A computing program derived from Chree's method

M. Attolini (*) - L. Dall'Olio (**) - V. ('terrieri (**) - P. Randi (*)

Ricevato il 23 Novembre 1968

Summary. - A computing program has been actived for having information from stationary time series.

The technique utilized is that of superposed epochs (Chree's method), adapted by using large computers.

This technique gives evidence for a phenomenon and statistical consistency is provided.

The program described elaborates unlimited numbers of data and epochs the maximum length of which is 2000 numerical data.

Riassunto. -- È stato fatto un programma di calcolo per ottenere informazioni da serie temporali stazionarie.

La tecnica usata è quella di sovrapposizione di epoche (metodo di (hree), di cui se ne propone una modifica per essere utilizzata con grandi calcolatori.

Si mette in evidenza un fenomeno e se ne discute la consistenza statistica.

Il programma descritto elabora un momero illimitato di dati e di epoche la cui lunghezza massima è fissata in 2000 dati numerici.

Introduction.

In graphic registrations, or tabulations of some quantities, that constitute a stationary time series, the problem that arises is that of testing the consistency of certain particular phenomenon that are noticed in correspondence with determinate physical events $\left(^{(}\right)\left({ }^{2}\right)$.
(*) Istituto di Fisica Ĺniversità di Bologna. Gruppo Italiano di Fisica Cosmica. Consiglio Nazionale delle Ricerche.
(**) Centro di Calcolo di Bologna. Comitato Nazionale per l'Energia Nucleare.

The graphed or tabulated quantities correspond in some way to these physical events that, by other methods, can be localized in time.

A tipical example is constituted by the oscillations observed in recorded cosmic radiation in correspondence with the sudden commencement of magnetic storms, whose position in time can be found by observing the magnetograms.

The phenomenon we must test can be approximated to the order of the statistical fluctuation (or a little better) of the data series whose registration is examined, and therefore necessitates a particular analysis for determining the characteristics.

In this work we propose a solution to the problem by using the technique of Chree of superposed epochs $\left(^{3}\right.$) for using electronic computers and completing it by an ulterior analysis for proving the statistical consistency of the results regarding the width and the duration of the phenomena. Besides, the maximum temporal position is localized which allows us to visualize the bond between the registrated phenomena and the physical events which are bound to it.

Memiod.

A stationary time series can be thought of as a linear combination of type:

$$
I(t)=A(t)+\varepsilon,
$$

being $A(t)$ the systematic part and ε the random one of the series. The aim of pointing out the phenomena according to the type of series which we want to separate, we must utilize a preventive filter operation (1) of which a computing program (${ }^{5}$) already exists.

In the numerical filtering steps the reduction of the influences by the random part in the residual series allows to note the phenomenon without modifying the structure.

Let us call $q_{r}(r=1,2, \ldots \ldots, n)$ the corresponding values in the recording of the physical events which we consider responsible for the phenomenon that we must examine.

Let us construct the matrix:

$$
\left\lvert\, \begin{array}{lllllll}
p_{1,1} & p_{1,2} & p_{1,3} \ldots \ldots p_{2, l} & q_{1} & d_{1,1} & d_{1,2} \ldots \ldots . d_{1, m} \\
p_{2,1} & p_{2,2} & p_{3,3} & \ldots & p_{2,1} & q_{2} & d_{2,1} \\
d_{2,2} & \ldots . d_{2, m}
\end{array}\right.,
$$

being $p_{s, r}(s=1,2, \ldots \ldots l)$ the numerical values of the l positions preceeding the position of the event q_{r} and $d_{t, r}$ the values of the m positions following.

Each row of the matrix, $n \times R(R=l+m+1)$, contains the elements of each one of the n epochs $\left({ }^{3}\right)$.

