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SUMMARY. — Because of the similarity between the equations of mo-
tion governing infinitesimal vibration due to a small perturbing force super-
imposed on an already existing s ta te of finite stress and the equations of 
linear anisotropic elasticity, methods of analysis used in one may be extended 
to the second. In particular, in this paper, the technique of ray expansions 
is considered. .Methods for calculation of rays and ampli tude coefficients 
of the ray series are given. A seismic ray is described by a system of or-
dinary differential equations of first order which can be solved by s tandard 
numerical techniques. Another system of ordinary differential equations 
is introduced to compute ampli tude coefficients. 

RIASSUNTO. Per la similarità che sussiste tra le equazioni del moto 
che governano le vibrazioni infinitesime dovute ad una piccola perturba-
zione sovrapposta ad uno stato pre-esistente di sforzo finito e le equazioni 
della elasticità lineare anisotropa, metodi di analisi usati in un caso possono 
essere estesi all 'altro. In particolare, ili questo lavoro, si considera la teoria 
dei raggi. Vengono dati metodi per il calcolo dei raggi e dei coefficienti di 
ampiezza. Un raggio sismico è descritto da un sistema di equazioni diffe-
renziali ordinarie del prim'ordine che può essere risolto con tecniche nu-
meriche s tandard . Un altro sistema di equazioni differenziali è introdotto 
per il calcolo delle ampiezze. 

1 . I N T R O D U C T I O N 

In connection with a more detailed study of the seismic source 
mechanism and the structure of the Earth 's crust and upper mantle, 
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great attention lias been devoted to the consequences of the fact that 
the Ear th is in a state of pre-stress. This state is at tr ibuted to a num-
ber of causes, such as self-gravitation, rotation and tectonics (8'12). 

We have recently derived a theory of small deformations super-
imposed upon large ones, suitable for the study of the seismological ef-
fects of the existence of such a pre-stress. The field equations are 
obtained by postulating energy balances and imposing invariance under 
rigid body motions (5). The equations of motion turn out to be formally 
equivalent to those of linear infinitesimal anisotropic elasticity, al-
though the elasticity tensor, in oui' case, possesses only the major 
symmetry. Because of this similarity, some methods of analysis used 
in infinitesimal anisotropic elasticity may be extended to our theory 
of pre-stressed media. In particular, in this paper, the technique of 
ray expansion will be considered. 

The theory of ray series has been well developed for isotropic 
media and lias brought about a number of very valuable results t1). 
I t was first applied to anisotropic media by Babich (2), who derived 
differential equations for the wave fronts and the amplitude coef-
licients of the ray series. Babich's approach has been reformulated 
by Cerveny (6) who has obtained a system of equations which allows 
numerical solutions by standard procedures. 

From the viewpoint of applications in seismology the kinematic 
description of elastic waves and the calculation of the zeroth am-
plitudes of a ray series is of great importance. Some results in the 
description of wave processes in special cases of anisotropic media 
have been given by a number of authors (10). 

'1. E Q U A T I O N S O F R A Y S I N P R E - S T K E S S E D M E D I A 

In our analysis the. motion will be referred to a reference con-
figuration and to a fixed set of rectangular cartesian axes. The body 
in the reference configuration is assumed to be homogeneous and the 
coordinates of a material particle in the reference configuration are 
A'..i, A 1,2,3 with respect to these axes. In the subsequent motion 
of the body this particle has coordinates x¡, 

Xi = x, (X.,, t) 

In order to distinguish between the umperturbed motions and the 
perturbed ones, the terms "pr iman/" and "secondary" state will be 
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employed. In our intentions " p r i m a r y " means "prior to the occur-
rence of an earthquake". When referred to the primary configuration 
the linearized equations of motion for a pre-stressed liyperelastie 
medium are (s): 

