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SUMMARY. — A theory of tlie origin of the solar system is propounded. 
The approach belongs to the dualistic class of theories but still retains all 
the essential features of a monistic theory. It emphasizes the need of a 
foreign body approaching the solar nebula for the occurrence of an insta-
bility in the boundary layer of the nebular disc. This foreign body is post-
ulated to be a brother star of the Sun in the sense that both belong to a com-
mon central parent body such as any two successive planets belong to 
the Sun. The analysis gives a law of distance of the planets from tlie Sun. 
This law is obeyed separately by both the groups of the planets more closely 
than the existing Titius - Bode's law. The law is also found to be applica-
ble in the various satellite systems. 

RIASSUNTO. — Viene proposta, una teoria sull'origine del sistema 
solare, la quale pur appartenendo alla teoria dualistica, mantiene ancora 
tutte le caratteristiche essenziali della teoria unitaria. Essa sottolinea la 
necessità dell'esistenza di un corpo estraneo che avvicina la nebulosa solare 
nell 'eventualità di una instabilità gravitazionale nella fascia limite del disco 
nebuloso. Si suppone che questo corpo estraneo sia una stella della stessa 
famiglia del Sole ruotante intorno ad un centro comune, come due pianeti 
successivi ruotano intorno al Sole. Si perviene poi ad una legge che fornisce 
le distanze dei pianeti dal Sole. Entrambi i gruppi di pianeti obbediscono 
a questa legge più rigorosamente di quanto non obbediscano alla legge 
di Titius Bode. L ' A . trova, infine, che la stessa legge può essere estesa a 
diversi sistemi di satelliti. 

I . INTRODUCTION. 

There have been essentially two different ways of approaching 
the problem of the origin of the solar system. In the first class of 
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thoughts referred as monistic theories, a closed system containing the 
Sun in the centre and an envelope of rarified gases surrounding it is 
initially considered. This subsequently, as a result of instability due 
to the gravitational contraction, splits into a number of rotating ga-
seous rings. In the second class of thoughts known as dualistic theo-
ries, the interaction between the protosun and some foreign body is 
believed to be the cause of the formation of the planetary system. 

The monistic theories initiated by Kant (25) and Laplace ( " ) 
have been developed by a large number of workers in various ways 
by assigning different processes that are responsible for the plitting 
of the planetary material. The possibihty of the occurrence of the 
gravitational instability due to turbulence was worked out by 
Weizsäcker (" ) , Kuiper (2e) and Ter Haar (36) and was infact a 
revival of the very old idea of Descartes ( l7) vortex theory. The 
idea of the magnetic field first pointed out by Birkeland (14) was 
later on used by Alfven ( l- 3- 4) to explain the formation of 
the planetary system. Berlage (10- 12), revived the old idea of 
Kant and studied the possibility of spontaneous splitting of a 
gaseous volume. Schmidt (34) and his coworkers tried to remove 
some of the difficulties involved in the various processes of the mo-
nistic theories. 

The tidal theory first put forward by Buflon (15) was revived by 
Bickerton (13), Arrhenius (°), Chamberlain (16), Moulton (32), Jeffreys (23) 
and Jeans (22). In fact all these theories are modified forms of 
Button's theory and assume that due to the passage of a star close 
to the Sun a filament of the form of a cigar with a maximum den-
sity in the middle, was drawn out from the surface of the Sun and 
was consequently broken into the planets. 

Binary stars and triple stars theories put forth by Bussel (33) 
and Lyttleton (28' 29) consider the encounter between their com-
ponent stars. Following Lyttleton's idea, Hoyle (20) investigated the 
case where a binary companion of the Sun became a supernova. 
The theory of Whipple (38) assumes the capture of one small smoke 
cloud by another big smoke cloud and belongs to the dualistic theories. 

The difficulties in the old tidal theories can be summarized as 
follows: 

1. - Rotation of all the planets in the same direction is dif-
ficult to conceive. 

2. - Small eccentricity of the orbits of all the planets is dif-
ficult to understand. 
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3. - According to Russell if encounter between a foreign body 
and the solar nebula is responsible for the formation of the planetary 
system, one should expect small outer and big inner planets which 
is contrary to the observations. 

4. - Spitzer (35) has shown that the filament drawn out from 
the surface of the Sun would continuously expand and would not 
break unless drawn out very fast. 

The existence of satellite systems, which are strikingly similar 
to the planetary system, cannot be ignored while propounding any 
theory of the origin of the solar system (Alfven (")). Any acceptable 
theory should be a general one and should explain the formation of 
any system of secondary bodies around a parent body. 

In the present paper an attempt has been made to formulate a 
theory which can explain the formation of planetary system as well 
as satellites systems. The approach essentially belongs to the dual-
istic side but still retains all the salient features of the monistic theory. 
In fact it takes essence of both the theories and combines them in 
such a w f y that all the above difficulties of the old tidal theories are 
removed. 

The present theory envisages the need of a foreign body approach-
ing the solar nebula for the development of an instability and hence 
for the splitting of the gaseous rings from the boundary of the solar 
nebula. This body is postulated to be a brother star of the Sun in 
the sense that both the Sun and the brother star were revolving at 
the time of their formation round a common central parent body just 
as any two successive planets revolve round the sun. 

