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SUMMARY. — The decay of the amplitude of the free modes of the 
Earth is a potential source of information on the mechanism of dissipation 
of the elastic energy of the Earth. 

However there are serious difficulties in the interpretation of the decay; 
they are caused by several facts. One is the limited length of the significant 
part of the record which prohibits to identify the splitting of all the modes 
caused by the Earth rotation and also to follow the pattern in its rotation; 
another reason is the coupling between modes, caused by the inhomogenities 
and the flattening of the Earth, which can transfer energy from one mode 
to another. The results available are therefore very few and of poor ac-
curacy. 

In order to seek new information on the mechanism of dissipation of 
the elastic energy we solve a generalized form of the equation of elasto-
dynamic in which we have introduced some unspecified operators to represent 
the dissipation of the elastic energy. B y confronting these operators with 
the observations we would hope to find informations on the mechanism 
of dissipation. Unfortunately the laws of variation of Q with frequency, 
found by various authors who were using different observations, are not in 
agreement and are very uncertain. Therefore we can only estimate the 
average values of the parameters of the supposed mechanisms of dissipation. 

We analyze also the dissipation of energy due to viscous frictions at 
the core mantle boundary. This dissipation would be negligible even for 
viscosities of the core up to 1010 poise. 

(* ) This paper was presented at the 46 t h Annual Meeting of the American 
Geophysical Union, Washington D. C., April 1965, and also at the Second 
International Symposium on Geophysical Theory and Computers, Rehovot, 
June , 1965. 

( * * ) Department of Geophysics University of British Columbia Canada. 
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RIASSUNTO. — L'at tenuazione delle oscillazioni libero della Terra è una 
sorgente d'informazione riguardo al meccanismo della dissipazione del-
l 'energia elastica della Terra. 

Purtroppo vi sono serie difficoltà, nell ' interpretazione del decadimento 
delle oscillazioni, che hanno diverse origini. Una è la l imitata lunghezza 
della parte interessante dello registrazioni dei terremoti che impedisce la 
identificazione dello sdoppiamento delle linee spettrali causato dalla rota-
zione della Terra ed inoltre impedisce di seguire la rotazione di questa 
strutture di onde. Un 'a l t ra origine è l 'accoppiamento dei modi di oscilla-
zione causato dalle inomogeneità e dallo schiacciamento terrestre per cui vi 
è passaggio di energia da un modo all 'altro. 1 risultati disponibili sono per-
ciò pochi e di scarsa precisione. 

Allo scopo di ottenere nuove informazioni riguardo al meccanismo di 
dissipazione dell'energia elastica, in questa nota, risolvo una forma gene-
ralizzata delle equazioni dell 'elastodinamica in cui ho introdotto alcuni 
operatori che rappreseintano una vasta classe di modi di dissipazione del-
l 'energia elastica. Dal confronto di questi operatori coi risultati delle osser-
vazioni si possono ottenere nuove informazioni sul meccanismo di dissi-
pazione dell'energia. 

Sfortunatamente le leggi di variazione di Q con la frequenza, t rovate 
da vari autori che usano diverse osservazioni, non sono in accordo fra loro 
e sono molto incerte. E perciò difficile stabilire la legge di variazione di Q 
con la profondità ed ho potuto solo stabilire dei valori medi per i para-
metri degli ipotetici meccanismi di dissipazione. 

Ho altresì analizzato la dissipatione dell'energia causata dall 'attr i to 
viscoso al contorno fra il nucleo ed il mantello della Terra . Questa dissipa-
zione risulta trascurabile anche per viscosità di IO10 poise. 

LIST OF SYMBOLS 

d = d (/•) density 
ii , ¡V 

m = vu = id)) • Oi = ri 
W ' " W ' 

5 • a 
= 0 i , Oi = Oi 

3 r a r 

va parameters specified in each case 

Pn(cos &) Legendre polynomials 

p,(.*> cos ft) = sin * (> d k P " { X ) 

dxk 

(,) 1 specific dissipation function 
r, ft, rp polar coordinates 
s(«j. s2, s3) i displacement vector and its Laplace transform in polar 
S(Si. S,. S3) \ coordinates 
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w = coefficient of viscous friction at the core-mantle boundary 
')] — viscosity of the Maxwellian model 

rf = viscosity of the Kelvin-Voigt model 
A = A(r), ji = ¡x (r) elastic parameters. 

