Ray theory for pre-stressed media

E. Boscili (*) - E. Di ('trzalo (**)

Received on March 30th, 1975

Abstract

Sumarr. - Because of the similarity between the equations of motion governing infinitesimal vibration the to a small perturbing force superimposed on an already existing state of finite stress and the equations of linear anisotropic elasticity, methods of analysis used in one may be extended to the second. In particular, in this paper, the technique of ray expansions is considered. Methods for calculation of rays and amplitude cocfficients of the ray serics are given. A seismic ray is described by a system of ordinary differential equations of first order which can be solved by standard numerical teehniques. Another system of ordinary differential equations is introduced to compute amplitude cocfficients.

Riassunto. - Per la similarita che sussiste tra le equazioni del moto che governano le vibrazioni infinitesime dovate ad una piceola perturbazione sovrapposta ad uno stato pre-esistente di sforzo finito e le equazioni della clasticita lineare anisotropa, metodi di analisi usati in un caso possono essere estesi all:altro. In particolare, in questo lavoro, si eonsidera la teoria dei raggi. Vengono dati metodi per il caleolo dei raggi e dei cocfficionti di ampiegza. Un raggio sismico è deserito da un sistema di equazioni differenziali ordinarie del primordine che puo essere risolto eon teeniche numeriche standard. Un altro sistema di equazioni differenziali e introdotto per il eateolo delle ampiezze.

1. Introncemon

In connection with a more detailed study of the seismic source meehanism and the structure of the Farth's crust and upper mantle,

[^0]great attention has been devoted to the consequences of the fact that the Earth is in a state of pre-stress. This state is attributed to a mumber of causes, such as self-gravitation, rotation and tectonics (8,12).

We have recently derived a theory of small deformations superimposed upon large ones, suitable for the study of the seismological effects of the existence of such a pre-stress. The field equations are obtained by postulating energy balances and imposing invariance under rigid body motions ${ }^{5}$). The equations of motion turn out to be formally equivalent to those of linear infinitesimal anisotropic elasticity, although the elasticity tensor, in our case, possesses only the major symmetry. Because of this similarity, some methods of analysis used in infinitesimal anisotropic elasticity may be extended to our theory of pre-stressed media. In particular, in this paper, the technique of ray expansion will be considered.

The theory of ray series has been well developed for isotropic media and has brought about a number of very valuable results (${ }^{1}$. It was first applied to anisotropic media by Babich (${ }^{2}$), who derived differential equations for the wave fronts and the amplitude coefficients of the ray series. Babich's approach has been reformulated by: Cerveny $\left(^{(6)}\right.$ who has obtained a system of equations which allows numerical solutions by standard procedures.

From the viewpoint of applications in seismology the kinematic description of elastic waves and the calculation of the zeroth amplitudes of a ray series is of great importance. Some results in the description of wave processes in special cases of anisotropic merlia have been given by a number of authors (${ }^{10}$).

\because EqUatioxs of rays iN pre-stressed media

In our amalysis the motion will be referred to a reference configuration and to a fixed set of rectangular cartesian axes. The body in the reference configuration is assmmed to be homogeneous and the coordinates of a material particle in the reference configuration are $I_{1}, A=1,2,3$ with respect to these axes. In the sulsequent motion of the body this particle has coordinates x_{i},

$$
r_{i}=r_{i}\left(\Gamma_{A}, t\right)
$$

In order to distinguish between the umperturbed motions and the perturbed ones, the terms "primary" and "secontary" state will be
employed. In our intentions "primary" means "prior to the occurrence of an earthquake". When referred to the primary configmation the linearized equations of motion for a pre-stressed hyperelastic. medium are $\left.{ }^{5}\right)$:

$$
\begin{equation*}
\left(d_{i j k l} u_{k i l}\right), j+\varrho\left(F_{i}^{*}-F_{i}\right)=\varrho \ddot{u}_{i} \tag{1}
\end{equation*}
$$

where u_{1} are the components of the displacement vector field; F^{*}; and F_{i} are the components of the body forces in the secondary and primary state, respectively; o is the mass density. A superposed dot denotes the material derivative, while partial derivatives will be denoted by a comma preceding a subscript. The elasticity tensor $d_{i j k}$ is given hy:

$$
d_{i j k l}=t_{J l} \delta_{i k}+c_{i j k l}
$$

where $t_{j l}$ is the pre-stress tensor. disk possesses only the major symmetry:

$$
\begin{equation*}
d_{i j k l}=d_{k \cdot t i j} \tag{3}
\end{equation*}
$$

which is intimately comnected with the assumption that the considered morlium is hyperelastic (${ }^{11}$). Moreover, $c_{i j k}$ possesses the following symmetry properties:

$$
\begin{equation*}
c_{i j k l}=c_{k / 1 j}=c_{j k i l}=c_{i j l k} \tag{4}
\end{equation*}
$$