The present analysis gives a law of distance of the planets from 
the Sun which is obeyed separately by the outer and the inner groups 
of the planets more closely than the existing Titius-Bode's law. In 
fact the law of distance so obtained is not only obeyed by the family 
of the Sun, but also by the various families of the planets. 

I I . ORIGIN OF THE SOLAR NEBULA. 

In the absence of any real knowledge about the birth of the solar 
nebula, only speculations can be made which can stand all the way 
to explain the salient features of the solar system and its related facts. 
While making such speculations, one should look upon the family 
of the Sun as well as the famdies of the planets for guidance. An 
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inspection of the families of the planets reveals that they show the 
same salient features as exhibited by the family of the Sun — the 
coplaner orbits of small eccentricity. This indicates that all might 
have been formed through the same stages of evolution. The idea 
may also be extended to one generation back, that is, the Sun along 
with its few brother stars might have been formed by the same course 
of evolution and at some stage might be revolving in coplaner and 
nearly circular orbits around their parent body just as the planets 
move round the Sun and the satellites round the planets. If this is 
true, then the solar nebula must have been formed as a result of the 
condensation of a gaseous riiifi. 

Since most of the celestial bodies exhibit isochronism in their 
axial rotation; it suggests that the formation of a body is not a conse-
quence of direct condensation of a gaseous cloud (Alfven (7)). A 
two step agglomeration has been suggested. First the gaseous cloud 
condenses into a number of small grains and these are later accreted 
by the gravitational attraction of a growing embryo. Formation of 
the planetary bodies by particle agglomeration has been described in 
different ways by Schmidt (34), Alfven (5), Marcus (30) and Giuli (10). 
Hence irrespective of the process how grains and an embryo are 
formed in a rotating gaseous ring, it may be assumed that once they 
are formed the embryo will go on gathering material as it moves 
in its orbit. 

The grains produced in the rotating gaseous rings move in their 
respective Keplerian orbits prior to their accretion by the moving 
embryo. As a result of impacts of these grains on the embryo, the 
latter acquires spin angular momentum. This picture of particle 
agglomeration is exactly similar to that described by Giuli (19). 
The torque, which any colliding particle exerts 011 the condensing nu-
cleus due to such impacts, should increase as the size of the forming 
body increases. Therefore most of the spin angular momentum shall 
be built up in the later stages of the condensation of the dust cloud, 
that is, when the rarifled envelope is under formation. By this time 
the major portion of the mass is already collected and condensed to 
form a heavy and small core at the centre. Therefore the spin angular 
momentum is mostly confined to the envelope. Later on, due to the 
gravitational contraction of the envelope a rotating disc is formed 
in the equatorial plane of the forming body. 

I t may be pointed out that the material of the nebular disc so 
formed must be nearly in gaseous form. The accreted particles after 
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falling from long distances must have attained high velocities before 
colliding and absorbed in the envelope of the forming body. Such a 
collision should result not only in vaporization but ionisation also to 
some extent. In the initial stages, therefore, the envelope might 
contain some plasma as decribed by Alfven (8) in his theory of 
partial corotation of plasma. Action of the dipole moment of the 
central body over the plasma in the envelope might have also played 
some role in establishing the.angular momentum of the envelope. It 
is, however, assumed in the present study that all such actions were 
over due to condensation of plasma into neutral gases before the 
formation of the planetary system. 

The solar nebula and the nebula of its brother star, both moving 
in adjacent orbits, are assumed here to be formed simultaneously 
and in a similar way. These two move in their respective orbits 
with different but constant angular velocities and hence the distance 
between their centres changes continuously with time. The gravita-
tional contraction in the gaseous disc of the solar nebula will now 
progress under a continuously changing tidal force due to the brother 
star. As the size of the nebular disc of the Sun decreases due to the 
gravitational contraction, a stage may be reached when an instability 
arises in its boundary layer. At this stage the gravitational force on 
unit mass of the boundary layer becomes comparable to its centrifugal 
force. Prior to this stage the gravitational contraction of the solar 
nebula proceeds without any appreciable viscous loss and the solar 
nebula spins more or less like a rigid body. When the instability 
arises in the boundary layer, it will tend to develop angular velocity 
gradient among its different layers. But this is continuously apposed 
by a viscous loss and therefore with the start of the instability the 
viscous loss increases. On account of this continuous loss of angular 
momentum the boundary layer is not able to attain exact Keplerian 
velocity. As such the nebula and its disc contract continuously by 
slowly losing energy and angular momentum without separation of 
any gaseous ring at the boundary. 

If the viscous loss in the boundary layer is overcome by a conti-
nuous supply of energy from some external agency, it will then attain 
an exact Keplerian velocity. After the attainment of exact Keplerian 
velocity this boundary layer will rotate in a fixed orbit while all the 
inner layers which have to attain Keplerian velocity, will contract 
further till finally the boundary layer splits from the main body in 
the form of a rotating gaseous ring. I t is assumed here that energy 
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required to overcome this viscous loss in the boundary layer is provided 
by the brother star of the Sun during that part of its orbital motion 
when it is approaching towards the solar nebula. 

I I I . THEORY. 