I N T R O D U C T I O N . 

In seeking improvements in the knowledge of the distribution of 
the density, elastic parameters, and parameters describing the energy 
dissipation in the Earth, there has recently been great emphasis 011 the 
observation and analyses of the free oscillations of the Earth and of 
their attenuation. The dissipation of energy of the free modes of the 
Earth is of interest, mainly if it is determined as a function of depth, 
because it provides a parameter from which we can gain additional 
information concerning the state of the constituents of the mantle. 

Various causes of the dissipation of these modes have already been 
considered, such as the viscous and the electromagnetic interactions of 
core and mantle and the effect of the steady toroidal field on the lower 
boundary of the mantle (MacDonald and Ness, 1901; Ivraut, 1965). 

For the treatment of the viscous interaction, MacDonald and Ness 
considered the boundary as a flat plate, an approximation which is 
justified because the boundary layer thickness results of 10 km at most, 
even for the lowest periods and for core viscosities up to 109 poises. 

They gave the dissipation for viscosities of 1014, 304 and 10 8 poises 
for the torsional modes „T.,, 0T6, ,7'2 and for two earth models. 

Values of the Q of the torsional modes (Anderson and Archambeau, 
1901, Marussi, 1965) became available after the paper by MacDonald 
and Ness, and we thought it of interest to compute the viscosity of the 
core which would cause the observed dissipation. 

This is done here for two simple Earth models consisting of a solid 
shell and a fluid core whose free torsional periods, for the low modes, 
are nearly the same as for the actual Earth and whose displacements 
at the core boundary are about 5 5 % of those at the outer surface. 

We find a simple formula which gives the Q as a function of the 
viscosity and the period. In both models we find that the value of 

To 
V„ 
V-V, 

unperturbed period of torsional oscillation 

gravitational potential 
perturbation of the gravitational potential 
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the viscosity which would cause the observed Q should be of the order 
of 10u poises; this seems too high. 

Since the cause of the observed dissipation is not a viscous friction 
at the core-mantle boundary nor the interaction of the magnetic and 
elastic fields, other causes of dissipation have to be considered. 

Viscosities of about 1021 and 1022 poises of the upper part of the 
mantle as a Maxwellian solid can be estimated from the postglacial 
rebounds at Lake Bonneville (Crittenden 1963) and in Fennoscandia 
(Kaariainen 1953), respectively. From these values, according to Knopoff 
and MacDonald (1958), the higher period limits, for a specific dissipa-
tion function independent of frequency, result of one and 10 years, 
respectively; therefore, if the constituents of the lower part of the mantle 
behave as those of the upper part, the dissipation of energy in the Earth's 
free modes should not depend on the viscosity of the mantle. The 
independence, however, of Q from frequency is probably valid for some 
ranges of the temperature and pressure, and since composition phases, 
pressure, temperature of the lower part of the mantle are quite different 
from those of the crust, probably the lower limits of one or 10 years 
for the frequency independent dissipation function are not valid for 
the mantle. As a matter of fact, some authors have estimated fre-
quency dependent Q's from propagation of Love and Reyleigh waves 
(Press, 1961) or from stress waves (Lomnitz, 1962). 

A research made by Ben Menahem and Toksoz (1963) shows the 
Q frequency dependence of Love and Reyleigh waves in the range bet-
ween 25 and 300 seconds; the specific dissipation results almost linearly 
dependent on frequency in that interval. 

In another collection of data by Andersen and Archambeau (1964), 
the Q's of Love waves in the range between 20 and 000 seconds result 
quite scattered and there is no evidence of any relations with frequency; 
the Q's of Love waves indicate the probable presence of a minimum 
between 70 and 200 seconds and are consistently smaller than the Q 
of Reyleigh waves (which involve also compression); the Q's of torsional 
modes instead result steadily increasing with the period in the range 
between 10 and 43 minutes, but the data in this case are very few. 
Andersen and Archambeau (1964) obtained from these date some Earth 
models for Q, where Q depends on depth, but, as they mention, the 
models are only tentative; better data in quality and quantity are 
needed. 

