	N.A. (N.A.)	-1)	524.6	N.A. ( N.A.)	
144	22.2	295.1	293.3 (293.3)	$-1.8(-1.8)$	532.8	N.A. ( N.C.)	
145	22.5	298.2	300.1 (300.1)	$+1.9(+1.9)$	538.2	N.A. (538.6)	0.4)
14	23.0	302.8	N.A. (N.A.)	-)	546.7	N.A. ( N.A.)	
14	23.6	307.3	N.A. ( N.A.)	,	554.9	N.A. ( N.A.)	
14	24.5	320.9	320.1 (N.C.)	$-0.8(-)$	578.6	N.A. ( N.C.)	
149	24	315.9	N.C. (315.2)	(-0.7)	569.8	N.A. ( N.C.)	
151	25.4 25.4	322.9	320.4 321.1 (321.1)	-2.5   -2.0$(-2.5)$	582.3 582.6	N.A. (N.C	
152	25.6	327.2	327.8 (N.C.)	$+0.6(-)$	590.0	N.A. (588.8)	(-1.2)
153	25.6	325.1	324.2 (324.2)	-0.9 (-0.9)	586.2	N.A. (587.2)	(' 1.0)
154	25.6	326.8	325.1 (325.1)	-1.7 (-1.7)	589.2	N.A. (586.1)	$3.1)$
155	25.9	333.7	331.8 (331.8)	-1.9 (-1.9)	601.2	N.A. ( N.C.)	
156	26.2	335.9	N.C. ( N.C.)	- ( - )	605.3	N.A. ( N.C.)	- ${ }^{\text {a }}$ )
158	$\stackrel{26.6}{27.5}$	336.7	333.8 (336.8)	-2.9 ( +1.0 .1 )	607.2	N.A. $(637.5)$	$\left(\begin{array}{r}+4.8) \\ (+12.3)\end{array}\right.$
159	29.0	358.2	357.3 (360.3)	-0.9 (+2.1)	645.2	N.A. (640.3)	(-4.9)
160	29.1	360.0	N.C. (N.C.)	- (-)	648.4	N.A. ( N.C.)	
161	29.1	355.7	353.8 (353.8)	-1.9 (-1.9)	640.8	N.A. ( N.C.)	
162	30.3	371.3	N.A. ( N.A.)		668.4	N.A. ( N.A.)	)
163	30.6	372.8	375.6 (N.C.)	$\left.+2.8(-)^{-}\right)$	671.2	N.A. (668.1)	(-3.1)
164	30.9	375.9	376.1 (376.1)	$+0.2(+0.2)$	676.7	N.A. (679.1)	$(+2.4)$
16	31.0	376.9	N.A. (N.C.)	-)	678.5	N.A. ( N.C.)	)
166	32.2	384.7	N.A. (N.A.)	-)	692.4	N.A. ( N.C.)	)
16	33.7	399.1	N.A. (N.A.)	)	718.3	N.A. ( N.A.)	)
168	33.9	402.5	N.A. (N.A.)	-3 - -3 )	724.2	N.A. ( N.A.)	- )
169	36.0	421.9	416.6 (416.6)	-5.3 (-5.3)	759.0	N.A. (755.1)	3.9)
170	36.7	425.6	424.6 (424.6)	-1.0 (-1.0)	766.2	N.A. ( N.C.)	)
172	44.3	488.9 489.9	488.9 (488.9)	-1.2 (-1.2)	7882.1	N.A. (888.9)	-6.8)
173	47.6	514.7	514.9 ( N.C.)	-0.2 ( - )	927.0	N.A. ( N.C.)	
17	48.2	519.1	N.C. ( N.C.)	1.1(1.1)	935.0	N.A. ( N.C.)	
5	52.6	552.8	553.9 (553.9)	+1.1(+1.1)	996.2	N.A. ( N.C.)	- ( - )
```* N.A., Not apparent; N.C., Not clear; (\begin{array}{l}{\mathrm{ N.R., No record;}}\\{() ),Arrivals on LPZ seismographs.}\end{array}```							

Concerning the first explanation, it appears unlikely that the differences can be attributed to the recording of P phases in one study and P_{n} phases in the other. The travel times and apparent frequencies of the compressional phases recorded in both studies strongly suggest that in both cases only the normal mantle-refracted P phases are observed.

Concerning the second explanation, systematic errors in epicenters in the New Guinea, New Britain, Solomon Islands region - similar to those found in the Japan and Tonga regions - would place many of the epicenters southwest of their C\&GS locations. Arrivals which generally appear late by 2 or 3 sec at Marcus and Wake would then have travel times closer to J-B times if the locally determined epicenters were, in fact, the actual epicenters. Because of the orientation of the epicenter errors, the effect of these errors would not be as large at Guam as at Marcus and Wake.