At any instant the distance R between the solar nebula and its 
brother star is given by 

B2 = BS + R*2 + 2 Bi i?2 cos <f> [1] 

where Bi and B2 are respectively the orbital radii of the solar nebula 
and the star and <j> = n — y, y> being the angle between the radius 
vectors. The angle (f> increases as the solar nebula and the star ap-
proach each other. If the Sun and the star move in their orbits with 
angular velocities wi and «2 respectively, the rate of change of <f> with 
time can be written as 

dd> 
— = C O l - W 2 . [2 ] 

The distance R between the Sun and the star changes continuously. 
As a result the combined potential energy of the Sun and its brother 
star should change. On order to conserve the total energy of the 
combination, their kinetic energies change accordingly. For example, 
if during any part of the orbital motion the star approaches nearer 
to the Sun, then B decreases which results in an increase of the kinetic 
energy of any mass situated on either of them. The gravitational 
potential energy V of the combination of the solar nebula and its 
brother star, when they are situated B distance apart, is given by 

v — . " 7 . [3] 

where M and M' are respectively the masses of the solar nebula and 
its brother star and G is the gravitational constant. The decrease 
in this energy per unit time due to the decrease in B, is 

_ GMM' dB 

dt ~ B2 dt ' [4'1 

This energy will appear as an additional kinetic energy of the 
system one second. This kinetic energy will be shared by the solar 
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nebula and the star in the ratio of their masses. The share received 
by the solar nebula will be 

M GMM' dR 

(M + 1If') R* dt ' [ ] 

The increase in the kinetic energy per second per unit mass in 
the solar nebula is 

GMM' dR 

~(M + M')R*dt" [ ] 

Any unit mass in the boundary layer of the solar nebula has an-
gular motion about the parent star as well as about the axis of the Sun. 
Therefore out of the above increase in the kinetic energy only a certain 
portion will enhance the motion of the unit mass about the Sun, while 
the rest will enhance its motion about the parent star. The division 
of this energy between the two motions can be made by assuming that 
the two shares of the energy shall produce equal instability in their 
respective motions. By equating the resulting additional centrifugal 
force in the two motions, it can be shown that the energy is shared 
in the ratio of the orbital radii of the two motions. The part E of 
the kinetic energy received per second by the unit mass on the surface 
of the solar nebula, which enhances its motion about the Sun, is given by 

GMM'r dR 

(M + M') (JSi +r)R* dt ' 1 aJ 

Since the radius r of the orbit of the assumed unit mass about 
the Sun is very small as compared to the radius Ri of its orbit about 
the parent star, expression [6a] reduces to 

_ GMM'r dR 

(M + M') Ri R2 dt ' L<> ] 

I t may be pointed out that due to mutual attraction, a simul-
taneous gain of kinetic energy in the orbital motions of the solar nebula 
and its brother star is not expected. In fact if there is a gain of kinetic 
energy in the orbital motion of one, there will be loss in the other 
because these motions are governed by the gravitational force of a 
common central body. However, there is no such binding in their 
spin motions and therefore these motions will have a gain of kinetic 
energy as it would be when the two bodies would have independent 
orbital motions. Therefore in the above treatment for obtaining the 
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gain of kinetic energy in the spin motions, the Sun and the brother 
star have been assumed to be moving in independent orbits. More-
over the above method of the distribution of the gained kinetic energy 
between the two angular motions of a unit mass situated in the solar 
nebula, applies only when the mass situated in the boundary layer 
is nearing Keplerian velocity. The inner layers, being quite far from 
the stage of Keplerian velocity, continuously suffer gravitational con-
traction inspite of continuous gain of some angular momentum and 
energy due to the approaching star. The gain of kinetic energy by 
a unit mass of the solar nebula per second will be very small so that 
any layer takes quite a long time to attain Keplerian velocity. 

For calculating the viscous loss per unit mass per second in the 
boundary layer of the nebular disc at a stage when it is nearing Ke-
plerian velocity, we consider a thin cylindrical layer of radius r and 
thickness dr in the boundary. The net viscous drag ¡j, experienced by 
such a layer is given by 

= Ì ( 2 n r T V r ^ \ S r , [7a] 

where rj is the coefficient of viscosity of the gas in the considered layer, 
T is the height of the layer and w is its angular velocity. Substituting 
the value of w and noting that ?? varies directly as the square root 
of the absolute temperature 6, Eq. [7a] becomes 

/ W i l n r , 0 T r > ^ M ^ ) s r , [7b] 
d r \ *Je„ r5'2 ) 

where is the coefficient of viscosity of the gas in the boundary of 
the gaseous ball of radius r0 and temperature 0„. Assuming that the 
absolute temperature of a layer of the nebular disc varies inversely 
with some power n' of the radius, we have 

V = + 1 ) r,,'+„/. d r ' f7cJ 

The viscous drag /1' experienced by the unit mass is given by 

H — 7 (n' + 1 7 . [8] r 4 q r<" + s)/2 
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The torque x experienced by the unit mass due to this viscous 
drag is 

x = f £ I i ) . 
4 ' n )•!»'+3)'2 [9] 

The loss of the energy E' per unit mass per second in the boun-
pary layer of the nebular disc due to the viscous drag is given by 

E' £ 3~ (n> + 1) Vo^Mryn 
4 g >'(" +3)12 

4 
Q r 2 

[10] 

Equating the kinetic energy [Ob] to the viscous loss [10] we obtain 

=1+4 _ 3 , , , (M + M') rto Ri r.''i* (i?L2 + i?22 + 2 Ri 7i2 cos 6)** 
T. 2 — — (?7 1 1 ) — 

4 ' {an — m) M' Ri R* g sin 0 

[11] 

Now we assume that the density p in any layer of the nebular 
disc varies inversely as the nth power of the radius of the layer so that 

K 

r" 

where K is a constant. Settin« 

3 (1/ + M'') v. r.»'» {RS 

2 + ' 2 K {coi — on) M' Ri R2 
= A 

and 
2 Ri R2 

Ri2 + Ri2 

the relation [11] can be written as 

A (1 -J- B cos 

B , 

[12] 

[13a] 

[,13b] 

[14] 

- h + 4 (sin (j. 