As for random part, between the variance of $y_{i}(i=1,2, \ldots \ldots, r)$ (obtained by adding and by averaging per columns the elements of the matrix:

$$
\begin{array}{ll}
y_{i}=\frac{1}{n} \sum_{r=1}^{n} p_{r, i} & (i=1,2, \ldots \ldots l) \\
y_{l+1}=\frac{1}{n} \sum_{r=1}^{n} q_{r} & \\
y_{i+l+1}=\frac{1}{n} \sum_{r=1}^{n} d_{r, i} & (i=1,2, \ldots \ldots m)
\end{array}
$$

of which \bar{S}_{0}^{2} is the estimate) and the mean variance of each of the n epochs (of which S^{-}- constitues the estimate) is the relation

$$
\bar{S}^{2}=n S_{e}^{2}
$$

The standard deviation S_{c}^{2} is

$$
\text { s. } d .\left(S^{2}\right)=S_{e}^{2} \sqrt{\frac{2}{R-1}}=\frac{\bar{S}^{2}}{n} \sqrt{\frac{2}{R-1}}
$$

Finally:

$$
\begin{equation*}
S=\sqrt{\frac{R-1}{2}}\left(n \frac{S_{e}^{2}}{\bar{S}^{2}}-1\right) . \tag{1}
\end{equation*}
$$

Being n the number of the superposed epochs, represents, in standard deviation units the true shift of the data series from random behaviour, and S is the significance level of the phenomenon in the series.

The lenght R of the epoch depends from the physical problem examined. The preceding ($p_{s, r}$) and successive ($d_{t, r}$) data of the event may be equally populated $(l=m)$.

Since the effects of certain physical event are generally allayed in the recordings, whether for the inertia of the system on which it acts or by the recorder that smooths the various phenomena exploring them in a large width, a time contraction of the elements forming the epoch is elaborated. Such an operation permits a better
localisation of the phenomenon studied and ulteriorly decreases that statistical fluctuation of the series.

The problem studied will guide the choice of such a contraction. The relation (1) is modified:

$$
s(k)=\sqrt{\left.\frac{\frac{R}{k}-1}{2}\left(n k \frac{S_{e k}^{2}}{\overline{S^{2}}}-1\right) \quad\left(\frac{R}{k} \text { integer }\right)\right) ~}
$$

being k the order of the temporal contraction $S_{e k}^{-}$the variance of the contracted mean epoch.

A rigth representation of $S(k)$ will permits useful considerations on the localisation and duration of the phenomena studied.

Description of the program.
The program has been carried out at "Centro di Calcolo del ONEN" in Bologna using the FORTRAN IV language versione 13 under the IBSYS 7094/7040 DCS monitor control.

The data number that can be elaborated is pratically unlimited; the maximum allowed number of elements of the epoch is 2000 . This number is extremely sufficient for many problems but it can also be increased by modifying the appropriate statements.

The number n of superposed epochs is 200 . This number may be increased by modifying the appropriate statement, but attention must be made in order of the approximation due to the machine representation of the value of the elements, that arises when mean eporh is computed.

The program allows also to group, k by k, the set of elements in the mean epoch for giving an epoch whose variance is k times less than that of the original mean epoch.

This procedure allows a better accuracy in the computing of the average width of the studied event without phase changes, because, if k is odd, y_{l+1} will always be in the middle of the interval of the obtained epoch.

The program can also be informed to ignere the not good elements of the series without modifying the input data series cards.

It is useful to note \bar{S}^{2} is computed not using the mean of the variances of each row, but the mean of the variances concerning the consecutive epochs, each R elements long, obtained considering all
the time data series (except the not good elements); the variance computed in this way tends to the true variance of the series.

Output.

Normally we can obtain a following list:
a) input tape (NTPI)
b) number of data per input card (NDS)
c) input FORMAT (FR1)
d) print FORMAT (FR2)
e) punch FORMAT (FR3)
f) number of superposed epochs or q (NKPO)
g) number of p (NOPR)
h) number of d (NODO)
i) index of q positions in time-series (KPO)
j) number of utilized data
k) number of consecutive epochs
l) mean epoch information:

1) mean variance (ISGR2)
2) standard deviation (SE)
3) variance (SIGMA)
4) significance level (S)
г) DIFVER $=$ SIGMA $-\frac{\text { SIGR? }}{\text { NKPO }}$
m) length of mean epoch (R)
n) elements of mean epoch (ELM)
o) grouped epoch information:
5) number of elements (R)
6) GROUPS
7) SIGMA
8) S
9) DIFVER
p) local maxima of S are computed and the following information are listed:
10) S
11) SIGMA
12) type of groupping (GROUPS)
13) R

If the restart procedure is required, the normal list is like the proceeding from l) to p).