(dljkl ukl),i + g (F*t — Ft) = Q ii, [11 

where ui are the components of t he displacement vector Held; F*/ 
and F i are t he components of the body forces in the secondary and 
primary s tate, respectively; o is the mass density. A superposed dot 
denotes the mater ial derivative, while par t ia l derivatives will be de-
noted by a comma preceding a subscript. The elasticity tensor d t lki 
is given by: 

diiki = tn do.- + cm.-! [2] 

where tji is the pre-stress tensor. d l}ki possesses only the ma jo r sym-
met ry : 

duti = dkuj [3] 

which is int imately connected with the assumption t h a t the considered 
medium is hyperelastic ( u ) . Moreover, cijti possesses the following 
symmetry properties: 

Cijkl = Ckltj = Cjikl = Cljlk [4 J 

We shall consider the case when the difference ( F * t — F t ) is 
equivalent to a point impulsive force acting a t t he origin. The equa-
tion [1] is replaced by : 

(duki Uki),i — Q Hi = 0 [5] 
— 

for t > 0 and x ^ 0, together with suitable initial conditions. The 
solutions of the equations of motion [5] are sought. These solutions 
are non-analytic along certain moving surfaces which are called wave-
fronts. A wave-front will be described by the following equation: 

t = 8 (7) ; [6] 

then [51 can be solved by assuming a ray series solution of the form: 

« . (X, o = Z A™ (X) En (t — 8 (X)) [7] 
n - (I 

where the functions E„(fi) satisfy the relation: 

E'n+l ( f i ) = En ( f t ) 
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The ray series includes, as we have already pointed out, solutions 
which are discontinuous at the wave-fronts. I t follows from [8] tha t 
the order of discontinuity of E„+, is one less than tha t of E„. By 
subst i tut ing [7] into [5] and writing hi for 8,i we get: 

S 
n= n 

d i m A k . i ^ (xt) 

+ (xt) dim fc,), I 

> i 
En (t — 8 ( X ) ) + dim h A*,ilnì (xt) + 

En_, (t — 8 ( x ) ) + (Akw (x,) dim h lu) 

En-2 (t — 8 ( X ) ) I = Q 2 (X,) En-2 (t ~ 8 ( x ) ) 
) II = II 

The summation can be eliminated and the lat ter equation can be 
cast into the form: 

N (A<">) — 31 (A<" ')) + L (Ai«"2) = 0 [9] 

for n = 0,1,2. . ., and A' •» = A< 2» = 0, by the definition. The vector 

operators L, M and N are given by: 
— > 

Ni (A<"0 = r,t ^L*,n> — Ai<»> [10a] 

Mi (A<">) = e l hi (1,1k, Ai.-,i + trx (dim hi [10b] 

L , (A<">) = q1 (dijki Ak,itn>),i [10c] 

where: 
Pit = g1 (ht hi tu + Ih hi dm) I Ha] 

ht — 8,i [ l i b ] 

The system [9] is the basic system of equations of ray theory for a 
pre-stressed medium. I t can be used, when certain initial conditions 

are given, to determine 8(x) and A'»' (x). The system is recurrent. 
For ii = 0, [9] reduces to: 

(Fjk — M Ak<°> - 0 

which represents a system of three algebraic equations for Ai{°i, 
- . 1 2 , A3'0^. The form of [12] leads us to consider the eigenvalue 
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problem for the matrix IV-. This matrix is symmetric and positive 
definite and its eigenvalues are then real and positive. They can be 
determined finding the roots of the characteristic equation: 

D e t ( I V — H 8,k ) = 0 [13] 

and will be denoted by Hm, m = 1,2,3. H,„ ( h, x ) are homogeneous 

functions of the second order in h. 

If the three H,„'s are distinct, the corresponding eigenvectors 

gen) can be determined from the equations: 

( I V — H,„ 8}lc) gk<m> = 0 

where no summation is intended over m. 