The angle <f> in Eq. [14] varies with time and therefore this equa-
tion gives the position of that layer in the nebular disc where exact 
Keplerian velocity is attained at time t. As the brother star of the 
Sun comes nearer and nearer to the solar nebula, the position of exact 
Keplerian velocity shifts towards inner layers. However this shift 
of the condition of exact Keplerian velocity is slow due to the small 
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value of ' . On the other hand inner layers of the nebular disc 
dt 

which are much behind the condition of exact Keplerian velocity, 
contract gravitationally faster and consequently the boundary layer 
may get separated. During the time in which the splitting of a boun-
dary layer progresses, the remaining body contract gravitationally. 
When the splitting of a gaseous ring is matured, the boundary layer 
in the remaining nebula is again nearing Keplerian velocity. At this 
moment condition [14] may again be satisfied at some layer of the 
remaining nebula. Thus at the time when the splitting of a boundary 
layer is just complete, the condition of exact Keplerian velocity jumps 
from the split layer to some other layer in the boundary of the remain-
ing nebula. The remaining nebula undergoes the same process again 
and finally meets the same fate, so that again a gaseous ring is split. 
In this way in the total span of 180° for <•/;, during which the brother 
star approaches the solar nebula, Eq. [14] is satisfied in the nebular 
disc at a number of places and each time producing one gaseous ring. 
If q in Eq. [14] be taken to represent the average density in any such 
split ring, this equation will give the position of the various gaseous 
rings provided we know the value of <f) corresponding to each gaseous 
ring. As the orbital radius of any of these rings will not change even 
if it is condensed to form a planet, Eq. [14] will give the law of distance 
of the planets from the Sun. 

In order to know the value of </; corresponding to each split gaseous 
ring it is required to study how density of the gas varies in any 
given layer of the nebular disc. In a layer of radius r, the total radial 
force F acting on a gaseous element of length <)r and unit cross-section 
is given by 

where dP is the difference of pressure on the two faces of the gaseous 
element. Also for the same layer the equation of continuity is 

[15] 

d (qv) _ dg 

dr = I t ' 
[16] 

where v is the velocity of the inward flow at a radius r. If 0 be the 
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absolute temperature of the gas in the layer of radius r then, the 
pressure P is given by 

P = 
Rdg 

~M 
[17] 

where R is the gas constant and M is the molecular weight, 
stituting the value of ÒP in Eq. [15] we get 

d(nv) R 6 dp GM 
= — + — r co2 p • 

dt M dr r2 

From Eqs. [16] and [18] we get 

d d^Q ^RdcPg 

di'2 M dr2 dr 

GM 

7*2 
• r co-

Sub-

i i » ] 

[19] 

In Eq. [19] w is a function of r ant t. I t will be assumed in the 
present study that m varies with time in such a way that o is a sym-
metrical function of t. During gravitational contraction, the density 
in any layer of the nebular disc is expected to exhibit a maximum at a 
certain time and about this time the variation of density will be sym-
metrical. I t means that the time, in which the maximum density is 
accomplished at a certain layer, will be equal to the time in which 
the density will vanish. 

I t si assumed that initially the solar nebula extended to a large 
size and in the region of nebular disc there existed everywhere a very 
much rarified density. This rarifled density continued to be there 
till for the first time Eq. [14] became applicable. Upto this moment 
the density in the nebular disc did not change appreciably by gravita-
tional contraction and the density at any place in the disc was negli-
gibly low as compared to the maximum density to be attained at cer-
tain later stage. Counting this moment to be zero time, the time in 
which maximum density is attained in any layer should be equal to 
the time in which the density is reduced to zero. The reduction of 
density to zero at a certain layer marks that moment when a gaseous 
ring in the boundary region splits and at the same time condition [14] 
jumps from the split layer to the next. Upto this moment the place 
at which the next gaseous ring will split, has been gaining density 
and just from this moment onward it will be losing. Consequently 
the time in which a certain gaseous ring sphts is double of the time 
in which its preceding gaseous ring is split. Thus if s refers to the 
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order of a gaseous ring starting from the outer most, the angle </> cor-
responding to it is given by 

$ = 2'-i 0 + do , [20] 

where 0 is the value of (j> between the first and the second gaseous 
rings and 0„ is the initial value of <\> when the condition [14] became 
applicable for the first time. Substituting this value of (j> in Eq. [14] 
we get the desired law of distance of the planets from the Sun as 

A [1 + B cos (2«-i 0 + do)f">'-2"+a 

r = . 121] 

[sin (2»"1 0 + 0„)]f-n+i 

The above law is general and is applicable to any sequence of 
bodies formed from the parent body in the way considered above. 
The explicit form of it, applicable to any group of planets or sequence 

of satellites, may be obtained by putting the value of ( ~ — nj which 

depends upon the density and temperature distributions in the original 
gaseous volume producing the system. 