If the program recognizes errors during his flow appropriate diagnostics are printed.

ORDER OF DATA CARDS DECK SET-UP.

All cards must be included in the order shown below,
a) Start procedure (Fig. 1)

Fig. 1

* ${ }^{*}$ Parameter card for starting and groupping
B Variable format card for time series input data
C Variable format card for printont mean epoch
I) Variable format card for punched input epoch
E Time series data parameter card
F Epoch parameter card
G q_{i} index card
II Time series data
I END punched in col. 1-3
J Number of groups to be discarded
K Index of group to be discarded
b) Restart procedure (Fig. 2)
A Parameter card for restarting and groupping
B Blank card
C Like in a)
D Like in a)
L Mean epoch parameter card
M Mean epoch elements.

Fig. 2

Card preparation.

Card columns	Corresponding variable	Description
* ${ }^{\text {c }}$ * card		FORMAT (20A4)
1.80	FR2	- Format of output data to be put on standard output tape.
* D) ${ }^{\text {c }}$ card		FORMAT (20A4)
1-80	FRS 9	- Format according which one can have the elements of mean epoch on logical tape 8 , from the second record on.
* ${ }^{*}$ * card		FORMAT (4I3)
1 -\%	NDS	- Number of time series data contained in each input card.
3-4	NTPI	- Logical tape number of input (5 if input is from punched cards).
5-6	KE	- Number of decimal figures if conversion is used (*).
7.8	IT	- >0 if input conversion is required (*) - $\leqslant 0$ if input conversion not required (*).
* F^{*} card		FORMAT (3I3)
1-2	NKPO	- Number of superposed epochs
3-4	NOPR	- Number of elements preceding q_{t} in the epoch
$5-6$	NODO	- Number of elements successive to q_{i} in the epoch.

(*) One must use conversion when time series input data are punched as integer constants having the sign (hole zone) over the less significant figure of the number. In this case each field of width w containing the number, is considered like it were formed of two sequential fields: the list of integer-type of width $x-1$, the 2nd of alphanumeric-type of width 1 . i.e.: if number 12.125 is punched according to the format specification Fit. 3 no conversion is required, being a Fortran number (in this case $I T-O$). The character string $1212 N$ (where N means holes 5 and 11 , minus sign overpunched) columns of the card, punched in a field of width $w=5$ for having the same value as the above one, must be read according to the format specification $I 4, A 1$ and must be $K E=3$ (decimal figures of the number) and $I T \neq 0$.

Card columns	Corresponding variable	Description
* L^{*} card (cont.)		
11-24	SIGMA (1)	- Variance of the mean epoch.
25-38	S (1)	- Significance level of the mean epoch.
39-52	SIGR2	- Mean variance of data series.
53-66	SE	- Standard deviation of data series.
67-80	DIFVER (1)	SIGMA (1) - SIGR2/NKPO
* ${ }^{\text {l/ }}$ * card		FR3 format (see *D* card)
	ELM	- Elements of mean epoch. They may be punched from the second record on from logical tipe 8.

Comment.

In the following pages it has been reproduced the list of the described program.

The authors have mainly contributed each in their activity field.

Timing.

1) It takes $7^{\prime \prime}$ to elaborate 1000 elements of stationary time series, the length of the epoch being 100 , corresponding to $n-10$, to group from 1 to 10 step 1 , and to find the local maxima.
2) It takes $1^{\prime \prime}$ to elaborate the restart procedure groupping from 4 to 9 .