We shall consider the case when the difference ($F_{i}^{*} \ldots F_{i}$) is equivalent to a point impulsive force acting at the origin. The equation [1] is replaced by:

$$
\left(d_{i j k l} u_{k i l}\right)_{j}-0 \ddot{i}_{i}=0
$$

for $t>0$ and $\vec{x} \neq 0$, together with suitable initial conditions. The solutions of the equations of motion [5] are sought. These solutions are non-analytic along certain moving surfaces which are called wavefronts. A wave-front will be described by the following equation:

$$
\begin{equation*}
t=N(x): \tag{6}
\end{equation*}
$$

then [a] can be solved by assuming a ray series solution of the form:

$$
\begin{equation*}
\left.u_{i} \overrightarrow{(x}, t\right)=\sum_{n=0}^{\infty} A_{i}^{(n)} \overrightarrow{(x)} E_{n}(t-\mathbb{N}(\vec{x})) \tag{7}
\end{equation*}
$$

where the functions $E_{n}(\mu)$ satisfy the relation:

$$
\begin{equation*}
E_{n+1}^{\prime}(\mu)=E_{n}(\mu) \tag{8}
\end{equation*}
$$

The ray series includes, as we have already pointed out, solutions which are discontinuous at the wave-fronts. It follows from [8] that the order of discontinuity of E_{n+1} is one less than that of E_{n}. By substituting [7] into [5] and writing h_{i} for $S,{ }^{2}$ we get:

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left\{\left[d_{i j k l} A_{k, 1^{(n)}\left(x_{i}\right)}\right]_{j} E_{n}(t-S(\overrightarrow{\mathrm{x}}))+\left\lceil d_{i j k l} h_{j} A_{k, 1}(n)\left(x_{i}\right)+\right.\right. \\
& +\left(A_{k^{(n)}}\left(x_{i}\right) d_{i j k l} h_{l}\right), j \mid E_{n-1}(t-N(\overrightarrow{\mathrm{x}}))+\left(A_{k^{(n)}}\left(x_{i}\right) d_{i j k l} h_{j} h_{i}\right) \\
& \left.E_{n-2}(t-N(\overrightarrow{\mathrm{x}}))\right\}=0 \sum_{n=0}^{\infty} A_{i}^{(n)}\left(x_{i}\right) E_{n-2}(t-S(\overrightarrow{\mathrm{x}}))
\end{aligned}
$$

The summation can be eliminated and the latter equation can be (ast into the form:

$$
\begin{equation*}
\overrightarrow{\mathrm{N}}\left(\overrightarrow{\mathrm{~A}}^{(n)}\right)-\overrightarrow{\mathrm{M}}\left(\overrightarrow{\left.\mathrm{~A}^{(n-1}\right)}\right)+\overrightarrow{\mathrm{L}}\left(\overrightarrow{\mathrm{~A}}^{(n-2)}\right)=0 \tag{9}
\end{equation*}
$$

for $\prime \prime=0,1,2 \ldots$, and $\vec{A}(-1)=\vec{A}^{(-2)}=0$, by the definition. The vector operators $\overrightarrow{\mathrm{L}}, \overrightarrow{\mathrm{M}}$ and $\overrightarrow{\mathrm{N}}$ are given by:

$$
\begin{align*}
& \mathrm{N}_{i}\left(\overrightarrow{\mathrm{~A}}^{(n)}\right)=\Gamma_{i k} A_{k^{(n)}}^{(n)}-A_{i^{(n)}}^{(n)} \tag{10a}\\
& \mathrm{M}_{i}\left(\overrightarrow{\mathrm{~A}}^{(n)}\right)=\varrho^{-1} h_{j} d_{i j k l} A_{k, l}+\varrho^{-1}\left(d_{i j k i l} h_{1} A_{k^{(n)}}^{(n)}\right), \\
& \mathrm{L}_{i} \overrightarrow{(\vec{A}}(n)=\varrho^{-1}\left(d_{i j k l} A_{\left.k, l^{(n)}\right), j}\right.
\end{align*}
$$

where:

$$
\begin{align*}
& \Gamma_{j k}===\varrho^{-1}\left(h_{k} h_{l} t_{h}+h_{i} h_{l} c_{i j k l}\right) \tag{11a}\\
& h_{i}=s, i
\end{align*}
$$