I V . APPLICATION TO PLANETARY SYSTEM. 

Eq. [21] contains a number of parameters namely, A, B, 0, 0„ 

and —w.J . The values of some of them can easily be fixed. 

For example, the value of 0 can be obtained from the knowledge of 
the number of planets which were formed in one sequence in a total 
span of 180° for </>. Following our earlier investigation (31), that all 
the planets were not formed in one succession but in two groups, the 
relation [21] should be applied to both the groups of the planets 
separately. In the outer group, live planets were formed roughly 
in a total span of (j> = 180°. Therefore putting 2s"1 6 = 180 and 
s = 5, 0 is found to be 11.25°. For s = 6, 0 is 5.0°. As five planets 
were completely formed and the sixth one could not be completed, 
the limits of 6 for the outer group are: 5.0° < 6 < 11.25°. As an 
approximation the mean value of the above two limits may be taken 
as the value of 6 for the outer group of the planets. Thus for the 
outer group 0 is 8.5° approximately. Similarly for the inner group 
of the planets in which four planets were formed in one succession 
and fifth could not be completed, 6 = 17° approximately. 
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Regarding the value of 0„, it may be pointed out that if a sequence 
of planets is formed after when already few planets of some preceding 
sequence have been formed, then the value of Q„ will be zero. This 
is so because after the formation of the previous sequence the nebula 
and the star would be receding from each other for a span of (j> = 180°. 
Hence the solar nebula gets enough time to establish instability in 
its boundary layer before Eq. [21] becomes applicable at <f) = 0 from 
where it starts approaching the brother star. Thus 0O should be equal 
to zero for the inner group of the planets but may have some finite 
value for the outer group of the planets. 

An approximate idea of the value of the constante B can be had 
from the expression [13b]. In this expression R\ and R> are respec-
tively the orbital radii of the solar nebula and its brother star. An 
inspection of the ratio of the orbital radii of any two successive bodies 
in any group of planets or satellites reveals that the ratio Ri/Ri in-
creases with the size of the central body. The value of R2IR1 is roughly 
2 for the family of the Sun and that of Jupiter. A still higher value 
of R2IR1 should rather suit for the family of the parent star of the Sun. 
Taking tentatively R2IR1 = 2 . 5 , the value of B = 2/3 is obtained. 

The best-fit values of the various parameters for the two groups 
of the planets are as follows: 

OUTER GROUP: 

A = 8 . 9 1 3 a.u., 
2 

0 = 8.5°. 

0„ = 18.5°. 

INNER GROUP: 

A = 0.5690 a.u.. 
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The values of the orbital radii of all the planets in each group 
have been determined by using the above parameters. The calculated 
values are given in Tables I and I I together with the observed 
values which agree fairly well. 

T a b l e I - COMPARISON OF THE OBSERVED AND TI IE CALCULATED ORBITAL 

R A D I I OF THE P L A N E T S OF THE OUTER GROUP. 

Planets 
Calculated 

orbital radii 
Observed 

orbital radii 

Pluto 39.52 39.52 

Neptune 29.42 30.07 

Uranus 18.73 19.19 

Saturn 9.479 9.539 

Jupiter 5.203 5.203 

T a b l e I I - COMPARISON OF THE OBSERVED A N D THE CALCULATED ORBITAL 

R AD I I OF THE PLANETS OF THE I N N E R GROUP. 

Planets Calculated 
orbital radii 

Observed 
orbital radii 

Mars 1.523 1.523 

Earth 1.058 1.000 

Venus .698 .723 

Mercury .482 .400 

V . APPLICATION TO SATELLITE SYSTEMS. 

Equation [21], which has been derived for a contracting nebula 
under the continued tidal force of an approaching brother nebula, is 
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quite general and can be applied to any system of bodies so formed. 
The sequences of the satellites of the big planets can be assumed to 
have been formed in a similar way and should satisfy Eq. [21]. The 
parameters of Eq. [21] for the different satellite systems can be de-
termined more definitely because their parents bodies (Planets) are 
precisely known. Three such sequences each consisting of five sa-
tellites and belonging to Jupiter, Saturn and Uranus respectively can 
be easily picked up from the satellite data. Jupiter and Saturn are 
known to contain a number of satellites other than the considered group 
of five satellites. These remaining satellites either may be belonging 
to some incomplete groups formed in a similar way or may be captured 
bodies of their parent planets. The three satellite systems shall be 
studied here: 

Satellites of Jupiter. An inspection of the value of P2/P1 shows 
that the five inner satellites of Jupiter form a sequence like the 
outer group of the solar system. The value of 0 for this sequence of 
satelhtes should, therefore, be taken as 8.5°. The value of do will be 
zero because a number of satellites exist beyond this sequence. Saturn, 
being the heaviest and closest planet to Jupiter, may be considered 
solely responsible for exerting necessary tidal force 011 the surface of 
Jupiter for the formation of its satellites. From the values of the 
orbital radii of Jupiter and Saturn, the numerical value of B comes 

out to be 0.84. In this way, only two parameters A and | w — " j 

remain to be fixed in Eq. [21]. The values of the different parameters 
of Eq. [21] as applied to the satelhtes of Jupiter are: 

A = 4.025 a, , B = 0.84 , 0 = 8 . 5 ° , 0„ = 0° 

and 

where a, is the radius of Jupiter. The orbital radii of the various 
satellites of Jupiter as calculated with the help of Eq. [21] are com-
pared with their observed values in Table I I I . 

