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SUMMARY. — The number of the coefficients of a numerical filter of 
an equispaced time series, corresponding to a given response is generally 
unlimited; this number should be limited for obvious computing reasons and 
not be greater than a certain value so that two data of the filtered series do 
not become dependent from each other, because of the filter. 

In this work it is shown how to calculate a filter with a given number 
of coefficients whose response is the best approximation to a given response 
and meanwhile satisfies to certain desired properties. 

RIASSUNTO. — In generale il numero dei coefficienti di un filtro numerico 
di una serie temporale a dati equispaziati, corrispondenti ad una risposta 
prefissata è illimitato; in pratica interessa che detto numero sia limitato per 
ragione di calcolo, e che non superi un certo valore per la necessità, spesso 
richiesta, che due dati della serie filtrata non siano diventati tra loro dipen-
denti a causa della operazione di filtro. 

In questo lavoro si mostra come si possa determinare un filtro di cui sia 
dato il numero dei coefficienti e la cui risposta sia la più approssimata a una 
risposta prefissata, e che nel contempo soddisfi a certe proprietà desiderate. 

INTRODUCTION. 

During the analysis of Cosmic Ray data from this laboratory, it 
was often found necessary to select or, as some people say, filter from 
a time series, waves with frequencies fading within a certain limited, 
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or unlimited band. Similar problems arise also frequently in the 
analysis of time series of equispaced data of Geophysics. 

An operation of numerical filtering on a series of equispaced data 
Mi ( t = 1, 2, . . . ) consists of the calculation of the new series: 

+ 8 

n\ = S j ajni+j ( i = 1, 2, . . .) [1] 
T 

where the ( r + s + 1 ) quantities cij are callcd coefficients or weights of 
the numerical filter. 

U.T. 6 7 8 9 10 11 12 13 \U 

September 1961 

Fig. 1 

A) a sample of hourly barometric corrected data of the cosmic ray total 
ionizing component, from a scintillation counter working in Bologna; 

B) the prime difference series obtained from the time series represented by A); 
C) the series A) when filtered by the low-pass filter represented by curves 

C) and E) of Fig. 3; 
D) the series A) when filtered by the band-pass filter represented by curves 

C) and F) of Fig. 4; 
E) the series A) when filtered by the high-pass filter represented by 

curves C) and E) of Fig. 5. 
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As an illustrating example let us consider the series of hourly ba-
rometric corrected data of the cosmic ray total ionizing component, 
from a scintillation counter •working in Bologna; represented by the 
curve (A) of Pig. 1. Now let us observe the position of diurnal oscillation 
minima around 2400 of September 6th and 7th, those around noon of 
September 10th, 11th, 12th and also the minima at earlier times of 
13th, 14th. Prom the physical point of view, in that data series it is 
clear the existence of a diurnal wave of variable amplitude and phase, 
as shown by curve (C) of Pig. 1. It is also evident that if one extracts 
with conventional methods the diurnal wave with the bandwidth allow-
ed by the length of the data series, one obtains only the mean value and 
phase over the whole interval of data. 

An ideal method should allow the separation of that wave from 
fluctuations of shorter period and from drifts, that from the physical 
point of view have a completely different meaning. 

A numerical filtering procedure as indicated by [1] that can at least 
partially satisfy those conditions, will obviously give a much better 
guarantee of independence of the amplitude and phase of a wave from 
the following, as the number of filter coefficients is small. 

On the other hand one must keep in mind that the smaller the 
coefficient number, the more scattered is the frequency band Altered. 
Furthermore the larger the number of coefficients used, the larger is 
the computation quantity. 

So one faces the following problem: given a certain frequency re-
sponse function (*), that out of physical reason might be considered 
the most desirable, and given also the maximum permissible coefficient 
number, find the coefficient set whose response is the most approximated 
to the one required. 

This is essentially a problem of numerical calculus, which has only 
little to do with the statistical treatement of filters of which an abun-
dant literature exists 2). 

In the past, calculating procedures such as cymanalysis (3- 4), 
period analysis, smoothing etc. (5- 6), were devised for the separation 
in a time series, of a wave with a given period or eliminating short 
period fluctuations often of statistical origin. 

(*) By frequency response function we mean the fractional amplitude 
of a wave of a given frequency that has passed through after the filtering 
operation. 
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Here we will briefly revise the relationship between a given function 
and another one obtained from it by a filtering procedure; then we will 
solve the specific problem and give some examples of finding a filter 
for a series of equispaced data satisfying some given conditions. 

F I L T E R I N G OF AN EQUISPACED TIME S E R I E S . 