Slichter et al. (1964, 1965) computed the Q's of the spheroidal modes 
which followed the 1964 Alaskan quake and which were observed at 
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UCLA with the LaCoste and Romberg tidal meters nos. 4 and 7 and also 
the Q's of the UCLA observations of the 1960 Chilean quake; they are 
reported in the figure, with the scatter of data from which they have 
been obtained. Even taking into account instrumental errors, these 
data show a trend and suggest that the Q's of these modes also increase 
with the period. 

Q 
5 0 0 

4 0 0 

3 0 0 

2 0 0 

Alaskan quake 1 9 6 4 • 

Ch i lean quake I 9 6 0 + 

10 2 0 3 0 4 0 5 0 

Period of sphero ida l m o d e s in m i n u t e s 

In a recent paper on the of the torsional modes recorded at 
Trieste, Marussi (1965) reported instead a Q increasing with frequency 
in the range between 2 and about 9 minutes; the Q then has a sudden 
drop and increases again at a period of about 20 minutes. We believe 
that this may be caused by the seiches of the near Gulf of Trieste and 
northern part of the Adriatic Sea. This is indicated also by Marussi 
but cannot be definitely established until further research is done on 
these seiches. 

According to Ness and MacDonald (1961), the low order torsional 
modes (i. e., periods of 15 minutes or more) have more or less constant 
energy throughout the mantle; these oscillations sample uniformly the 
entire mantle, and they are almost the same for the non-homogeneous 
and the homogeneous mantle. For the mode of 15 .4 minutes the lower 
part of the mantle is less important since the energy distribution begins 
to drop rapidly at a depth of about 1500 km. At periods of 8 minutes 
the drop begins at 700 km. Therefore, since different wavelengths go 
through different layers of the mantle, and since Q must be sensitive 
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to changes of temperature, pressure, phase, and composition which are 
not exactly known and would cover any frequently dependent law, at 
this stage of the research in this field and with the data available, it 
would be hard to attempt any study of frequency dependent Q from 
the free modes of the Earth. 

Although the data available does not allow the investigation men-
tioned above, since the lowest torsional modes sample almost uniformly 
the entire mantle, their Q .should represent average properties of the 
mantle and it seems possible to obtain information on the average pro-
perties of the mechanism of dissipation for a simple mantle model. We, 
therefore, thought it of interest to estimate the viscosity of the mantle 
which would cause the dissipations observed. Since the Q of the free 
modes increases with frequency according to some authors or decreases 
according to others, we found the viscosity of the mantle according to 
the Kelvin-Voigt model and the Maxwell model. 

SOLUTIONS OF THE EQUATIONS OF DISSIPATIVE ELASTODYNAMICS. 

The theoretical studies of the elastodynamic problems connected 
with the earth's free modes are well advanced; the same is not true for 
theoretical studies of their dissipation. None of the research done has 
treated theoretically the combined dissipative elastodynamic problem 
from a general point of view which is needed for the discussion of some 
of the problems mentioned in the introduction. 

In this direction, we shall give a general solution of the equation 
of motion of a dissipative elastic, gravitating non-homogeneous isotropic 
field whose elastic parameter and density are functions of the distance 
from a point which will be assumed as the origin of a system of spherical 
coordinates and whose mechanism of dissipation is generic and could 
later be specified as that of Maxwellian viscosity or that of solid friction 
or of other kinds of dissipation. (For a description of the various models 
of losses see Knopofl' [1964]). 