Acknowledgement.
Prof. E. Clementel made easy the IBM 7094/7040 DCS computers utilisation at the Centro di Calcolo del ONEN in Bologna (SHARE Installation BI).
\＄IBFTC EPO M94，XR7，LIST 001
C 002
C 003
C E P O C H S 004
$\mathrm{C}=$
C006
DIMENSICN FR1（20），FR2（20），FR3（20），KP0（100），KA（80），KB（80），EL（80）， 007
1 NGRUI（100），NGRUF（100），LEFF（2000），ELM（2000），KDIV（2000）， 008
2 LEPOM（100），SIGMA（100），S（10C），ELM1（2000），DIFVER（100） 009
DATA KALT／3HEND／ 010
WRITE（6，901） 011
C 012
 013
C INPUT OF PARAMETERS 014
C 015
C 016
READ（5，5）KTEST，KRAI，KRAF，KRAP 017
READ（5，15）FR1，FR2，FR3 018
IF（KTEST．EQ。1）GO TO 440 019
READ（S， 5$)$ NDS，NTPI，KE，IT 020
$K E=10 * * K E$ 021
READ（E，ј）NKPO，NOPR，NODO 022
REAC（5，25）（KPOII），I＝1，NKP0） 023
WRITE（6，7C2）NTPI，NDS，FR1，FR2，FR3，NKPO，NOPR，NODO 024
WRITE（6，9C3）（KPO（I），I＝1，NKPO） 025
C 026
 027
C INFUT OF DATA（NDS PER CARD）AND RECCRDING ON BINARY TAPE 3 （NDS PER 028
C RECORD 029
C 030
C 031
REWIND 3 032
NREC＝0 033
IFIIT．LE．O）GO TO 500 034
501 R［AD（NTPI，FR1）KFIN，（KA（J），KB（J），J＝1，NDS） 035
IF（KFIN．EQ。KALT）GO TO 502 036
DO $503 \mathrm{~J}=1$ ，NDS 037
$K B(1)=M O D(K B(J) / K I F T, 16)$ 038
503 EL（J）$=1 S I G N(K A(J) * 10+I A B S(M O D(K B(1), 10)), K B(1)) / K E$ 039
NREC $=$ NREC +1 040
WRITE（3）（EL（J），J＝1，NDS） 041
GO 「O 501 042
500 READ（NTPI，FRI）KFIN，（EL（J），J＝1，NDS） 043
IFIKFINoEQ。KALTIGO TO 502 044
NREC＝NREC＋1 045
WRITE（3）（EL（J），J＝1，NDS） 046
GC TO 500 047
502 NTCT＝NREC＊NDS 048
REWINC 3 049
C 050
 051
C CCNPUTATION CF VARIANCE CONCERNING EACH EPOCH 052
C 053
C054
$L E P C=\Lambda C P R+N C D C+1$ 055
NTEPO＝NTOT／LEPO 056
NTOTAL＝NTEPO＊LEPO 057
WRITE（6，9C4）NTOTAL，NTEPO 058
PEAD（5，4）NGRU 059
IF（NGF．U．EG。O）GO TO 72C 060
REAU（S， 6$)($ NGRUI（I），NGRUF（I），I＝1，NGRU） 061
WRITE（6，9C5）NGRU 062
WRITE（6，9C6）（NGRUI（I），NGRLF（I），I＝1，NGRU） 063
$7 \angle 0$ DC $701 \mathrm{I}=1$ ，NTEPO 064
$701 \operatorname{LEFF}(I)=L E P C$ 065
SIG2＝C。 066
TOT＝0． 067
$S I C R=0$ 。 068
$K=0$ 069
$J J=1$ 070
II＝ 071
$\mathrm{NC}=0$ 072
DC $40 \mathrm{C}=1$ ，NREC 073
READ（3）（EL（J），J＝1，NDS） 074
DC $401 \mathrm{I}=1$ ，NDS 075
IF（II。GT．NGRU）GO TO 704 076
$N C=N C+1$ 077
IF（ANC。GEaNGRUI（II）．AND。NC。LE。NGRUF（II））GO TC 702 078
IF（NCoGT．NGRUF（II））II＝II＋I 079
$704 \mathrm{TCT}=\mathrm{TCT}+\mathrm{EL}(\mathrm{I})$ 080
SIG2＝SIG2＋EL（I）＊EL（I） 081
$703 \mathrm{~K}=\mathrm{K}+1$ 082
IF（K．NE．LEPC）GO TO 401 083
SIG2＝（SIG2－TOT＊TOT／FLOAT（LEFF（JJ）））／（FLOAT（LEFF（JJ））－1。） 084
SIGR＝SIGR＋SIG2 085
$\mathrm{TCT}=0$ 086
SIG2＝C． 087
$K=0$ 088
$J J=J J+1$ 089
GC TO 401 090
$702 \operatorname{LEFF}(J J)=L E F F(J J)-1$ 091
GJ TO 703 092
401 CCNTINUE 093
400 CCNT INUE 094
SIGR2＝SIGR／FLOAT（NTEPO） 095
C 096
$C========================$ 097
C COMPUTATION CF MEAN EPOCH 098
C 099
C 100
OC 411 I＝1，LEPO 101
KCIVII）＝NKPO 102
411 ELM（I）$=0$ ． 103
CC $412 \mathrm{I}=1$ ，NKPO 104：
LEPOM（I）$=\mathrm{LEPO}$ 105
KPO（I）＝KPC（I）－NOPR 106
IF（KPC（I）。GT．O）GO TO 412 107