The system [9] is the basic system of equations of ray theory for a pre-stressed medium. It can be used, when certain initial conditions are given, to determine $\overrightarrow{N(x)}$ and $\overrightarrow{\left.A^{(\prime \prime}\right)}(\vec{x})$. The system is recurrent. For $/ 1=0$, [9] reduces to:

$$
\begin{equation*}
\left(\Gamma_{j k}-\delta_{j k}\right) A_{k^{(0)}}^{(0)}=0 \tag{12}
\end{equation*}
$$

which represents a system of three algebraic equations for $A_{1}{ }^{(n)}$, $A 2^{(o)}, A 3^{(0)}$. The form of $[12]$ leads us to consider the eigenvalue
problem for the matrix $\Gamma_{\text {fl }}$. This matrix is symmetric and positive definite and its eigenvalues are then real and positive. They ran be determined finding the roots of the characteristic equation:

$$
\begin{equation*}
\operatorname{Det}\left(\Gamma_{j k}-H \delta_{j k}\right)=0 \tag{13}
\end{equation*}
$$

and will be denoted by $H_{m}, m=1,2,3 . H_{m}(\overrightarrow{\mathrm{~h}}, \overrightarrow{\mathrm{x}})$ are homogeneous functions of the second order in $\overrightarrow{\mathrm{h}}$.

If the three H_{m} 's are distinct, the corresponding eigenvectors \rightarrow $g^{(m)}$ call be determined from the equations:

$$
\begin{equation*}
\left(\Gamma_{j k}-H_{m} \delta_{k k}\right) g_{k}(m)=0 \tag{14}
\end{equation*}
$$

where no summation is intended over m.
We can say the system [12] has a non-zero solution only in the case when any of the eigemvalues of $\mathrm{l}_{j k}$ is equal to one, i.e., if the H_{m} 's are distinct, $[12]$ has a non-trivial solution only in the following three cases: $H_{1}=1$ and $H_{2} \neq 1, \quad H_{3} \neq 1 ; H_{2}-1$ and $H_{1} \neq 1$, $H_{3} \neq 1 ; H_{3}=1$ and $H_{1} \neq 1, H_{2} \neq 1$. The equations:

$$
\begin{equation*}
H_{m}(\overrightarrow{\mathrm{~h}}, \overrightarrow{\mathrm{x}})=1 \quad m=1, \geq, 3 \tag{1}
\end{equation*}
$$

are non-linear partial differential equations for $s(\vec{x})$, which describes the propagation of a wave front. Thus, in a pre-stressed medium, with $d_{i j k}$ and its derivatives continuous, three independent wavefronts can propagate. One of them corresponds to the so-called quasicompressional waves, the others to two quasi-shear waves. These wave fronts are generally independent. In the degenerate case of two identical eigenvalues, there will be only two independent wave fronts. This result has been already obtained in an independent way by Boschi (4). The three equations [15] (an be solved by means of the characteristics (${ }^{\circ}$).

We have already pointed out that H_{m} 's are homogeneous functions of h_{i}; thus Euler's theorem on homogeneous functions apply to find:

$$
\begin{equation*}
\geq H_{m}=h_{i} \frac{\partial H_{m}}{\partial h_{i}} \tag{16}
\end{equation*}
$$

Equation [16] allows us to obtain the equations of the characteristics in a easy way. We get:

$$
\begin{align*}
& \frac{d l x_{i}}{d S}=\frac{1}{\underline{2}} \frac{\partial H_{m}}{\partial h_{i}} \tag{17al}\\
& \frac{\partial h_{i}}{\partial S}=-\frac{1}{\underline{2}} \frac{\partial H_{m}}{\partial x_{i}} \tag{1;b}
\end{align*}
$$

In the system [17] the expression for H_{m} is complicated because H_{m} is solution of a cubic equation. Fortmately we do not need the analytical expression for H_{m}, we need only the analytical expression for the partial derivatives of H_{m}, which can be found from [13] by means of the theorem on the implicit functions. Thus we obtain:

$$
\begin{align*}
\frac{\partial H_{m}}{\partial r_{i}} & =\frac{\partial \Gamma_{j k}}{\partial x_{i}} \frac{1)_{j k}}{11} \tag{18a}\\
\frac{\partial H_{m}}{\partial h_{i}} & =\frac{\partial \Gamma_{j k}}{\partial h_{i}} \frac{1)_{j k}}{11}, \quad m=1,2,3 \tag{18~b}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{I}_{11}=\left(\Gamma_{22}-1\right)\left(\Gamma_{33}-1\right)-\Gamma_{23} \\
& \mathrm{I}_{22}=\left(\Gamma_{11}-1\right)\left(\Gamma_{33}-1\right)-\Gamma_{13} \\
& \mathrm{D}_{33}=\left(\Gamma_{11}-1\right)\left(\Gamma_{22}-1\right)-\Gamma_{12} \\
& \mathrm{I}_{12}=\mathrm{I}_{11}=\Gamma_{13} \Gamma_{23}-\left(\Gamma_{33}-1\right) \Gamma_{12} \tag{19}\\
& \mathrm{I}_{13}=\mathrm{I}_{31}=\Gamma_{12} \Gamma_{23}-\left(\Gamma_{22}-1\right) \Gamma_{13} \\
& \mathrm{I}_{23}=\mathrm{I}_{32}=\Gamma_{12} \Gamma_{13}-\left(\Gamma_{11}-1\right) \Gamma_{23} \\
& \mathrm{I}=\operatorname{tr}_{12}\left(\mathrm{I}_{f k}\right)
\end{align*}
$$

We will give in the Appendix the explicit expression of each term $\mathrm{D}_{j k}$ as a function of the elasticity tensor and the pre-stress. From [11] we derluce that:

$$
\begin{align*}
& \frac{\partial \Gamma_{j k}}{\partial h_{i}}=\theta^{-1}\left(d_{i j k t}+d_{i k j l}\right) h_{t} \tag{20a}\\
& \frac{\partial \Gamma_{j k}}{\partial \cdot r_{i}}=\theta^{-1} d_{i j k s i} h_{i} h_{s} \tag{20b}
\end{align*}
$$

[18], [19] and [20], substituted in [17], give:

$$
\begin{align*}
& \frac{\partial x_{i}}{\partial S}=Q^{-1} d_{i j k l} h_{l} \frac{\mathrm{D}_{j k}}{\mathrm{D}} \tag{21a}\\
& \frac{\partial h_{i}}{\partial S}=-\frac{!}{2} d_{l k j s, i} h_{t} h_{s} \frac{\mathrm{D}_{j k}}{\mathrm{D}} \tag{21b}
\end{align*}
$$

Equations [21] are the final system of ordinary differential equations for the characteristics of [15]. [21] are also the equations for seismic rays in a pre-stressed medium. In order to solve [15], we must know six initial conditions for x_{i} and hit time $t=0$, namely:

$$
\begin{align*}
& x_{i}(0)=\bar{x}_{i} \tag{22a}\\
& h_{i}(0)=\overline{h_{i}} \tag{2}
\end{align*}
$$

x_{i} and \bar{h}_{i} must satisfy the relation:

$$
H_{m}\left(\bar{h}_{i}, \bar{x}_{i}\right)=1 \quad m=1,2,3 .
$$

The parameter along the ray is $S=t$, and, for each t, h_{i} and x_{i} must satisfy [21].

3. Amplitudes of first ray term

Let us now investigate about the amplitude of $\overrightarrow{\mathrm{A}^{(0)}}$. For sake of simplicity we assume that the three eigenvalues H_{m} of the matrix $\Gamma_{j k}$ are distinct. $\overrightarrow{\mathrm{A}}\left({ }^{(0)}\right.$ must be in the direction of one of the $\overrightarrow{g^{(m)}}$, thus we may write, dropping the subscript m,

$$
\overrightarrow{\Lambda^{(o)}}=\varphi^{(\rho)} \vec{g}
$$

where $\varphi^{(0)}$ is the amplitude of $\vec{\lambda}^{(0)}$ that we now want to calculate.

Equation [9], for $n=1$, gives:

$$
\vec{N}(\vec{A}(1))-\vec{n}(\vec{A}(0))=0
$$

or

$$
\left(d_{i j k l} h_{j} h_{1}-\varrho \delta_{i k}\right) A_{k^{(1)}}^{(1)}-\left\{\varrho^{-1} h_{j} d_{i j k l} A^{(o)_{k, l}}+\right.
$$

$$
+\varrho^{-1} d_{i j k, j} h_{l} A_{k^{(0)}}^{(0)}+\varrho^{-1} d_{i j k l} h_{l, j} A_{k^{(0)}}^{(0)}+\varrho^{-1} d_{i j k l} h_{j} A^{(0)} k_{k, l} \grave{\zeta}=0
$$