Satellites 0/ Saturn: The inner five satellites of Saturn also form 
a sequence similar to that of Jupiter. The heaviest and closest planet 
which can have the maximum tidal influence upon the surface of Saturn 
is Jupiter. From the orbital radii of Jupiter and Saturn, the value of 
the constant B is 0.84. Following the previous argument, 0 = 8.5° 

£ IT 
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and do = 0° for this case also. Again the two remaining parameters 

(a — n} | and A are to be adjusted empirically. Various parameters 

of Eq. [21] as applied to the satellites of Saturn are: 

A = 3.452 as , £ = 0 . 8 4 , 0 = 8 . 5 ° , d„ = 0° 
and 

T a b l e I I I - COMPARISON OF THE OBSERVED AND THE CALCULATED ORBITAL 

RADI I OF THE SATELLITES OF J U P I T E R . 

Satellites Calculated 
orbital radii 

Observed 
orbital radii 

Gallisto ( V I ) 26.36 26.36 

Granyuade 16.52 14.99 

Europe 10.19 9.396 

I ( Io ) 5.886 5.905 

V 2.547 2.539 

T a b l e I V - COMPARISON OF THE OBSERVED AND THE CALCULATED ORBITAI 

R AD I I OF THE SATELLITES OF S A T U R N . 

Satellites Calculated 
orbital radii 

Observed 
orbital radii 

Rhea 8.835 8.835 

Dione 6.979 6.327 

Tethys 5.456 4.939 

Encel ad us 4.058 3.991 

Mima 2.502 3.111 
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where as is the radius of Saturn. The orbital radii of different satellites 
of Saturn as calculated from Eq. [21] are given in Table IV together 
with their observed values. 

Satellites of Uranus: The five satellites of Uranus also form a 
similar sequence. Therefore 0 = 8 5° and 0„ = 0°. The closest 
planet which has the maximum tidal effect on the surface of Uranus 
is Saturn. From the orbital radii of Uranus and Saturn, the value of 

the constant B = 0 . 8 . The remaining two parameters .1 and | n — " j 

are adjusted empirically. The different parameters of Eq. [21] as 
applied to the satellites of Uranus are: 

A = 9.8 av , B = 0.8 , 0 = 8 . 5 ° , d„ = .0° 

where au is the radius of Uranus. The orbital radii of different sa-
tellites of Uranus as calculated with the help of Eq. [21] are compared 
with their observed values in Table V. 

T a b l e V - COMPARISON OF THE OBSERVED AND TI IE CALCULATED ORBITAL 

R A D I I OF TI IE SATELLITES OF U R A N U S . 

Satellites Calculated 
orbital radii 

Observed 
orbital radii 

Oberon 24.69 24.69 

Titania 18.05 18.46 

Umbriel 13.00 11 .25 

Ar ie l 8.814 8.079 

Miranda 4.752 5.494 

V I . EVALUATION OF THE CONSTANT A . 

and 

For any sistem of satellites or planets the value of the constant A 

can be evaluated with the aid of the expression [13a]. For the satel-
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lite system, all the quantities except /¡„, n, n' and K are known. How-
ever, these quantities can also be estimated approximately for each 
satellite system as follows: 

rj„: In the expression [13a] »/„ refers to the coefficient of visco-
sity of the gases in the boundary layer of the original gaseous volume 
of the planet when its radius was r„. The radius r„ can be taken 
approximately equal to the orbital radius of the outermost satellite 
of the planet. At the time when not a single satellite was formed and 
the whole gaseous volume of the planet was intact, its surface tempe-
rature would approximately be equal to the black body temperature 
in equilibrium with the Sun. Assuming the temperature of the surface 
of the Sun to be about 0000 °K, the black body temperatures of the 
surface of Jupiter, Saturn and Uranus come out to be 120°K, 88°K 
and 62°K respectively. Remembering that in Jupiter and Saturn 
there is mostly hydrogen and in Uranus it is metahne, the value of i]0 

for all these planets can be approximately known from the experimen-
tal values of the viscosity of these gases. The values of rjo used in 
the present study for different planets are depicted in Table Y I . 

T a b l e V I - V A L U E S OF THE CONSTANTS rj0, 11, n' a n d K FOR THE SATELL ITE 

SYSTEMS OF J U P I T E R , SA T URN AND U R A N U S . 

Satellite system no 
(micro poise) n 

K 
(C.G.S.) 

Jupiter 45 3.50 2 3 . 8 3 5 X 1030 

Saturn 57 2.00 2 1.180 x 1013 

Uranus 38 2.75 2 8.189 x 102° 

(ii \ 

n — 9 is already known for each satellite 
system. Assuming the radial distribution of temperature in the original 
gaseous volume of the planets to be the same as in the solar nebula, 
the same value of the index n' = 2 may be taken for all the planets. 
In this way the values of n and n' may be known separately for any 
system and these are tabulated in Table VI . 