$K F=I A E S(K P O(I))+1$ 108
DC $732 \mathrm{~K}=1, \mathrm{KF}$ 109
732 KCIV（K）＝KOIV（K）－1 110
LEPOM（I）$=\mathrm{LEPOM}(I)-K F$ 111
KPO（I）$=$ KPO（I）+ KF 112
412 CONTINUE 113
DO $412 \mathrm{~L}=1$ ．NKPO 114
REWINC？ 115
$\mathrm{I}=1$ 116
$I I=1$ 117
$12=1$ 118
J＝LEPO－LEPOM（L） 119
IF（NGRU．GT．O）GO TO 711 120
$\mathrm{I}=2$ 121
$12=2$ 122
711 CO 414 LI＝1，NREC 123
PEAD（2）（EL（L2），L2＝1，NDS） 124
KT＝NDS＊（L1－1） 125
CO $414 \mathrm{~L} 2=1$ ．NDS 126
$K I=K T+L 2$ 127
IF（KI。LToKPO（L））GO TO 414 128
$\mathrm{J}=\mathrm{J}+1$ 129
IF（JoGTaLEPO）GO TO 413 130
GC TO（705，706），I 131
705 DC 71C IG＝1，NGRU 132
IF（KI。LE。NGRUI（II）。ORaKIaLEaNGRLF（II））GO TO 708 133
710 II＝II＋ 1 134
I $2=2$ 135
706 GO TO（708，709），I2 136
708 IF（KI。GE。NGRUIIII）。AND。KIっLE。NGRUF（II））GO TO 707 137
IF（KIoGT。NGRUF（II））II＝II＋1 138
IF（II。GT。NGRU）I2＝2 139
709 ELM（J）＝ELM（J）＋EL（L2） 140
GC TO 414 141
$707 \mathrm{KLIV}(\mathrm{J})=\mathrm{KCIV}(J)-1$ 142
I＝ 2 143
414 CONTINUE 144
IF（J．GToLEPC）GO TO 413 145
$\mathrm{Jl}=\mathrm{J}+1$ 146
DC 4lt K＝JI，LEPO 147
KCIV（K）＝KCIV（K）－1 148
416 CCNTINUE 149
413 CCNTINUE 150
C 151
 152
C CCNPUTATICN CF STANDARD DEVIATION 153
C 154
C155
TSIGR2＝SIGR2／FLOAT（NKPC） 156
SE－TSIGR2＊SQRT（2．／FLOAT（LEPO－1）） 157
C 158
 159
C LINEAR INTERPOLATION 160
C 161
C 162
I $2 \mathrm{~F}=0$ 163
CO $415 \mathrm{I}=1$ ，LEPO 164
IF（KDIV（I）。EQ。O）GO TO 733 165
ELM（I）＝ELM（I）／FLOAT（KDIV（I）） 166
CC TO 415 167
733 IF（IZF。EQ．C）WRITE（6．909） 168
$I Z F=1$ 169
WRITE（6，417）I 170
415 CONTINUE 171
$J=1$ 172
I $\mathrm{N}=1$ 173
I $F=1$ 174
DC 421 I＝1，LEPO 175
IF（KDIVII）NE，O）GO TO 422 176
IF（J．EQ．2）GO TO 42 З 177
$J=2$ 178
I $\mathrm{N}=\mathrm{I}$ 179
423 IF $=I$ 180
GC TO 421 181
1122 （FIJ．EQ．1）GO TO 421 182
$J=1$ 183
IF（IN．EG．I）GO TO 426 184
IF（IFっEQ。LEPO）GO TO 428 185
IF（IN，EGaLEPO）GO TO 429 186
$E N . E=(E L M(I F+1)-E L M(I N-1)) / F L O A T(I F-I N+2)$ 187
427 DC $425 \quad I M=I N$ ，IF 188
$I M I=I N$ 189
425 ELM（IM）＝ELM（IM1－1）＋EME 190
GO TO 421 191
426 IF（IF。EGOLEPOIGO TO 431 192
IN二1 193
$E M E=E L M(I F+1)$ 194
432 DO 43 C IH＝IN，IF 195
430 ELM（IN）＝ENE 196
GO TO 421 197
431 WRITE 6,910$)$ 198
GU TO 678 199
$428 \quad E N_{1} E=E L M(I N-1)$ 200
GO TO 432 201
429 ELM（LEPO）$=$ ELM（LEPO－1） 202
421 CCNTINUE 203
TKPO＝NKPO 204
CALL VAR（ELM，SIGMA，S， $1, L E P O, 1$, TKPO，SIGR2，DIFVERI 205
I $3=3$ 206
912 WRITE（6，9C7）SIGR2，SE，SIGMA（1），S（1），DIFVER（1） 207
WRITE $6,6 \mathrm{C} 1$ ）LEPO 208
WRITE（6，FR2）（ELM（J），J＝1，LEPO） 209
WPITE（8，9C8）LEPO，NOPR，NKPO，SIGMA（1），S（1），SIGR2，SE，DIFVER（1） 210
WRITE（E，FR3）！ELM（J），J＝1，LEPO） 211
$K K=1$ 212
WRITE（6，1C10）LEPO，KK，SIGMA（KK），S（KK），DIFVER（KK） 213
IFIKTEST。EQ．1）KK＝KRAI－1 214
DC GIC KPA＝KRAI，KRAF，KRAP 215
IFIKRA．EQ．IIGO TO 610 216
$K K=K K+1$ 217
CALL RAC（ELM，ELMI，LEPO，NOPR，KRA，LEPRA，IER） 218
IFIIER．EG•IIGC TO 640 219
WRITE（6， 641 IKK，NOPR，KRA 220
$K K=K K-1$ 221
GC TO 642 222