For this purpose let us consider the following system of partial 
differential equations: 

M 2 o2 dco sin /i u A 
Fi = «iT- + — « k V - )+o1A +2o, — — A + 5»- r sin v \ i> v ) \br J 

, j y , , iU (V—Vo) , a / i y 0 \ 
+ o3u—d A + +d — [u = 0 1] 

i> r i r <> r \ S r / 
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I 3/1 , n 1 7)cor\) , (liu v 7>v\ 
F * H + 2 M - s l n * ^ ) J + " ( r » - 7 + r r ) + 

d~ò(V—Vo) d a ( a Vo\ 
r id rD&\ a> 

„ \ 1 7>A (ÒCOr Òr(0&\ì , , . / 1 Ì»M , bit' «A , 
^ + 2 + ' W ^ + + 

cZ a ( 7 — 7 . ) d a / i F , \ „ 
+ «3 «' + " n r H :—5 c - \ u T — = 0 

r sin 17 5 95 r sin pD (p \ a r j 

F, = J : 2 ( 7 — 7„) — 4 71 G ( aM + « = 0 . [1] 

/I = ^ (r2 8 l ) + 1 - 0 A («» sin (?) + ' , [2] 
f ' ì r r s m # a # V 2 rsin?? <>9; 

1 I 5 , • », 3S2/ COr = r { — (s3 Sill)? J 2r sintf / v ' a<p ( 

1 I a s. a ) 
2™../» ¡ a , 

1 

— 2 r I a r a /> i 

ot = s v„ — 

* = ^ i L . [2] 
3 r at* 

I t is immediately recognized that if 

a2 
Oj = j>10 o2 = 1>2„ o3 = —i>32 ^ --

then [1] are the equations which govern the motion of an elastic field 
of elastic parameters I = r10 — 2 v20, /i = r20 density —i>32 and gravita-
tional potential 7 . The perturbation 7 — V„ is that of the gravitational 
potential and arises from the perturbation of the density field and from 
the attraction of the density perturbation at the deformed interfaces. 

I t should be noted that in order to have the problem properly set, 
i. e. to have all the equations governing the motion of the field, we have 
to associate to [1] the equations expressing the boundary and the initial 
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conditions. However, Ave will give here a solution of [1]; the boundary 
and initial conditions will be satisfied later by means of the arbitrary 
constants of the solution. To find a solution of equations [1] let us 
now write the following equations which are a consequence of [1]. 

I l<\ Ykn d œ = 0 

1 a r i Ì Y ! 
3 sin •& ò<p + 2 

I ì\ 
1 à 1' Tk 

sin 1) a cp 

I F, YkncU» = 0 ; 

a J L 

d co = 0 

d œ = 0 

[ 3 ] 

•J. TI 71 

I L d m = j d<p I sin d d 9 j L e'"1 d t 

y . = 

and set 

'2 n + IVI* 
{ J ) Pn (COS ê) 

2 n + 1 (n — h) Ĥ a 
2 (n + le) ! 

2 n + 1 (2 n — k)\ 
~ 2 ti le ! 

if fc = 0 

P^l (cos ¡9) cos À; <p if k = 1 , 2 . . . « [ 4 ] 

2 P ^ - " » (cos (?) cos (FC — M) Ç? 

i f 1c = n + 1 , . . . . 2 u 

R1%n= j s, Til d co 
W 

B,.n = / 

à Y': i a Y 
a i? a 99 sin u 

1 a r ; A Y ; 
S î sin # a cp 43 a # 

[5] 

« 3 . . . = I 
w 

(Pn — P „ , „ ) = I ( F — F 0 ) Ykn d CO . 
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Performing the integrations in [3], we see that if the vectors 
R„ (Ri.n, R2,n, R3,n) and Rit„ are solutions of the obtained system [6], 

d 
dr 

0 , V ^ d V 
+ 2 0 2 l 7 - 0 2 

d R 1 

R x 

r 
dPo 

1 d (r R2) 
r2 i 

d(P — P„) . , d 

-1n(n + i ) - \ " y t ' n (» + D r- d r 
[6] 

+ 2 0 , y ' _ d V + - ( , o) + d - ( d f ° 
d r d r d r d r \ r 

+ 0 3 P i = 0 

« r d r- + 02 r 
R1 d RJr 
— +r 
r a r + 

1 d 
r- dr 

r r d r 

J(P—Po) = n(n + l)P — Po dd 
r2 ~— 1 n d G V + — — 4 jc G -— Rt = 0 

a r r r a r 

0 , 
1 rf^r P 3 n (n + 1) 
r d r- r- R, + ° > r d j i L + 0 3 R 3 = 0 

w (n + 1) „ 1 d 
r r- dr [6] 

then they determine the Fourier coordinates of the Laplace (or Fourier) 
transforms S (Slt S2, S3) and P — P o of the vectors (s,, s2, s3) and of the 
perturbation (V — V0). In fact from [5] it can be shown that, extending 
the procedure used by Caputo (1963), we can formally write. 