K: In order to calculate the value of the constant K, it will 
be assumed that a satellite is formed at the centre of gravity of the 
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radial mass distribution of a gaseous ring. In this way the external 
and internal radii of any gaseous ring can be shown to be linear func-
tion of the orbital radius of the planet formed out of it (31). This 
enables us to find the internal and external radii of any gaseous 
ring. For example in the case of Jupiter, its satellite (I)I0 has mass 
(3.81 ± 0 . 3 ) x 10- times the mass of Jupiter. The external and 
internal radii r" and r' of the gaseous ring which might have given 
rise to this satellite come out to be 8.487 a j and 4.442 a j respecti-
vely. Thus the equation determining the value of K for Jupiter 
can be written as 

K mm 
r , n (r"2 _ r'2) y 1 1 [22] 

where r<n and jn<n are respectively the orbital radius and mass of 
the satellite (I)Ie and T is the thickness of the gaseous disc. The 
thickness T of the disc may be taken tentatively equal to the orbital 
diameter of the innermost satellite of the system. Thus T = 2.539 
times the diameter of Jupiter. Eq. [22] then gives the value of the 
constant K as 3.835 xlO30 G.G.8. for the satellites of Jupiter. The 
value of the constant K for the other satellite system can be deter-
mined in a similar manner and these are given in Table VI. 

T a b l e V I I - COMPARISON OP THE EMPIRICAL AND THE E V A L U A T E D VALUES 

OF THE CONSTANT A FOR VARIOUS SATELL ITE SYSTEMS. 

Satellite system 
Evaluated values 

(L ight years) 
Empirical values 

(L ight years) 

Jupiter 1.330 4.025 

Saturn 7.176 3.452 

Uranus 12.53 8.098 

With the help of the values of the parameters r]„, n, n' and K 

from Table VI, the values of the constant A have been determined 
from the expression [13a]. The calculated values of A for various 
satellite systems are given in Table V I I and compared with those 
obtained empirically by adjusting the parameters of Eq. [21]. A 
perusal of the Table V I I shows a fair agreement between the two sets 
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of values. Better agreement is not expected in view of the use of 
approximate values of some quantitaties. For example the value of 
viscosity rjo is uncertain due to lack of the exact knowledge of the 
composition of the satellite material, and that of n and n' due to lack 
of the exact knowledge of the density and temperature distributions 
in such bodies. This agreement of the values allows us to obtain 
some information about the parent star of the Sun. In the expression 
[13a] the quantities which cannot be determined are M', Ri, R2 and 
the mass M„ of the parent star of the Sun. However, under certain 
approximations the order of magnitude of M„ and Ri can be known. 
Remembering that for the outer group of the planets of the Sun, n' = 2 
and n = 4, expression [13a] can be written as 

4 = 9 V„ ra (1 + MjM') Rf* [1 + (fe/i?!)*]1'2 

2 KB \JCRM [1 ~ l/(i?2/i?i)1>5 

In this equation the quantities Ri/Ri, M'/M, M0 and Bi are un-
known. Out of these M/M' and i?i/J?2 are the ratios of the masses and 
that of the orbital radii of the Sun and its brother star respectively. 
The ratio E2/i?i has already been fixed as 2.5 in the determination 
of the constant B for the planetary system. I t is to be noted that the 
value of the constant B depends upon the ratio of the orbital radii 
of the Sun and its brother star but it does not ascertain whether Bz 
is 2.5 times Bi or vice versa. Thus both the possibilities may be 
examined. The ratio M'¡M may be taken equal to be unity because 
the masses of the Sun and its brother star would be of the same order 
of magnitude. The remaining two unknown quantities in the ex-
pression [23] are M„ and Bi. The parent star of the Sun as postulated 
in the present study may be identified with a first generation object 
described by Doroshkevitck et Al. (1S). Now the distance Bi can be 
determined from [23]; other constants e.g. rj0, K, r0 etc. being de-
termined exactly in a similar manner as for the satellite systems. 

The second possibility, in which the orbit of the solar nebula 
is outside the orbit of its brother star, gives the orbital radius of the 
solar nebula as one light year. The value of Bi as obtained by making 
use of the inner planets comes out to be about 0.1 light year. The 
discrepancy in the two value of the orbital radius of the solar nebula, 
as obtained from the data of the outer and the inner groups of the 
planets respectively, may be on account of the uncertainties in the 
parameters of the latter. The maximum uncertainty seems to be in 
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the value of K. As the composition of the terrestrial planets differs 
appreciably from that of the Sun, it seems that the present mass of 
these planets are much different from the mass of their original gaseous 
rings. A multiplication factor as much high as 400 is obtained (21) 
if these planets be considered to posses originally the same compo-
sition as that of the Sun. Therefore the value one light year of the 
orbital radius of the solar nebula, as obtained from the outer group 
of the planets, may only be considered. 

The solar nebula and its brother star were revolving round their 
parent star (of mass equal to 106J)) at the time of the formation of 
their planetary system. Since such a heavy star could not remain 
stable for long time, the parent star must have been subdivided into 
smaller bodies after turning into a nova or supernova. At present 
therefore such a heavy star is not to be found in the neighbour hood 
of the Sun. However, the brother star of the Sun may still be existing 
at approximately the same distance which according to the present 
study is of the order of a light year. This distance is in agreement 
with the observed distance of some closest stars to the Sun. 

V I I . DISCUSSION. 