If we now contract this equation with g_{J} and replace $\overrightarrow{\lambda^{(0)}}$ with $\varphi^{(0)} \vec{g}$ we obtain:

$$
\begin{equation*}
2 d_{i j k l} g_{j} g_{k} h_{i} \varphi^{(0)}, t+\varphi^{(0)}\left(d_{i j k i} g_{i} g_{k} h_{h_{, j}}\right)=0 \tag{26}
\end{equation*}
$$

were use has been made of the symmetry properties of $d_{l f k t}$. Now we shall simplify this equation showing that the direction of differentiation is along a ray whose equations are [17]. If we consider the two equations:

$$
\begin{align*}
& g_{t}\left(d_{1, k t} h_{l} h_{t}-0 \delta_{i h}\right) g_{k}=0 \\
& H\left(\overrightarrow{h_{1}}, \overrightarrow{\mathrm{x}}\right)=1 \tag{27}
\end{align*}
$$

we see that both represent the same surface in h-space, thas we can obtain two expressions for the normal to this surface at the point $\overrightarrow{h_{1}}$; hence, for some scalar quantity σ :

$$
\begin{equation*}
\sigma \frac{\partial H_{m}}{\partial \bar{h}_{j}}=2 d_{i J k l}!_{i} g_{k} h_{t} \tag{28}
\end{equation*}
$$

By contracting this equation with h_{l}, the homogeneity of $H\left(\overrightarrow{h_{1}}, \vec{x}\right)$ leads to:

$$
\begin{equation*}
\sigma=-d_{l j k i}\left(g_{1} g_{k} \cdot h_{1} h_{l}=0\right. \tag{29}
\end{equation*}
$$

The ray derivative can be written an:

$$
\begin{equation*}
\frac{d}{d S}=\vec{v} \cdot \vec{\nabla} \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
o v_{1}=\frac{\dot{u}_{1}}{\sqrt{d} s}=d_{1 k_{k-1}} h_{i} g_{j} g_{k} \tag{31}
\end{equation*}
$$

We have alrealy identified s, the parameter along the ray, as $t ; \overrightarrow{\mathrm{v}}$ is then the velocity along the ray. Equation [24$]$ now reads:

$$
\begin{equation*}
\frac{\mathrm{d} \varphi^{(0)}}{\mathrm{dN}} \div \frac{\varphi^{(0)}}{2 \underline{\varrho}}(\vec{\nabla} \cdot \underline{\varrho} \mathrm{v})=0 \tag{32}
\end{equation*}
$$

which can be directly integrated to give:

$$
\begin{equation*}
\varphi^{(0)}(S)=\varphi^{(a)}\left(S_{o}\right) \exp \left\lfloor-\int \frac{1}{2 \varrho}(\vec{\nabla} \cdot \varrho \overrightarrow{\mathrm{v}}) \mathrm{d} S\right\rfloor \tag{33}
\end{equation*}
$$

Thus we have obtained the time-rlependence of the amplitude of the first term in the ray expansion of $\left.u_{i} \overrightarrow{(x}, t\right)$. A similar procedure can be worked out for higher order amplitures and, doing this, several complications may occur in the calculations. In most cases, indeed, the first term is the only one we need to consider in detail since it is the most relevant.

Equation [32] is often referred to as the transport equation and can be interpreterl, in the linear theory of elasticity, in terms of conservation of energy.

First of all [30] tells us that [32] is equivalent to:

$$
\begin{equation*}
\operatorname{liv}\left[\varrho\left(\varphi^{(0)}\right)^{2} \overrightarrow{\mathrm{v}} \mid=0\right. \tag{34}
\end{equation*}
$$

and hence:

$$
\begin{equation*}
\int_{\Sigma} g\left(q^{(0)}\right)^{2} \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{n}} \mathrm{~d} \Sigma=0 \tag{35}
\end{equation*}
$$

for any surface Σ with normal \vec{n}. If $\check{\sim}$ is the surface of a ray tube we conclude that $\left[\left(\rho\left(\varphi^{(0)}\right)^{2} \vec{v} \cdot \vec{n}\right) d \Sigma\right]$ is constant along an elementary ray tube with cross section ds. Let us now consider a volume $V_{\text {o }}$ in the primary state. This volume is V when the pre-stress is applied and then, during the action of a perturbing force, the total strain energy is:

$$
\begin{equation*}
O=\int_{V_{0}} W\left(A_{i A}+\frac{\partial u_{i}}{\partial V_{A}}\right) d V_{0} \tag{36}
\end{equation*}
$$

where $A_{i A}$ are the deformation gradients and $W=W\left(I_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}\right)$ is the strain energy function. From [36] we obtain:

$$
\begin{equation*}
\dot{i}=\int_{i_{0}} \frac{\partial W^{i}}{\partial A_{i A}}\left(\dot{A}_{j B}+\frac{\partial u_{i}}{\partial X_{B}}\right) \frac{\partial \dot{u}_{i}}{\partial X_{A}} d V_{0} \tag{37}
\end{equation*}
$$