640 TKRA $=K R A$ 223
CALL VAR（ELM1，SIGMA，S，KK，LEPRA，TKRA，TKPO，SIGR2，DIFVER） 224
610 CCNTINUE 225
C 226
 227
C LCCAL MAXIMA OF SIGNIFICANCE LEVEL 228
 229
C 230
WRITE（6，647） 231
642 IF（KK，GE．I3）GO TO 644 232

```
    WRITE(6,643)KK 233
    GO TO 678
    234
235
    644 OC 645 I=I3,KK 236
        II = I
        237
        IF(SIII-2)。GE.S(II-1)。OR。SIII-1).LE.S(I))GC TC 645}23
        KRA=KRAI+(II-I3)*KRAP 239
        IF(KTEST.EQ.1) KRA=KRA+1 240
        CALL RAG(ELM,ELMI,LEPO,NOPR,KRA,LEPRA,IER) 241
        WRITE(6,646)S(II-1),SIGMA(II-1),KRA,KRA,LEPRA 242
```



```
        678 WRITE(6,914) 244
        END FILE 8 245
        STOP 246
C 247
C=========================================================================== 244
C IF KTEST=1 INPUT OF MEAN EPCCH TO RESTART A FCRNER COMPUTATION 249
C=========================================================================2 250
C 251
    440 READ(5,9CS)LEPO,NOPR,NKPO,SIGMA(I),S(1),SIGR2,SE,DIFVER(1)}25
            TKPO=^KPO
            253
            IZKRAI+2 254
            WRITE(6,916) 255
            READ(5,FR3)(ELM(I),I=1,LEPO)}25
            GO TO 912 257
    C 258
```



```
    C 260
            if FORMAI(I3) 261
            5 \mp@code { F O R M A T ( 4 I Z ) ~ 2 6 2 }
            6 \mp@code { F O R M A T ( E ( 2 I 5 , 3 X ) ) ~ 2 6 3 }
            I5 FCRMAT(20A4) 264
            25 FORMAT(16IS) 265
    417 FORMAT(15X,IG) 266
    601 FCRMAT(1H1,10X,15HMEAN EPCCH R = I6/11X,10(1H-),///) 267
    641 FORMAT(1H1,10X, 16HGROLPPING NUMBERI3,15H CANNOT BE MADE5X,6HNOPR = 268
            IIG,10X,5HKRA =I5) 269
    643 FORMAT(1HO,10X, 15HTHE GROUPS ARE I 2,41H & THE LOCAL MAXIMUM CANNOT 27O
            l BE DETERMINEL) . 271
    646 FORM^TIIHC,10X, 3HS =E14.6, 8X,7HSIGMA =E14.6, 8X,8HGROUPING,I4,3H 272
            1BY,I3,8X, 3HR =,I5) 273
    347 FCRMAT(1H1,10X,12HLOCAL MAXIMA/11X,12(1H-),///)
    901 FCRMAT(1HI,1OX,11HE P O C H S/11X,11|lH-1,///)
    902 FCRMATI11X,1OHINPUT TAPEI 3/11X,13HDATA PER CARDI4/11X21HTHE INPUT 276
        IFCRMAT IS 20A4/11X,2IHTHE PRINT FORMAT IS 20A4/11X,21HTHE PUNCH 277
        2FCRMAT IS 20A4///1lX,2IHNUMBER OF POINTS G(I)I4/1IX,34HNUMBER OF 278
        ITHE ELEMENTS PRECEDING QI4/11X,34HNUMBER OF THE ELEMENTS FOLLOHINC 279
        4 QI4)
        (1)
    903 FORMAT(11X,31HINDEX OF SUPERPGSED PCINTS Q(I)//,(11X,16I6))
    904 FORMATIIHO, IOX, 27HNUMBER OF UTILIZED ELEMENTSI8/11X,28HNUMBER OF C 282
        IONSECLTIVE EPOCHSI6) 283
    905 FORMATIIHC,1OX,5IHNUMBER OF GROUPS OF CCNSECUTIVE ELEMENTS TO DIISC 284
            IAPDI4)
        FORMAT(11X, 66HINDEXES OF THE FIRST AND THE LAST ELEMENT TO DISCARD 286
        I IN EACH GROUP//,(11X,5(2I6,3H*)))}28
    907 FORMAT\1HC,10X,21HMEAN VARIANCE SIGR2EI5.6/ 283
        1 11X,23HSTANDARD LEVIATION SEE15.6/ 289
        2 11X, zOHVARIANCE OF MEAN EPOCH SIGMAEI5.6/ 29O
```

