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ABSTRACT 

The relationships existing between melting tempera ture and other 
macroscopic physical quanti t ies are investigated. A new dimensionless 
quant i ty Q(1 not containing the Grtineisen paramete r proves to be suited 
for serving in fu tu re studies as a tool for the determinat ion of the 
melting t empera tu re in the outer core of the Ear th . The pressure depen-
dence of more general dimensionless quanti t ies Q„ is determined analy-
tically and, for the chemical elements, numerically, too. The pat terns of 
various interesting dimensionless quanti t ies are shown in the Periodic 
Table and compared. 

ZUSAMMENFASSUNG 

Die Beziehungen der Schmelztemperatur zu anderen makroskopischen 
physikalischen Meßgrößen wurden untersucht . Eine neue dimensionslose 
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geeignet, in künft igen Arbeiten als Hilfsmittel fü r die Bes t immung der 
Schemelztemperatur im äußeren Kern der Erde zu diernen. Die Druck-
abhängigkeit noch allgemeinerer dimensionsloser Größen 0M wurde ana-
lytisch und für die chemischen Elemente auch numerisch bes t immt. 
Verschiedene interessante dimensionslose Größen wurden im Perioden-
system dargestellt und verglichen. 

RIASSUNTO 

Nel presente articolo si investigano le interrelazioni esistenti f ra tem-
perature di fusione ed altre grandezze fisiche macroscopiche. Si mos t ra 
che può essere consigliata una nuova quant i tà adimensionale Q„, non 
contenente il parametro di Gruneisen, come s t rumento di indagine in 
futuri studi della tempera tura di fusione del nucleo ter res t re esterno. 
Viene determinata poi anal i t icamente e per elementi chimici anche nume-
ricamente, la dipendenza dalla pressione di più generali grandezze adi-
mensionali Q„. Sono inoltre mos t ra te e conf ronta te le carat ter is t iche degli 
andamenti di varie interressanti quant i tà ademensionali nel sistema 
periodico. 

1. INTRODUCTION 

It is the objective of this study to approximately express the 
melting tempera ture Tm of elements and anorganic chemical 
compounds as a funct ion of other physical quanti t ies . The spe-
cific requi rements are that (I), to permit an applicat ion in f u t u r e 
studies, we endeavour to use only such quant i t ies that are re-
liably known also for the outer core of the Ea r th f r o m modern 
seismological and o ther geophysical models (e. g., a f t e r Dzie-
wonski et al. 1975) and ( I I ) the relat ionship is to be valid at 
least for high pressures ranging between 1354 and 3289 kbars 
(1 kbar = 100 MPa). 

We s tar t the search for this relat ionship in the normal 
pressure range. The s tar t ing point is a paper by Plendl (1974) 
f rom which Fig. 1 has been taken. Z„ is the a tomic coor-
dination valency which is defined as the product of the 
atomic valence in the elemental s ta te and the rat io of the f i rs t 
o rder a tomic coordinat ions of two successive polymorphs . Csir is 
the s t ructura l parameter , C~'srr is propor t ional to the density of 
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paching of the a toms C~>
5lr is also propor t ional to the number 

of significant approaches of ad jacen t oscillating a toms. If we 
compare Fig. 1 with Fig. 2, we find that a l though there is an 
indication of the anticipated proport ional i ty Tm ~ Za • Cs,r, but 
scat ter ing unfor tuna te ly is considerably greater than given by 
Plendl. According to Plendl and Gielisse (1969, 1970), there is 
also a propor t ional i ty between bulk modulus x and Za • Cstr. 
Consequently, we may also expect a proport ional i ty between melt-
ing t emper tu re and bulk modulus . To verify this, we plot the 
melt ing t empera tu re data of the elements a f t e r Gschneidner (1964) 
versus the bulk modulus fo r zero pressure a f t e r the data collected 

0 2 4 6 8 
z a c s t r 

Fig. 1 - Linear relationship between the experimental data 
of the melting point (Tm) and the atomic data of (ZaCs l r) 
for 20 metallic elements with s t rong bondings (Figure and 

caption a f te r Plendl, 1974). 
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by Ullmann and Pan'kov (1976) (see Fig. 3). The coordinat ion 
numbers in the diagram are designated by symbols. There is, in 
fact, an indication of proport ional i ty . But scat ter ing is so great 
here, too, that it is hardly suited for pract ical purposes . If, 
however, we fo rm in section 3 dimensionless quant i t ies as few 
material-dependent as possible, we can assume f r o m Fig. 3 that 
it must contain the quot ient T,„/%. 