The integrand of [37] can be expanded to give:

Remembering that I_{3} in our case is the Jacobian of the transformation $x_{i}=x_{i}\left(X_{A}, t\right)$, we can utilize in [38] the well-known relations:

$$
\begin{align*}
& \mathrm{I}_{3}^{1 / 2} \mathrm{dV}_{0}=\mathrm{dV} \\
& u_{i, A}=u_{i, j} A_{j A} \tag{39}\\
& t_{l J}=\mathrm{I}_{3}^{-1 / 2} \quad A_{/ A} \quad \frac{\partial W}{\partial A_{i A}}\left(A_{k B}\right)
\end{align*}
$$

to obtain:

$$
\begin{equation*}
\dot{O}=\int_{\dot{V}}\left\{t_{i j}+1_{3}^{-1 / \varepsilon} u_{k, 1} A_{, A} A_{l n} \frac{\partial^{2} W}{u_{i, 1} 0, \dot{A}_{k B}}\right\} u_{i, j} d V \tag{40}
\end{equation*}
$$

Finally we observe that the second term in the integrand is an alternative expression (${ }^{12}$) for the tensor $d_{i j n}$ and hence the last equation becomes:

$$
\begin{equation*}
\dot{\Omega}=\int_{i^{-}}\left(t_{i j}+d_{i j k l} u_{k, 1}\right) \dot{u}_{i, j} d V \tag{41}
\end{equation*}
$$

If

$$
\begin{equation*}
T=\frac{1}{\underline{\bullet}} \int_{V} \underline{o} \dot{u}-\mathbf{d} V \tag{42}
\end{equation*}
$$

is the kinetic energy, the total change in energy is:

$$
\dot{E}=\int_{\dot{j}}\left(t_{i j} \dot{u}_{t, j}+d_{i j k i} u_{k, l} \dot{u}_{i, j}+o \dot{u}_{i} \ddot{u}_{i}\right) d \jmath^{r}
$$

Equation [1] and Gauss theorem transform [43] into the

$$
\begin{equation*}
\dot{E}=\int_{\dot{S}} t_{i j} \dot{u}_{i} n_{j} d S+\int_{V} \underline{\underline{u_{i}}}\left(F^{*}-F_{i}\right) d V+\int_{\dot{N}} d_{i j k i l} u_{k, l} \dot{u}_{i} n_{j} d S \tag{44}
\end{equation*}
$$

Each term of [44] can be easily interpreted: the first integral is the rate of working of the surface forces on S due to pre-stress; the second term refers to the work of the difference ($F_{i}^{*}-F_{i}$), which is the only meaningful quantity in the theory because it is hard to imagine a realistic method which could give the absolute value of F^{*} or F_{i} separately. The third term represents the rate of change of the incremental energy flux.

4. A PROPERTY OF RAYS IN PRE-STRESSED MEDIA

We want to show that the rays, whose equations are [17], are extremals of a certain line integral, i.e. that:

$$
\begin{equation*}
I=\int_{x_{o}}^{x_{1}} \frac{d N}{v} \tag{4;}
\end{equation*}
$$

is minimum when the path of integration is the ray [17] connecting the two fixed points x_{o} and x_{1}. We denote by $\bar{t}\left(\begin{array}{l}\dot{y})\end{array}\right.$ the tangent at the point \vec{y} of L. To calculate $v(\vec{x}, \vec{t})$ we consider the ray along $\vec{t}(\vec{y})$; equation [17a] gives the direction of the corresponding $\vec{h}(\vec{y})$; the calculation of $v(\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{t}})$ follows then from [31]. If we write $\overrightarrow{\mathrm{x}}=(x, y, z)$ and if we consider x as the ray variable we have:

$$
\begin{equation*}
\left.I=\int_{x_{o}}^{x_{1}}[v \overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{t}})\right]^{-1}\left(1+y^{\prime 2}+z^{\prime 2}\right)^{1 / 2} \mathrm{~d} x \tag{46}
\end{equation*}
$$