We can say the system [12] has a non-zero solution only in the 
ease when any of the eigenvalues of I V is equal to one, i.e., if the 
flm's are distinct, [12] has a non-trivial solution only in the following 
three cases: Hi = \ and H2 1, H3 ^ 1; Hi - 1 and H, ^ 1, 
H3 ^ 1; //a 1 and H, 1, Hi ^ 1. The equations: 

H„ h, x = 1 m = 1 , 2 , 3 , 1151 

are non-linear partial differential equations for x ), which describes 
the propagation of a wave front. Thus, in a pre-stressed medium, 
witli duki and its derivatives continuous, three independent wave-
fronts can propagate. One of them corresponds to the so-called quasi-
compressional waves, the others to two quasi-shear waves. These 
wave fronts are generally independent. In the degenerate case of 
two identical eigenvalues, there will be only two independent wave 
fronts. This result has been already obtained in an independent way 
by Boschi (4). The three equations [15] can be solved by means of 
the characteristics (7). 

We have already pointed out tha t //,,,'s are homogeneous func-
tions of hr, thus Eider's theorem on homogeneous functions apply 
to find: 

2 H„ lit 
DH,,, 
ill, 

101 
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Equation [l(i] allows lis to obtain the equations of the characteristics 
in a easy way. We get: 

d®, 1 òH,„ 
"as = 2 !1'a| 

òh, 1 i>H„, 
= — [ l i b 2 Daj( 

In tlie system [171 the expression for Hm is complicated because H,„ 
is solution of a cubic equation. Fortunately we do not need the analy-
tical expression for II,„, we need only the analytical expression for 
the partial derivatives of II,,,, which can be found from [13] by means 
of the theorem on the implicit functions. Thus we obtain: 

[18a] 

m - 1,2,3 [18b] 
0/(.( V Hi JI 

where 

i>Hm ì>rJk T>Jt 
-òxT ÌXt 1 ) 

ì>H,„ A R , * D u-
òhi òhi I ) 

Di i - ( r 2 2 - 1) (T3 3 - 1 ) -- r223 

1)22 = ( F u - 1) (P 3 3 - i ) -- F ' i3 

D3 3 - (Fu - 1) ( r 2 2 - i ) - r - i2 

Dl2 = D>1 = r , 3 r 2 3 - ( r * 3 1 ) Pl2 

Dia Dai = r « r 2 3 - ( r«j . — i ) r i 3 

D2 3 DS2 = r » r> 3 - ( r i : L — i ) r 2 3 

I) = tr (Dw) 

[19] 

We will give in the Appendix the explicit expression of each term DJA-
as a function of the elasticity tensor and the pre-stress. From [11] 
we deduce tha t : 

^ r 
— i L = g-i ( d i m + ( I h i [20a] 

ìli. i 

0[ >k = o > >hj,s.i h, 'lh [20b] 
DXi 
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[18], [19] and [20], substituted in [17], give: 

— ^ l u i i . ' ¡ f [ 2 ib i 

Equations [21] are tlie final system of ordinary differential equations 
for the characteristics of [15]. [21] are also the equations for seismic 
rays in a pre-stressed medium. In order to solve [15], we must know 
six initial conditions for Xi and hi at time t = 0, namely: 

x,(0) =xt [22a] 

MO) = ht [22b] 

Xt and hi must satisfy the relation: 

H m ( % t , x , ) = 1 m = 1 , 2 , 3 . [23] 

The parameter along the ray is S = t, and, for each t, hi and Xi must 
satisfy [21]. 

3 . A M P L I T U D E S O F F I R S T R A Y T E R M 

Let us now investigate about the amplitude of A10'. For sake 
of simplicity we assume tha t the three eigenvalues //„, of the matrix 

r ,* are distinct. A,0) must be in the direction of one of the g""', thus 
we may write, dropping the subscript m, 

—> 

A<®> = 93«°) g [24] 

where tp">> is the amplitude of A<°> tha t we now want to calculate. 