$311 x, 22 H S$ IGNIFICANCE LEVEL SE15.6) 291
4 IlX, 64 HVARIANCE OF MEAN EPOCH - MEAN VARiANCE/NUMBER OF EPOCHS 292
5DIFVERE1506////1 293
908 FCRMAT(I4,2I3,5E14.6) 294
709 FORMATI $1 H 0,10 X, 48$ INDEX OF INTERPCLATED ELEMENTS IN THE MEAN EPOCH 295

1) 296
910 FORMAT(1HI, $10 X, 40 H T H E ~ E L E M E N T S ~ O F ~ M E A N ~ E P O C H ~ A R E ~ A L L ~ Z E R O S) ~$ 297
914 FORMAT(1HO, 1OX, 1OHEND OF JOB/11X,10(1H=1) 298
916 FORMAT (1H1,///:11X,31HRESTART OF A FORMER COMPUTATION/11X,31(1H-), 299
1///1 300
1010 FORMAT(1HO/1HO, 7 X, IHR, 7 X, GHGRCUPS,10X,5HSIGMA,17X,1HS,16X,6HDIFVE 301
IR//2I10,3E20.6) 302
C 303
C 304
 305
END 306
\$IBFTC VRI M94,XR7,LIST 307
SURROUTINE VAR(EPO,SIGMA,S,KK,LUP,TKRA,TKPO,SIGR2,OIFVER) 308
C 309
C 310
DIMENSION EPO(1),SIGMA(1),S(1),DIFVER(1) 311
C 312
C 313
TL=LUP 314
DIF=SIGR2/TKPO 315
$T C T=0$. 316
SIGMA (KK) $=0$. 317
DC 1 I=1,LUP 318
TCT=TCT+EPO(I) 319
SIGMA(KK)=SIGMA(KK)+EPO(I)*EPC(I) 320
1 CCNTINUE 321
SIGMA(KK) $=($ SIGMA(KK)-TOT*TOT/TL)/(TL-1.) 322
S(KK) =SQRT((TL-1•)/2•)*(TKPC*TKRA*SIGMA(KK)/SIGR2-1.) 323
OIFVER(KK)=SIGMA(KK)-DIF 324
IFIKK。EQ.I) RETURN 325
WRITE(6,2) LUP,KK,SIGMA(KK),S(KK),DIFVER(KK) 326
RETURN 327
2 FCRMAT(2I10,3E20.6) 328
END 329
\$IBFTC RGR M94,XR7,LIST 330
SUBROUTINE RAG(EPOR,EPKK,LEPO,NOPR,KRA,LEPRA,IER) 331
C 332
C 333
CIMENSION EPOR(1),EPKK(1) 334
C 335