The theory in its present form using some assumptions and ap-
proximations can be expected to give results only within a certain li-
mited degree of accuracy. However the consistency of the results 
and ideas is striking. The consistencies are enumerated as follows: 

(a) The angle 6 used in Eq. [21] has been argued to depend 
upon the total number of the planets formed in any sequence and its 
value was predicted to be nearly 8.5° for a.sequence of live bodies 
and 17° for a sequence of four bodies. After adjusting the parameters 
it was found that these values or values close to them could only sa-
tisfy Eq. [21]. These values of 0 consistently satisfy not only the two 
sequences of the planets but also a number of sequences of the satellites. 

(b) The prediction that 0„ should be zero for all such sequences 
of bodies, beyond which already there exist some bodies, proved to 
be consistently correct for all the planetary and satellite systems. 
All the satellite sequences studied here are similar to the inner group 
of the planets because for all such sequences some bodies of higher 
orbits exist. For all these systems d„ is actually found to be zero. 
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For the outer group of the planets beyond which no more planets are 
known to exist, the value of 60 is finite as expected. 

(c) The constant B solely depends upon the ratio of the orbital 
radii of the Sun and its brother star. Taking Bz/Bi = 2 . 5 , the ten-
tative value of B was obtained and used for the planetary system. 
This value was found to obey the outer as well as the inner group of 
the planets. I t is exactly what is expected on the basis of the pro-
posed theory because the same brother star of the Sun has produced 
both the groups of the planets in its two successive approaches towards 
the Sun. A wide gap observed between the outer and the inner group 
of the planets corresponds to that phase of the orbital motion of the 
brother star in which it recedes from the Sun. A large number of 
asteroids observed in this region may be small bodies condensed from 
the remnant gases which were left during the contraction of the solar 
nebula between the outer and inner group of the planets. The value 
of the constant B, as obtained by substituting the observed value of 
BijBi in [13b], fits well in all the satellite system too. Moreover the 
value of B for the satellite systems of Jupiter and Saturn are the 
same as is expected. Both these planets have produced the satellite 

2 B,i Bz 
systems of each other and therefore the value of B = -

J B i 2 + B 2 2 

should be the same for the two. 

(cl) The maximum support to the proposed theory comes from 
the consistency with which the empirical values of the constant A 

agree with the values obtained from the expression [13a]. Various 
quantities occurring in the expression for A differ widely in their order 
of magnitude but 011 substitution, these quantities could give the 
correct order of magnitude of A as obtained by adjusting the para-
meters of Eq. [21]. More accuracy cannot be expected in view of 
the use of approximate values of some of the quantities e.g. r)0, K, 
n and n'. 

It would be worthwhile to discuss the various factors which limit 
the degree of accuracy of our results:' 

(1) The density distribution of the form p = is expected to 
Tn 

be true only approximately. The value of the index n is not known 
in any case from rigorous considerations. Moreover the determination 
of the constant K needs the external and internal radii and the mass 
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of the gaseous ring. These can be known only approximately under 
some simplified assumptions with the help of the mass and the orbital 
radius of the planet formed out of the gaseous ring. The simplifying 
assumptions are that the mass of the gaseous ring is equal to the mass 
of the planet and the gaseous ring is condensed at the centre of gravity 
of its radial mass distribution. 

(2) The temperatures of the different layers of the nebular disc 
at the respective times of their splitting are assumed to be of the form 

0 cc ~ . The temperature is, no doubt, expected to increase with 

the depth of the layers but the index n' is not known precisely. 

(3) An approximate composition of the gases in the nebula has 
been considered. 

(4) Besides the above approximations, the validity of Eq. [21] 
depends upon the assumption regarding the timings at which different 
gaseous rings were formed. Though some justification has been given 
for the assumption that the time of the formation of any gaseous ring 
will be double of the time of the formation of its preceding ring, still 
it needs further discussion. 

V I I I . CONCLUSION. 

The present theory provides the following features regarding the 
origin and evolution of the solar system: 

1. At the time of its formation the Sun was not only revolving 
round the centre of our galaxy but atleast about one more interme-
diatory body along with few fellow stars in a manner as planets revolve 
round the Sun. 

2. In the earlier stages of their formation both the solar nebula 
and its brother star (also a nebula) contracted gravitationally under 
the tidal force of each other till the outermost layer in the boundary 
of each is nearing Keplerian velocity. As this stage the viscous force 
became appreciable and did not allow any boundary layer to attain 
exact Keplerian velocity. 

3. During that part of the orbital motion of the Sun and its 
brother star when they approached each other, sufficient energy was 
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received by these boundary layers to overcome the viscous force and 
this enables them to attain exact Keplerian velocity. Consequently a 
boundary layer split from the main body in the form of a rotating 
gaseous ring. 

4. A series of such rings were split at definite intervals of time. 
The time taken by any gaseous ring for its splitting was double that 
of its preceding ring. These gaseous rings later on condensed by some 
unknown process in their own orbits to give rise to the planets. 

5. The law of distance obtained on the basis of the above con-
tention is not only satisfied by the planets but also by the satellites 
showing thereby that the theory is also applicable to the formation 
of the satellites. 

6. The same law of distance, when applied to the formation 
of Sun and its brother star, gives the position of the parent star of 
the Sun at the time of the formation of the Sun. The distance of the 
parent star from the Sun was of the order of a light year. 
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