Given a function n(t) quadratically integrable defined in the inter-
val (— oo, + oo) and a function g(t) also quadratically integrable 
defined in the interval (a, b), the equation: 

n'(t) = J g(x) n (t x) dx , [2] 

will define a function n'(t) obtained from n(t) through a filtering func-
tion g(t). 

If / is the frequency, //(/), fi{f) respectively the Fourier transform 
of n'(t) and n(t) and y>*(f) the conjugate complex of Fourier 
transform of g(t), it will be (see Appendix I) : 

= , ' ( / » . [3] 

One can also show that: 

v(f) ~ 2 ' [ 4 J 

v'(/), j'(/), cp(f) being the frequency spectra of n'(t), n(t), g(t) according 
to the definition [21] of Appendix I . 

Equation [4] means that after filtering, the amplitude of a wave 
in the frequency interval (/, / + df) is reduced to the fraction <p(f)/2. 
Furthermore filtering, shifts a wave of frequency /, by the amount: 

t] = arctg J- , [5] 
<PI 

cpx, and 9?a being the real and the imaginary parts of y(f). 
Let equation [1] be considered. Let i be the order number of the 

abscissa interval, and rii the value of a possible function n(t) corres-
ponding to the abscissa: 

t = i At (i integer) ; [6] 
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if one defines the step function: 

i («(-1 + «<)/2 for 
«(<) = < )(( for 

( (»ii + hi+i)/2 for 

« = (i - %) 
(» — Y 2 ) < « < ( * + X/2) 

i = (i + y2) , 

and uses it in place of nt, and if similarly one defines n'(t), g(t) and 
uses them in place of n'<, gt ; if A t — 1, then equation [1] can be 
written as follows: 

b 

• ' » - J " « • > • » + « > * • w 
a 

As a consequence, one can easily see that allowing for the difference 
between a definite integral an its approximate calculation by a sum-
mation, [4] and [5] are with a very good approximation the results 
obtained using fl] even though the number of points describing a period 
of sinusoidal curve is as low as five or six. 

D E S I G N OF T H E OPTIMUM NUMERICAL F I L T E R CORRESPONDING TO A 

GIVEN R E S P O N S E . 

Prom equation [3], [4], and [5], it is evident there is an infinite 
number of filters having the same response. Therefore for reason of 
convenience only symmetrical filters will be considered. Now let 
ij>0(f) = <j>(/)/2 be the desired response of a symmetrical filter g(t). Their 
coefficients will form the set: 

g* (h = — oo , . . . , N, . .. , 0 , .. . , N , ... , + oo) (gk = g-k) . 

Since it is impossible to use a filter with an infinite number of coefficients, 
and since, as we have seen with the example at the beginning, it is 
desirable for the coefficients to be reduced to a limited number, it 
will follow that, to the subset of coefficients: 

g* ( k = — N , . . . , 0 , . . . , N ) [9] 

made of JV-fl different coefficients, will correspond a response ip{f) 
which, using [8] will be given by: 

N 
y>(f) = S t gt [sin w {k + %) — sin w (fc — y2)]/w [10] 
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The best set of coefficients will be obtained by solving the following 
equation of obvious significance: 

OS 

I [y>o(f) — yj{f)]2 df = minimum , [11] 
o 

together with the following optional condition: 
N 
S * g* = C, [12] 

•—N 

which might be useful for example, when we want to eliminate the 
slow variations, or when we want to keep the average value 
unchanged (*). Substituting[10] into the first term of [11] and proceeding 
according to the method of Lagrange multipliers, we obtain the set: 

l gk—2 (y*«/2 — y*-V2)+A = 0 (k = — N, .. . , 0, . . . , N) 
\ " [13] 

X* gk — G = 0 , 
I -—N 
whose solution is: 

gk = 2 [y*+i,2 - yt-i/j - ysviJW + y2)] + C/(2N + 1) , [14] 

where: 
CO 

y* = j yJo(f) [(sin co 7c)/co] df . [15] 
o 

In Appendix I I examples of high-pass, low-pass and band-pass filters 
are given. 
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N 
(*) In fact from [10] we obtain: y(0) = Sit Çk • 

—N 
N 

a) If 0) = fffc = 1, a costant value and the very long waves 
—N 

are not affected by the filter, the same holds for the mean values over long 
enough intervals. 