C 336
IEP: 1 337
NO =NOFR-KRA/2 338
IF(NO。LTcKPA)CO TO 1 339
IN=MOL(NO,KRA) +1 340
GO TO 2 341
1 IF(NO.LT.CIGO TO 7 342
$\mathrm{IN}=\mathrm{NO}+1$ 343
2 II=IN 344
$12=I N+K R A-1$ 345
L[PRA $=\{$ LEPO-IN+I)/KRA 346
DC $3 \mathrm{I}=1$,LEPRA 347
EPKK(I)=EPCR(II) 348
I $1=I 1+1$ 349
$004 \mathrm{~J}=11.12$ 350
4 EPKK(I)=EPKKIII+EPOR(J) 351
$\mathrm{Il}=\mathrm{I} 2+1$ 352
$\mathrm{I} 2=12+\mathrm{KRA}$ 353
3 CONTINUE 354
DO 5 I = I.LEPRA 355
5 EPKK(I)=EPKK(I)/FLOAT(KRA) 356
RETURN 357
7 IER=2 358
RETURN 359
END 360

REFERENCES

(1) Cifapman S., Bartels J., Geomagnetism. Oxford (I940).
${ }^{(2)}$ Dorman L. I., Cosmic Ray Variations. Moscow (1957).
$\left.{ }^{(3}\right)$ Chree C., Some Phenomena of Sunspots and of Terrestial Magnetism. Pat. II, " Roy. Soc. Phil. 'Trans.", 213, 245 (I9I3).
(s) Galli M., Randi P., On the design of the optimum numerical filter with a prefixed response. "Annali di Geofisica", XX, 4 (I967).
$\left(^{5}\right)$ Attolini M., Dall'Olio L., Guerrieri V., Randi P., A computation program for numerical filtering. "Annali di Geofisica ". XXI, 2 (1968).