Equation [9], for n = 1, gives: 

N (X*1») — M A<0>) = 0 

(dau hj In — o òik) .4»-'1» — { Q-1 hi dtiki A<°h,i + 
, [25] 

+ u 1 <hw.i hi + o 1 dm-i hi,j At«» + Q-' dtm li, A<°h.i } = 0 
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If we now contract this equation with (jj and replace A'0» with çpe» g 
we obtain: 

2 dtjki (J) <Jt hi <pw,i + 9?'°> (dtiki Hi gk hij) = 0 [26] 

were use has been made of the symmetry properties of rfiju. Now 
we shall simplify this equation showing tha t the direction of differen-
tiation is along a ray whose equations are [17]. if we consider the 
two equations: 

(/: (diiki hi hi — y du,) (Jk — 0 

II [ h , x ) = l [27] 

we see that both represent the same surface in '/¿-space, thus we can 

obtain two expressions for the normal to this surface at the point h; 
hence, for some scalar quanti ty a: 

rr = 2 dijki i/i fit hi [28] 
ohj 

By contracting this equation with hi, the homogeneity of J ? ( h , x ) 
leads to: 

t r - diiki (li (jk hi lh = o [29] 

The ray derivative can be written as: 

~hr = * • [ 3 0 ] 

where 

ovi — ' = dijk, ht (h (jk [31] 
diS 

We have already identified 8, the parameter along the ray, as t\ v is 
then the velocity along the ray. Equation [24] now reads: 

• f ( v - o v U o [32] 
d 8 2 q 

which can be directly integrated to give: 

<p<"> (8) = (8„) exp I 2o i V ' 
[33] 
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Thus we have obtained the time-dependence of the amplitude of the 
— > 

lirst term in the ray expansion of w< (x,i). A similar procedure can 
be worked out for higher order amplitudes and, doing this, several 
complications may occur in the calculations. In most cases, indeed, 
the first term is the only one we need to consider in detail since it is 
the most relevant. 

Equat ion [32] is often referred to as the transport equation and 
can be interpreted, in the linear theory of elasticity, in terms of con-
servation of energy. 

First of all [30] tells us tha t [32] is equivalent to: 

( l l V Q (<p<°>)2 v = 0 

and hence: 

[34] 

o (q> <"» )2 v • n d -T [35] 

for any surface -T with normal n. If E is the surface of a ray tube 

we conclude tha t [(g (cp^)2v • n) d.T] is constant along an elementary 
ray tube with cross section d-T. Let us now consider a volume V„ 
in the primary state. This volume is V when the pre-stress is applied 
and then, during the action of a perturbing force, the total strain 
energy is: 

O = • . ì>Mi \ 
" { Ä , A + òXA K [36] 

r „ 

where AiA are the deformation gradients and IF = ir(Ii,l2,Is) is the 
strain energy function. From [36] we obtain: 

O 

V„ 

a i r / ì>Ui 7>Ül TV 
, —ÏT— d Vo 

ì l i , òA., 
[37] 

The integrand of [37] can be expanded to give: 

¡>2ir , , ) òùi 
Q 

ö^l ôA G <̂ 4 ¡A ka U J B ) òXA 
d Vo [38] 

Remembering tha t In in our case is the Jacobian of the transformation 
Xi = Xi ( / ) , we can utilize in [38] the well-known relations: 
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V AV„ = dV 

Ul.A = Ml,J Aja 

t„ = I , A u J A 
DW 

[391 

to obtain: 

Q = | i U, + «*., Aja Aib - . I « , . , d V [401 
| ( oVI OA KB ) 

r 

Finally we observe tha t the second term in the integrand is an alter-
native expression (12) for the tensor (lijn and hence the last equation 
becomes: 

= | (t,j +dtjk,uk,,)ut,idV t41] 
1* 

If 

9 n ii - d V 

is the kinetic energy, the total change in energy is: 

/ i = | (tu iit,j + dilk, uk,i iii.j + o iii Hi) d F [43] 

r 

Equation [1] and Gauss theorem transform [43] into the 

E = | tu iu n, d.S' + | g u, (F*t — Ft) d V + | <lUkl uk,i in n, AS 

S V s [44] 

Each term of [44] can be easily interpreted: the first integral is the 
rate of working of the surface forces on 8 due to pre-stress; the second 
term refers to the work of the difference (F*t —Ft), which is the only 
meaningful quantity in the theory because it is hard to imagine a 
realistic method which could give the absolute value of F*i or Ft 
separately. The third term represents the rate of change of the in-
cremental energy flux. 
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4 . A P R O P E R T Y OF RAYS I N P R E - S T R E S S E D MEDIA 