Concerning the third explanation, it is apparent - from the location of great circle paths from the epicenters to Guam, Marcus and Wake - that the travel paths of the two studies differ. Travel paths to Guam generally lie somewhat parallel to the trench systems, whereas travel paths to Marcus and Wake are more normal to the trench systems. Therefore, a greater portion of the travel paths to Guam are in mantle material proximate to the downgoing lithospheric plate, as compared with the travel paths to Marcus and Wake. These latter travel paths are mostly under the East Caroline Basin-Ontong Java Plateau-Nauru Sea area. If the differences in the results of these two studies for the area south of Guam are real, it seems reasonable to attribute these differences to the dissimilarities in travel paths.

Althongh our shear-arrival travel time residuals seem to suggest somewhat lower velocities with respect to the J - B model, we do not attribute much weight to these data because of their poor quality. No direct comparison with Sutton and Walker's data is possible since S waves do not seem to be well transmitted to Marcus and Wake. No $S n$ phases were observed at Guam.

Conclusions.

The results of this study can be summarized as follows: the structure of the mantle close to and in the island are-trench regions sampled
by our data for events to the north of Guam appears to be similar to that of the island arc-trench region sampled by the paths for events to the south of Guam and is consistent with a Jeffreys-Bullen type model. A comparison of our travel time residuals with those of Sutton and Walker $\left({ }^{6}\right)$ suggests that differences exist between the mantle velocity structure of these areas and that of deep ocean basins. Part of these differences may be real, or may, in part, be attributed to systematic errors in epicenter locations. Also, compressional energy seems to be absorbed or blocked for events at distances greater than 26° with travel paths to Guam, whereas events at similar distances are efficiently propagated to Marcus, Midway, and Wake. This apparent absorption of energy is explainable either by high attenuation in the mantle underlying the island-are regions or a lateral refraction of energy by the downgoing lithospheric slab. Also, $P n$ and $S n$ phases which are efficiently propagated to Marcus, Midway, and Wake are not observed at Guam,

Achnowledgments

This research was supported by the National Science Foundation under grants GA-1255 and GA-12851. Special thanks are due George H. Sutton for reviewing the manuscript and for his helpful comments, and to Mrs. E. McAfee for her invaluable help in editing the manuscript.

REFERENCES

${ }^{(1)}$ Ichikawa M., 1969. - P Arrival-time anomaly in northern Japan. "Geophys. Mag.", 3, 345-357.
$\left(^{2}\right)$ Jeffrets H. and Bullen K. E., 1958. - Seismological Tables, Office of the British Association, Burlington House, W. 1, London.
$\left.{ }^{(3}\right)$ Kishio M., and Yamakawa N., 1969. - Precision and accuracy of hypocenters and origin times of earthquakes in and near the Japanese Islands, 1, The case of the earthquakes off Tokachi of 1968 and its aftershocks (In Jap.). "Zisin" (J. Seismol. Soc. Jap.), Ser. 2, 22, 219-232.
(${ }^{4}$) Mitronovas W., Isacks B., and Seeber L., 1969. - Earthquake locations and seismic wave propagation in the upper 250 km of the Tonga Tsland Arc. "Bull. Seismol. Soc. Amer.", 59, 1115-1135.
(5) Molnar P., and Oliver J., 1969. - Lateral variations of attenuation in the upper mantle and discontinuities in the lithosphere. "J. Geophys. Res.", 74, 2649.
${ }^{(6)}$ Sutton G., and Walker D., 1972 in press. - Oceanic mantle phases recorded on seismographs in the Northwestern. Pacijic at distances between $\tilde{7}^{o}$ and 40°. "Bull. Seismol. Soc. Amer.", 62, 631-655.
(${ }^{7}$) Utzu '「., 1967. - Anomalies in seismic wave velocity and attenuation associated with a deep earthquake zone, 1. "J. Fac. Sci. Hokkaido Univ.", Ser. 7 (Geophys.), 3, 1-25.
$\left(^{8}\right)$ Walker D., and SUtton G., 1971. - Oceanic mantle phases recorded on hydrophones in the Northwestern Pacific at distances between 9° and 40°. "Bull. Seismol. Soc. Amer.", 61, 65.
(${ }^{9}$) Yamakawa N., Kishio M., and Abe K., 1969. - Spatial and time distribution of joreshocks and aftershocks of the earthquake near the southern Kurile Islands on 13 October 1963. "Geophys. Mag.", 34, 277-306.

[^0]: (*) Hawaii Institute of Geoplysics Contribution 495.
 (**) Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii 96822 (U.S.A.)