N 
b) If yi(0) = S i Qk = 0, a constant value of long enough waves are 

—N 
eliminated. Obviously one may impose on equation [11] not only one con-
dition but as many as N independent conditions. 
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APPENDIX I 

If n(t) is any function quadratically integrable, when defining its 
Fourier transform as: 

,</> = / n(t) e ~ia>t dt , (co = 2nf) [16] 

let: 

Mf) = "(/) eia(/) ' [17] 

since the real part of /¿(f) is an even function, and its imaginary part 
is an odd function, one obtains: 

00 

n(t) = j v(f) cos [2Ttf + a(f)] df , [18] 

which shows that ¡x(f) as defined by [17] represents the frequency spec-
trum of n(t). Now, given a finite valued function g(t), zero everywhere 
except in the interval (a, b), the new function: 

u 

- J ' g(x) n (t -f x) dx , [19] 

will be called the filtered function obtained from n(t). 
From a preceeding definition one obtains also: 

+ oo b 

J Mf) eicoi [ [ n'(t) = p(f) e g(x) eluix dx df 

and: 

n'(t) = 
+ 00 +00 

icot ¿It _ V'(f) eimt df fi(f) rp*(f) e,<wl df [20] 

xp*(f) being the conjugate complex of the transform ip(f) of g(t) and 
H'(f) the transform of n'(t). 

From equation [20] it can be seen that: 

f*'tí)=/*U)V>*lf) , [21] 
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introducing the frequency spectrum <p(f) of g(t) and the frequency 
spectrum v'{f) of n'(t) one obtains: 

"'(/)/"(/) = <P(/)/2 • [22] 

Since [21] may also be written in the form: 

[v'(/)/2] e,v</> = [v(f)/2] eiaW [(p(f)/2 «-*?(/)], 

where a'{f), r](f) are the arguments of /*'(/), one understands 
that: 

V = arctg (p2/qp1, 
is the phase shift introduced by the filter in the sinusoidal components 
of n(t). The function 

9>(/)/2 = V(/) , 
will be called the frequency response of the filter g(t). 

If g{t) is an even function, its response will be: 
+ 00 

y>(f) = <p(f) /2 = J g(t) cos cut dt . 
00 

E X A M P L E . 

As an example of calculation of a filter response, one considers the 
filtered effect introduced by the prime differences of a series, which is 
a type of rather frequent calculation. 

The series n't of the first differences obtained from a series nr. 

n\ = nt+i — nt, 

may be considered as obtained from nt through a filter whose coefficients 
are: 

g0 = — 1 g1 = 1 . 

Function g(t) as defined by [7] will be [see A) in Fig. 2]: 
0 for t < — V» 

- 7 » » t = — V« 
— l s — 7s < *< 7' 

0 » t = v» 
l » 7 2<t<vj 
7a » t = 3A 
0 9 t >3/». 
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Its Fourier transform will be: 

yj*(f) = 2 [(sin2 w/2)/(co/2)]eî>-3jt)/2 . 

Fig. 2 
A) The filtering function corresponding to a prime difference filter i.e. 

the operation performed making differences between a term and 
its proceeding; 

B) the frequency response of prime difference filter; 
C) the phase shift introduced by the prime difference filter. 

Consequently the frequency response will be [see B) in Fig. 2]: 

w*(f) = cp(/)/2 = (2 T/n) sin2 n'T , 

and the phase shifts [see C) in Fig. 2]: 

a = — ti/2 —n/T . 

A P P E N D I X I I 

Here below are shown some examples of calculation of filter coeffi-
cients of rather frequent use. 

I . - D E S I G N OP A LOW-PASS F I L T E R . 

Let the following conditions be given: 

a) the maximum number of coefficients be 2N -f 1 ; 
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b) the ideal frequency response be [see curve A) of Fig. 3]: 

1 for 0 < / < 1 /T 
V«(/) = { 'h » / = 1/T 

0 >» / > 1/T 

36 18 12 10 8 6 5 4.5 T U 

0.2 

0.1 

0 

g( t ) 

|H -J-O-J 

[OJ 
E ) r - j 

-O-J , 
r ^ T D) 
-O-J 

•l 
k-o-L^— 

«-o-

«—0--J 

' 1 1 1 1 I ' 1 1 1 1 1 1 1 1 1 1 . 1 I 1 ,1 . .1 
-10 - 5 0 5 10 t 

Fig. 3 
A) the ideal response of a low-pass filter; 
B) the frequency response of the filter coefficients represented by D) 

with T = 12 and N = 5; 
C) the frequency response of the filter coefficients represented by E) 

with T= 12 and N= 10. 

c) coefficients fulfil the equation: 

N 
2 * gn = 1 . 

—N 
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When doing the calculations one obtains: 

gk = { Si n (2 k -I- 1 )/T — Si n (2 k — 1 )/T — 
— [2/(2N — 1)] Si 7i (2N + 1)/ T }ln + 1/(2N + 1) . 