Euler's equations must be satistied for the integrand to be a minimum along the path of integration. These equations can be combined and written in an elegant form as:

$$
\begin{equation*}
\frac{d}{d S}: \frac{1}{v} \vec{t}-\frac{1}{v^{2}} \frac{\delta v}{\delta t} ;=\vec{\nabla} \cdot\left(\frac{1}{v}\right) \tag{47}
\end{equation*}
$$

where:

$$
\frac{\delta}{\delta t}=\frac{\partial}{\partial t}-\overrightarrow{\mathrm{t}} \cdot\left(\overrightarrow{\mathrm{t}} \frac{\partial}{\partial t}\right)
$$

is the normal derivative. We want to write down [47] in terms of \vec{h} and H instead of r and \vec{t}. Now $\overrightarrow{\mathrm{h}}(\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{t}})$ and $\boldsymbol{r}(\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{t}})$ are defined by equations [15] and [17a], i.e.:

$$
\begin{align*}
& 2 \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{t}}=\frac{\partial H}{\partial \overrightarrow{\mathrm{~h}}} \tag{-18}\\
& H(\overrightarrow{\mathrm{~h}, \overrightarrow{\mathrm{x}})}=1 \tag{49}
\end{align*}
$$

and, for the homogeneity of $H\left(\overrightarrow{\mathrm{x}}, \overrightarrow{h_{1}}\right)$, we get:

$$
\begin{equation*}
|\overrightarrow{\mathrm{t}} \cdot \overrightarrow{\mathrm{~h}}| \quad v=1 \tag{50}
\end{equation*}
$$

Since these equations are valid for all \vec{x} and for all unit vectors \vec{t}, the differentiation of equation [49] with $\delta / \delta t$ gives:

$$
\begin{equation*}
t_{j} \frac{\delta h_{j}}{\delta t_{i}}=0 \tag{51}
\end{equation*}
$$

and of equation [50]:

$$
\begin{equation*}
\frac{\delta v}{\overrightarrow{\delta t}}=v \overrightarrow{\mathrm{t}}-v^{2} \overrightarrow{\mathrm{~h}} \tag{array}
\end{equation*}
$$

[$51 \mid$ and [$5: 3$ can bo used to write equation [47] in the form:

$$
\begin{equation*}
\frac{\mathrm{d} \overrightarrow{\mathrm{~h}}}{\mathrm{~d} s}=\nabla \cdot\left(\frac{1}{v}\right) \tag{53}
\end{equation*}
$$

But, again from equation [50], we can get:

$$
\begin{equation*}
\nabla_{i}\left(\frac{1}{v}\right) \equiv\left[\left.\frac{\partial}{\partial x_{i}}\left(\frac{1}{v}\right)\right|_{t}=t_{j}\left(\frac{\partial h_{j}}{\partial x_{i}}\right)_{t}\right. \tag{54}
\end{equation*}
$$

and, from [49],

$$
\begin{equation*}
\left(\frac{\partial H}{\partial x_{i}}\right)_{t}=\left(\frac{\partial H}{\partial x_{i}}\right)_{n}+2 v t_{j}\left(\frac{\partial h_{j}}{\partial x_{i}}\right)_{t}=0 \tag{55}
\end{equation*}
$$

Combining now [53] and [5: 5 and remembering that $d s=m d s$ we obtain:

$$
\begin{equation*}
\frac{\overrightarrow{\mathrm{dh}}}{\mathrm{dw}}=-\frac{1}{2}\left(\frac{\partial H}{\partial \mathrm{x}}\right)_{h} \tag{56}
\end{equation*}
$$

i.e. we obtain equation [17b], which is satisfied only if L is a ray. Thus we have shown that I, the travel time between x_{0} and x_{1}, is minimum only on a path whose equations are [17].

AckNowledgmpxts

Warm thanks are due to Professor Michele Caputo who first raised our interest in this kind of problems and continuously helped
us with friendly solicitude. This work has been performed with a contribution from Consiglio Nazionale delle Ricerche, contract no. 73.01147.28.

APPENDIX

We give here the explicit expressions for each of D_{h}, as a function of the elasticity tensor. From [2] and [11] it follows that:

$$
\begin{aligned}
& D_{11}=1+\underline{0}^{-2}\left\{\left(t_{j} h_{j} h_{l}\right)^{2}+t_{j} h_{j} h_{l} h_{r} h_{s}\left(c_{2 r 2 s}+c_{3 r 3 s}\right)+c_{2 \rho 2} c_{3 r 3 s} h_{j} h_{i} h_{r} h_{s}+\right. \\
& \left.-\left(c_{2 j 31} h_{j} h_{i}\right)^{2}\right\}-0^{-1}\left\{\left(2 t_{j l}+c_{2 j 21}+c_{3 j 31}\right) h_{j} h_{i}\right\} \\
& \mathrm{D}_{22}=1+0^{-2}\left\{\left(t_{j} h_{j} h_{1}\right)^{2}+t_{j} h_{j} h_{1} h_{r} h_{s}\left(c_{1 r 1 s}+c_{3 r 3 s}\right)+c_{1 j 11} c_{3 r 3 s} h_{j} h_{i} h_{r} h_{s}+\right. \\
& \left.-\left(c_{1 / 31} h_{j} h_{1}\right)^{2}\right\}-\varrho^{-1}\left\{\left(2 t_{l l}+c_{1 j 11}+c_{3 / 31}\right) h_{j} h_{i}\right\} \\
& \mathrm{D}_{33}=1+\underline{g}^{-2}\left\{\left(t_{j l} h_{j} h_{1}\right)^{2}+t_{j} h_{j} h_{i} h_{r} h_{s}\left(c_{1 r 1 s}+c_{2 r_{2 s}}\right)+c_{t / 1 l} c_{2 r 2 s} h_{j} h_{1} h_{r} h_{s}+\right. \\
& \left.\cdots\left(c_{1 j 2 l} h_{j} h_{1}\right)-\right\}-\underline{0}^{-1}\left\{\left(2 t_{j l}+c_{1 j 11}+r_{2 j 21}\right) h_{j} h_{i}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{D}_{13}=0^{-}\left\{h_{j} h_{1} h_{\mathrm{r}} h_{s}\left(c_{1 j 2 l} c_{2 r 3 s}-t_{\mu} c_{1 \mathrm{r} 3 \mathrm{~s}}-c_{2 \rho 21} c_{\mathrm{Ir3s}}\right)\right\}+0^{-1} c_{1 / 31} h_{1} h_{1}
\end{aligned}
$$

REFERENOES

 of the dynamie theory of propagation of seismic wares. Leningrad V'niversity Press (in Russian), Leningrad, 5, pp. 3-2t.
Karal F. C., Keller .I. B., 1959. - "Jour. Acomst. Soc. Amer.", 31. p. 694.

Cerveny l., Ravindra R., 1971. - Theory of Neismie Head wares. Coniversity of Toronto Press, Toronto.
$\left.{ }^{(2}\right)$ Babien V. M., 196 l . - Problems of the dymamie theory of propetation of seismie weres. Leningrad Vniversity Press, Leningrad, 5, pp. 36-46.
(3) Boscm E., 1973, -- "Jour. Geophys. Res.", 78, p. 8584.
(') Boschi E., 1974. - "Niuovo Cimento", Lett., 12, p. 207.
(5) Boschi E., Di Curzio E., 1975. - "Nuovo Cimento", B, 28, p. 257. Boschi E., Di ('urzio E., 1976. - "Nuovo ('imonto", B, 31, in press. Bonafede M., Boscif E., Di ('URZio E., 1976. - "Bull. Seism. Soc. Am.", in press.
${ }^{(6)}$ ('erveny V., 1972. - "Geophys. Jour'. Roy. Astr. Soc.", 29, p. I.
${ }^{7}$) ('ouRANT R., Hilbert D., 1962. - Melhods of Mathematical Physies. "Interscience", 2, Sew York.
$\left.{ }^{8}{ }^{8}\right)$ Dahlen F. A., 1972. - "Geophys. Jour. Roy. Astr. Soc.", 28, p. 357. Damien F. A., 1973. - "Geophys. Jour. Roy. Astr. Soc.", 31, p. +69.
$\left.{ }^{9}{ }^{9}\right)$ DALIEN F ' A., 1972. - "Bull. Seism. Soc. Amer.", 62, p. 1173. - p. 1183.
${ }^{10}$) Gassman F., 1964. - "Pure and Appl. Geophys.". 58, p. (i3. Helbig K., 1966. - "Bull. Scism. Soc. Amer.", 56, 1. 527. Vlatr N. J., 1968. - "Bull. Neism. Soc. Amer.", 58. p. 2053. Ylask N. J., 1969. - "Bull. Scism. Soc. Amer.", 59. p. 1051.
($\left.{ }^{11}\right)$ 'Truesdell. C., 1963. - "Jour'. Res. Nat. Bur. Stand. B", 67, p. 85.
$\left.{ }^{(12}\right)$ Waıто. K., 1973. - "(ieophys. Journ. Roy. Astr. Soc.", 31, p. 373. Walton K., 1973. - "(ieophys. Journ. Roy. Astr. Soc.", 33, p. 223. Walos K.. 1974. - "Geophys. Journ. Roy. Astr. Soc.", 36, p. 65l.

[^0]: (*) Dipartimento di Scienze della Terra, Vniversita di Ancona.
 (**) Istituto di Geofisica, Cniversita di Bologna.