rk 
= S „ SA P i 

rk 
- H 

Ô & 
S, S „ S f t ( P a , V + S i n ,9 â y 

[7] 

s, 1 a Y a T: 
SA S * Ps • n V " — P 3 ,, * 1 sin I? a a r/ 

y = f „ + S „ S , . . ( P - P o ) r;; • 

I t is interesting to note that in equations [6], as in those resulting 
in case of the absence of dissipation (Caputo 1963), the R3 component 
is governed by a single equation (the last of the set) not involving ou 

Ru R2, nor the gravitational potential. 
A particularly interesting solution of [1] is that with P , = R2, 

v — Vo = 0, T'l = Pkn, which represents motions along parallels with 
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rotational symmetry; the periods of the free modes of this type are 
obtained from the last equation of the set. If, in the case 

/• k a 
Hi = i?2 = V = Vo = 0 , Y = Pn we set o2 = v20 + v21 — 0 I 

then we obtain the equation governing the torsional motions of an elastic 
held in which the mechanism of dissipation is of the Kelvin-Voigt type. 

a a2 
If we set o2 = j»2,) , o3 = — v31 — — v32 „ then we obtain the equa-

a t a t-
tion of the field in which the mechanism of dissipations is of the 
Maxwell type. 

When considering the elastic field to be a spherical shell of radiae rx 

and r2, the boundary conditions, in the case of axial symmetry, which 
is of interest in the problems on the free modes, are 

Pi. i = Azi + 2/x 
a Si 
TV r=rj 

r = r2 

fI (&, t) 
9i (&, t) r=r2 

Pl . l = !i\r 
a s2/r a 

a r r ~òft r=n r=r2 

u (&, t) 
92 (0, t) r~rl r - r2 

[8] 

Pi,3 = 
a s3 

a r r=ri r=r2 

U (J),t) 
(h (V, t) r~rl r=r j 

where Py are the components of the surface stress and /¡, g( the com-
ponents of the forces applied there. To satisfy conditions [8], we can 
apply the method of the integral properties; let us multiply both members 

a P „ of the first of [8] by e~p' P„ (cos ft) sin ft, the others by e~vl — sin ft 
a ft 

and integrate, we have 

A f ò i * B l t n 

a r — r R, , o ^ 1 » 
r=r 2 

J P „ sin ft J le-rt (ltd, ft 
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fi (>• + n (n + !) 
r=r2 

r=ri 
e~p> d t d d 

M a r - R* 
r ~r2 
r = r t 

; 00 

—r- sin # / 
i I 

U)e-*tdtd& . t<J] 

3 3 

E A R T H MODELS. 

For mathematical convenience in the discussion of the dis-
sipation in the Earth's free torsional modes, we assume for the 

7>i a* 
mantle a model with constant density, o2 = r2 v2t — , oa = v8I- - and ri-

i)it a p 
gidity n = j'20 with: 

d = v32 = 4.47 , r2 = 6.371 • 108 , [10] 
r1 = 3.437 • 108 , j'20 = 3.095 • 10~6 (all the other v» = 0) 

whose free torsional periods, in the low frequencies absence of dissipation, 
(all the vn = o except v32, vm) are different from those observed for 
few parts percent. R3,n then are given by (Caputo 1961) 

R,.n = C\,n r-1 + C2.n V'* [11] 

where m l and m2 are 

-•—Kb+iii+Hif- w 
a' a < 

If we chose the mantle model with o2 = v2i —— , o3 =—>-°-v3i -- -a i' o 

= r32 r-2 , // = r20 

>\ = 3 . 4 3 7 X 1 0 s , r 2 = 6 . 3 7 1 X 1 0 9 [ 1 3 ] 

v32 = 1 . 1 1 4 5 X 1 0 1 8 , v20 = 1 . 7 4 x 1 0 1 2 

whose free torsional modes, in case of absence of dissipation, also have 
periods which differ from the observed ones for few parts percent, then 
the solution R3,„ is as in [11] with 