For i = 12 and for N = 5 the coefficients and correspondent frequency 
response are represented by curve D) and B) of Fig. 3; for T — 12 and 
JV=10 one obtains the coefficients and the response represented by 
E) and C) of the same figure. 

/ \ A) 
: ay // H 
: i \ 

.•r 
/B) 

k 
f 

\ 
.•r 

/B) \\ 
• // j, 

•>-'' 
0.1 V- -«• 0.2 0.3 f 

- g(t) r̂ " 
f*"̂  rO-r F)_J «-0-, 1 

rJ ! E) 
1 ' 

-O-J | 
ur-i 

, fTrr5, i i ^m ¡ « I 
i r 4 -

! _J L \ r^ 
L ^ j J ^ r o J 

! rO-' i-o-T • 
, -o-i 

-15 -10 -5 0 5 10 15 t 

Fig. 4 
A) tlie ideal response of a band-pass filter; 
B) the frequency response of the filter coefficients represented by E) 

when ¿=18, T = 36, 2V= 10; 
C) the frequency response of the filter coefficients represented by F) 

when t = 1 8 , T = 36, iV=17; 
D) the frequency response of the filter coefficients represented by F) 

when multiplied by a factor for obtaining a 100% response for a 
period of 24 data intervals. 

I I . - D E S I G N OF A BAND-PASS F I L T E R . 

Let the following conditions be given: 
a) the maximum number of coefficients be 2N + 1 ; 

T 
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b) the ideal frequency response [see curve A) of Fig. 4] be: 

0 for 0 < / < 1 IT 
»/. » / = 1 IT 

V>o(f) = , 1 » 1/T < f < 1 It 
I 1/2 » / = 1 It 

0 » / > 1 It 

c) coefficients fulfil the equation: 

N 
£ * ¡7* = 0 . 

—N 

9* 

After doing the calculations one obtains: 

1 o.h 1 2k+ 1 2k + 1 2k — 1 2/c — 1 
am - — at 71 ——— — at n + Sin t T t ' T 

2 22V + 1 2JV + 1 
at n . — at n t T 71 (2 N + 1 ) 

For t=12, T=36, N=10 obtained coefficients and corresponding 
response are shown by curves E) and B) of Fig. 4; for i=18, T=36, 
N=17 one obtains the coefficients and the response represented by 
curves F) and G) of the same figure. 

I I I . - D E S I G N OF THE HIGH-PASS F I L T E R . 

Let the following conditions be given: 

a) the maximum number of coefficients be 2N + 1 ; 

b) the ideal frequency response be [see curve A) of Fig. 5]: 

( 0 for 0 < / < 1/T 
vM/) •/. » / = 1IT 

( 1 » f >1IT 

c) coefficients fulfil the equation: 

N 
Xt fft = 0 . 

—N 
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After doing the calculations one obtains: 

go = 1 — (2In) Si n/T + Sin (2N +1 )/T — 2/[(2A7 + 1) n] — 1/(2JV + 1) 

gk = [Si n (2k — 1 )/T — Si n (2k + l)/T]/n + 
+ [Si n (2k + 1 )/T] [2/(2N + 1) n] - 1/(2X + 1) . 

1.0 

0.5 

0 

36 18 12 10 8 6 5 4.5 T U 

0.5 

0 

-10 - 5 0 5 10 t 

Fig. 5 
A) the ideal response of a high-pass filter; 
B) the frequency response of the filter coefficients represented by D) 

when T= 12, N = 5; 
C) the frequency response of the filter coefficients represented by E) 

when T— 12, 2V=10. 

For T = 1 2 and N = 5 obtained coefficients and corresponding frequency 
response are represented by curves D) and B) in Fig. 5; for T = 1 2 

- g(t) rr 

-

i i i i i i j—i—i—i—«—i—i— 
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and N = 1 0 one obtains coefficients and frequency response represented 
by curves E ) and C) of the same figure. 

I V . - A N E X A M P L E OF F I L T E R I N G O P E R A T I O N . 

Figure 1 shows the effect of various filters on a time series: A) is 
the original series; B ) is the result of applying prime difference filter; 
C) is the result of applying the low-pass filter with T=12, J V = 1 0 ; 
D) is the effect of the band-pass filter t = 1 8 , T=36, N=17, when 
coefficients are increased so to bring the response for T—24 wave 
to be 1 0 0 % ; E ) the effect of the high-pass filter with T = 1 2 , J V = 1 0 . 
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