We want to show tha t the rays, whose equations are [17], are 
extremals of a certain line integral, i.e. t h a t : 

/ = 
1 d S 

v 
[451 

is minimum when the pa th of integration is the ray [17] connecting 

the two fixed points xa and X\. We denote by t (y ) the tangent a t the 

point y of L. To calculate v[ x , t ) we consider the ray along t ( y ); 

equation [17a] gives the direction of the corresponding h ( y ) ; the cal-

culation of v\ x , t ) follows then from [31]. If we write x = (x,y,z) 

and if we consider x as the ray variable we have: 

I = » (x, t) (1 + y'2 + z'lyr* Ax [40| 

Euler's equations must be satisfied for the integrand to be a minimum 
along the pa th of integration. These equations can be combined and 
written in an elegant form as: 

d 
d,S' 

1 1 I ^ 
t - r* " s r r V 

[471 

where: 

n 
Ht 

à -> I ^ 
- — t 

M ( ' h ) 
is the normal derivative. We want to write down [471 in terms of h 

and H instead of v and t. Now li \ x , t ) and x , t ) are defined by 
equations [15] and [17a], i.e.: 

2 v • t = 
à / / 

;>h 

H ( h , x ) = 1 

[48] 

[49] 

Ï -
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and, for the homogeneity of H\x,h), we get: 

t • h \ v = 1 [50] 

Since these equations are valid for all x and for all uni t vectors t , 
the differentiation of equation [49] with 8/81 gives: 

ÏÏhj 
h r ^ = 0 

S/,-

and of equation [50]: 

Bv 

sT 
= t ) t - « 2 h 

[51] and [52] can bo used to write equation [47] in the form: 

[51] 

[52] 

d h 
< 1 , = V '53] 

But, again from equation [50], we can get: 

" - (i 
ÒXi \ v 

òhi 

and, f rom [49], 

iH \ 2 ( i l h \ 
ÒXi h ' \ ÒX, h 

[54] 

Combining now [53] and [55] and remembering t h a t ds = vdtf we 
obtain: 

dh 
d,Sr 

òH 
[56] 

i.e. we obtain equation [17b], which is satisfied only if L is a ray. Thus 
we have shown t h a t I , the travel t ime between x„ and Xi, is minimum 
only on a path whose equations are [17]. 
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A P P E N D I X 

W e g i v e h e r e t h e e x p l i c i t e x p r e s s i o n s f o r e a c h of Dj*, as a f u n c -
t ion of t h e e l a s t i c i t y t e n s o r . F r o m [2] a n d [11] i t fo l lows t h a t : 

On - 1 + g-2 { (tjih,h,)2 + tjihjhihrhs (c2r2, + c3r3s) + Ci]2l C3r3s 

— (Cmai hi hi)2 } — Q-1 { (2t}i + C2J21 + Caisi) hjhi } 

I >22 = 1 + Q~2 { ( t j ih jh i ) 2 + tjihjhihrlu (dn, + c3r:i«) + dm C3r3i hjhihrh, + 

— (dm hjhiY } — { (2 tn + Ciju + c3j3i) hjh, } 

I >33 = 1 + Q'2 { ( t j lhj lh) 2 + tjihjhihrhs (Clrl. + C2r2») + Cim Ciris hjhihrh» + 

- (ci/21 hill,)- } — Q l { (2 t j i + Ciju + am) lijh, } 

1 ) 1 2 —— g"2{ hjhihrh, (6*173/ C2r3n tjl drl, Csj3l Clr2«) } + ¡?_1 dm lljlh 

Di3 = q - { hjhihrhs (dm cars, — tji cir3s — c-im cira,)} + o-1 eim hjh, 

I»23 = o -{ hjhihrhs (cim cim, — in ctra, — dm <?s«n)} + Q l dm hjhi 
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