1 , ^ Oii t i ( i 1\2/1/a n n 
m ^ = ~ 2 ± I + \n+2) \ • [ U ] 
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The periods of flie free torsional modes of the two models are ob-
tained setting /, = (ji = o in conditions [9] 

m. 1 ) C + ' K - 1 ) C + 1 

= « • [15] / 1 \ »»1 -f 1 / i \ o -f 1 
K - 1 ) » \ K . — J - K " 

The equation for the free periods is therefore for both models 

[v31 + v2i («» + n —2)]p« = 0 . [16] 

In the free modes the values of m1 and m2 are for every n and 
model [11]. 

J»! = 1 , m2 = — 4 

and for model [13] 

m1 = 1 , m2 = — 2 

Sn is for both models 

1 v 
Sn = r p\ (COS d) fil" [17] 

r2 

where A„ is the amplitude of the n mode at the surface r = r2. From [17], 
therefore, we see that the displacements at the core-mantle boundary 
of our models are about 5 5 % of the displacements at the outer surface. 
I t can also be seen that in the free modes of these two models there 
are no nodal surfaces. The models are therefore suitable for the 
study of the problem considered below, at least for the lowest fre-
quencies. 

DISSIPATION DUE TO FRICTION AT THE CORE-MANTLE BOUNDARY. 

A mechanism of dissipation in the Earth's free modes is the friction 
at the core-mantle boundary. In this case the boundary condition 
equations are [9] with ft = 0 

where w is the coefficient of the viscous damping and )\—r0 the boundary 
layer. The last two of conditions [7] become after integration 
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_ = „ 

; ; 2 no, 

l/t (V-3 — r i?3) + P w r 3 — = 0 . 
\ <> r Jr=n r1 — r„ 

The equation for the periods of the free torsional modes is therefore 

K - i ) C + 1 K - i K " 2 + 1 

n (mi — 1) r"'1+1 + p -—rA—rmi+l p (m2 - 1 ) + p ---1- <2+1 
1 1 1 0 t 1 ) 0 

If we choose the mantle model [13] with v2, = v3i = 0 except i'20, 
r32, then the significant solutions of [20] are given by 

9 , do 
7 — P ~ — •4 p, 

1 
« + Î7 

3 p w }\ 
2 r r0 

, | > , / , 1 \2|1/2 > —2 i>2— + 1 1 
1 — a I \ 2 1 

I ( d ° 2 I + — P' + 
V n 

1 
n + ~ 

2.1/ 2 P 10 1\ 
r, — r„ 

—2\p"--" + H+- > I 12 

-, I /' = 0 

+ 
[21] 

To solve equation [21] let p = p0 + Ap where p0 is associated to 
the period for w = 0 and therefore satisfies the equation [21] with w = 0 
and Ap < 10~2 p0. With these assumptions equation [21] can be written 

, 3 w 3 w Ap 
2 d» P° ' V ~ Po r. - 2 ^ 1 — a 

+ ( p o + A p ) - ^ - : 
/ i 1 o 

9 . do 
, + 2poA p-
4 p, 

1 + a 
-2(9T + 2fioApd-"J^ 

2 p0Ap 

= 0 . 

<'o\1/2 

[22] 

Since Ap < p010 % for low frequencies and w < 1013 (n < 20), 

the term — - ' 1 is negligible in respect to — 2 d0 p„, also the 
2 rs—r0 
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(la 9 
term 2 p0 Ay "for low frequencies is negligible in respect to ' ; therefore 

H 4 
we can simplify equation [22] to 

+ 3 ( a 3 - i ) ^ ( : i ~ r ° ] a v + j , 
wrx (a3 + l ) 2 do (a3 + 1 ) 

Ap is: 

. 2 (rx—r„) (a3 — 1) d„ 
A%>~1 = + 

3 rx w 

and the perturbed period 
9 r2 w'1 T* 

T = To + 1 ° 

= 0 [23] 

8 7i" (rx—r0Y d2o (a3 —1 )s ' 

From the formula above it results that the perturbation of the 
periods would therefore be negligible even for w = 1013 poises. 

In the case under consideration formula [17] is 

Sn = An - P\ (cos 9) e'fot eApt , 
r2 

and according to the definition of Q we have for model [13] 

4 AE T Ap 3 i\wT J 

The same results are valid for model [10], 
In case that Q has to be obtained from observations Ap is given by 

k 
I * t 

A p = ^ A l n i 
f JO * 

h+A 

as it is easily seen computing the integrals on the right hand member 
of [2-1]. In practice these integrals can be computed by means of spec-
tral analysis of the records. 

ANALYSIS OF OBSERVATIONS. 

Values of Q of the free torsional modes have been obtained by 
several authors. The values given by Anderson and Archambeau (1964) 
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are for periods between 10 and 20 minutes and increase from 200 to 
100, in agreement with variation of Q of the spheroidal modes (Slichter 
et al., 1964). The Q of the shear waves for periods between 40s and 
300' also increases with the period (Press 1964a, 1964b). 

Anderson and Archambeau have developed accordingly a technique 
for determining Q as a function of depth; the values are 80 for the upper 
mantle, 2000 for the middle mantle, and 5000 (as a lower bound) for 
the lower mantle. Different results have been obtained by Marussi 
(1965) from the analysis of the observations of the Chilean quake made 
with the Trieste pendulum. He found values of Q decreasing with an 
increasing period, for periods from 20 to 4 minutes, but from 4 to 2 
minutes the Q is almost constant. We shall discuss these different 
results separately. 

Using the values of the dissipation obtained by Marussi (1965), it 
is seen that the viscosity of the core at the mantle boundary, in order 
to give a significant contribution to this dissipation, should have the 
values listed in Table I . The computation is made as follows. 

The thickness of the boundary layer which reduces the ampli-
tude to 0.01 is 

{n — To) = 0.84 v "• T • [24'J 

B y combining [24] and [24'] we obtain for iv the values listed 
in the following table 

Table 1. 

Period 
Estimated specif. 

dissip. due to 
viscosity al core-
mantle boundary 

Total specif, 
dissipation w 

Boundary 
layer 

r, — ?•„ 

28m 2.2•10 3 220-1 2.2-10 1 1 1 .(MO7 

10"' 12. • 10~3 280"1 1 . 8 - 1 0 " 0 .9 -10 7 

405-1 — 

Because of the assumptions on Q the above values of w are (o 
be considered upper limits. 
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DISSIPATION IN MAXWELLIAN AND KELVIN-VOIGT MANTLE MODELS. 

We have just seen that the observed dissipation of the Earth's 
modes cannot be caused by the core viscosity at the core-mantle bound-
ary. Another suggestion could be that the cause of dissipation is the 
viscosity of the mantle. 

The values of Q observed at Trieste suggest a Maxwellian model 
for the viscosity, while the values of the other observers suggest a vi-
scosity according to the Kelvin-Voigt model. 

In this section, we shall find an estimate of the viscosity of mantle 
according to the two models of viscosity; i] will be the viscosity of the 
Maxwellian model and if that of the model of Kelvin-Voigt. The 
theory will be treated for the unified case of a Kelvin-Voigt-Maxwell 
model, and then the two cases will be discussed separately. The equation 
of motion for the torsional oscillation of model [11], in this case, can be 
written to the first order (i. e. neglecting the terms representing the 
interaction between the two mechanisms of the Ivelvin-Voigt and Maxwell 
type of losses) 

/ i i \ ( , 2 3 B> n(n + l) Bt\ ([Mo do \R, ( f + l i p ) ^ — + - — - P + d o p * ) - = o 

[25] is obtained from [6] with 

"a = (ft« + V1 > °3 = — V + d„ p") r-- , B1 = Ii2 = 0 . 

We can proceed to integrate [25] as we did for [1] and obtain for 
model [13], with viscosities, independent of coordinates, the following 
values of ml and m2 

m, 1 \ do , Uo do I 1\2//2 
— ~± P2 + V + » + - 5 . [26 2 Wv+ vWP+tk) \ 2J I 

The periods of the torsional modes are governed by the equation 

p > + * P + * - ± £ r { n ' + n - 2 ) . = 0 [27| 
f] do 

which is analogous to [17] and is obtained assuming fi = gt = 0 in the 
boundary conditions [7]. The corresponding values of Q-1 for model [13] 
are therefore: 
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4 . 
* nlrj ^ fio T 

To v1 
Q-1 = 2 . 8 • 10 1 1 — + 0 . 3 6 - 1 0 1 1 ' . 

71 ' To 

From the values of Q iiiven by Anderson and Archambean (1964), 

assuming = 0, we find for tf the following values 
V 

T a l d e I I . - K E L V I N - V O I G T M O D E L . 

Period Spec. Dissip. V1 

30'" 400 1 1 . 2 - 1 (J11 

20"' 300 1 1 . 1 - 1 0 u 

10"' 200 1 0 .8 - 1011 

From the values of Q observed at Trieste, assuming »71 = (» we 
find for >] the following values: 

T a b l e I I I . M A X W E L L M O D E L 

Period Spec. Dissip V 

10"' 

4m 

280 1 

405 1 

4 . 8 - 1 0 " 

6 . 7 - 1 0 " 

These values for the viscosity of the mantle should not be compared 
with the values obtained from the uplifts of Lake Bonneville (2-1021 

poise) or of Fennoscandia (2 •10'-'- poise) because these phenomena are 
011 a different time scale and they interest only the upper part of the 
mantle. Moreover, there are still some doubts on viscosities determined 
from these uplifts. In fact the major part of recovery took place before 
complete removal of the ice load and we know very little of the uplifts 
at the early stages of déglaciation; also we do not know what degree 
of isostasy was achieved during the glaciation. 
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The value of the viscosity of the mantle found from the departure 
of the Earth's actual figure from that of hydrostatic equilibrium is not 
too significant. In fact that departure is not supposed to have de-
veloped during the last 10 million years of deceleration of the Earth's 
rotation, but it is probably a lag between the two figures, which has 
existed since longer. 

Marussi mentioned that while the Q's of the periods of the or-
der of several minutes are not influenced by the seiches of the gulf 
of Trieste, or of the northern part of the Adriatic sea, the Q's of the 
lower frequencies are probably influenced by these seiches. We believe 
that these seiches could also give an explanation of the increasing Q 
with the frequency found in Trieste. An analysis of Trieste pendu-
lum records during a period without large earthquakes (Zadro 1961) 
showed periods of 420, 240, 210, 98, 93, 80, 70 minutes in agreement 
with the periods of the seiches of the Adriatic Sea directly computed 
from tide-ganges records (Caloi 1938, Polli 1958); but the analysis 
of Zadro as well as that of the mareograf records was made on a 
time series whose nyquist frequency was 2 . 5 cph; therefore, the per-
iods which interest the discussion of the Q obtained at Trieste could 
not be found. 

We estimate that the Gulf of Trieste has seiches with periods of 
about 17, 11, 8 .5 , 6 .8 , 5 .7 , . . . minutes, and the basin from the 
northern east coast to the west coast of the Adriatic Sea lias seiches 
with periods of about 29, 17, 15, 13, 11.6, . . . minutes, which cover 
the. range of the low free torsional modes of the Earth. We, 
therefore, believe it possible that the variation of Q with fre-
quency found in Trieste is not in agreement with the variation 
of Q found from other observations and with that of the shear waves 
because of perturbations caused by the above-mentioned seiches. A 
spectral analysis of tide-ganges and pendulums' records in Trieste, 
with higher nyquist frequency, would certainly throw light on this 
problem. 

CONCLUSION. 

The friction at the core-mantle boundary is found to be a mechanism 
of negligible importance in the dissipation of energy of the Earth's free 
modes. The results obtained here for the various viscosities of the 
mantle from the observed Q of the torsional modes are only tentative. 
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Using the same theory analogous analysis can also be made for the 
spheroidal modes. I n both cases, when the knowledge of Q will be 
more detailed, it will be possible to introduce in the theory more sophi-
sticated multilayered models (and also more, soflsticated mechanisms 
of dissipation) and, since the energy of the different modes is stored in 
different layers of the E a r t h , the viscosities in these models could be 
varied with depth. 
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