2 . COMPARISON OF A FEW DIMENSIONLESS QUANTITIES FOR ZERO 

PRESSURE 

In this section, let us fo rm a few dimensionless quant i t ies 
for the chemical e lements and study their correlat ions at the 
pressure P — 0. We define 

N\ 
R„ T,„ p 

[1] 

and plot this quant i ty in Fig. 4 versus the group numbers of 
the Periodic Table. R„ = 8.31441 J / ( K • mol) is the universal 
gas constant . We take the numbers for the fo rmula weight F in 
kg /mol f rom Eber t (1976), for the bulk modulus */ and density 
p f rom Ullmann and Pan 'kov (1976) and for the melt ing tem-
pera ture T,„ f r o m Gschneidner (1964). Moreover, we define 

N2 = 
3 a, x 

Ro 
[2] 

and plot this quanti ty, too, in the Periodic Table (see Fig. 5), 
using the l inear coefficient of thermal expansion a/, the a tomic 
volume F/p and density p f r o m Geschneidner (1964). According 
to Gschneidner (1964) the product aTm = 0.0186 ± 0.0080 is nearly 
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Fig. 3 - Melting t empera tu re Tm versus bulk modulus for 
zero pressure xQ. The legend shows the assignment between 

symbols and coordinat ion number . 
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Fig. 2 - Melting tempera ture Tm, a f t e r values given by Gseh-
neidner (1964) versus the atomic data ZaCslr, a f t e r given by 
Plendl and Gielisse (1972), plotted by the author . Elements 
with strong bondings, i. e., elements for which Zu > 9/2, are 
marked by an encircled point. Attention was given to the 

correct assignement of the phases. 

constant for all elements, a being the coeffincient of thermal 
expansion. However, the parallelism between the curves in Figs. 
4 and 5 is not as good as expected. Incidentally, there is a 
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surprisingly good parallelism between N2 and the Grlineisen 
parameter 

OCXs a x T r , - , 
Y = = • [3] 

P CP p C v 

where x s is the adiabatic bulk modulus, xT the isothermal bulk 
modulus, CP the specific heat at constant pressure, Cv the specific 
heat at costant volume. 

This is true irrespective of whether we use the generally, i e., 
irrespective of the author, somewhat problematic y-values af ter 
Gschneidner (1964) or those af ter Guinan and Steinberg (1974). 
This is revealed by a comparison between Fig. 5 and Figs. 6 
and 7. As it is obvious when considering the relations 2 and 3, 
this implies an approximate proportionali ty between specific 
heat and the reciprocal value of the formula weight. 

3. COMPUTATION OF NEW DIMENSIONLESS QUANTITIES Q„ AS A 

FUNCTION OF PRESSURE 

Following the considerations presented above, we now study 
the pressure dependence of dimensionless quantit ies containing 
the melting temperature. Expecting these quantit ies to be little 
dependent on pressure in the outer core of the Earth, we now 
define dimensionless quantit ies Q„ 

Qn Nr l r" [ 4 ] 

n being a real number. A look at formulas [1] and [4] shows 
that, if a certain Q„ in the outer core of the Ear th is known as a 
function of depth, the quotient T,„/F can be determined, when 
p, x and y are taken f rom seismological models of the Earth. 
T,„ is the melting temperature and F the formula weight. The 
problematic Griineisen parameter y (see discussion by Anderson 





Group 

Fig. 5 - The d imens ionless quan t i ty N2, def ined by Eq. [2], 
of the e lements of the second, thi rd , fou r th , f i f th and sixth 

per iods of the Periodic Table. 
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and Mulargia 1977), is not required for Q„. The quantity Q„ could, 
for instance, become known as a function of pressure in the 
outer core by the possibility that Q„ of the core-candidate ma-
terials for core pressures lie closely adjacent to one another. 
To be able to study the pressure dependence of the quantities 
Q,„ we have to make an assumption as to the form of the 
interatomic potential. It has already been pointed out by Boschi 

Group 

Fig. 6 - Griineisen rat io y calculated f r o m the lat t ice con-
t r ibu t ion to the heat capaci ty at cons tan t volume, a f t e r 
Gschneidner ' s (1964) Table XXIV, plot ted in the Periodic 

Table. 
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et al. (1979) tha t the behaviour of the melt ing t empera tu re in 
the ou te r core considerably depends on the in tera tomic pot-
ential assumed. In the following, we assume the Lennard-Jones 
potential . This is a rough but realistic approximat ion . The au tho r 
has shown in another s tudy (Walzer, 1982b) tha t another , more 
complicated expression for the potent ia l arr ived at by means 
of quan tum mechanics reveals the best agreements with exper-
imental data for metals , halides and some oxides. However, a 
Lennard-Jones potential can be used as a rough first approxim-
ation, even more so since this greatly faci l i tates computa t ion : 

<K = 2i 1/3 

B 
r » / 3 [5] 

A, B and n are cons tants which depend only on the mater ia l . 
x—V/Vo, V being the volume, Va the volume at vanishing pressure 
P. Star t ing f rom [5] and a dislocation model, the au tho r has 
proven (1982a) that L indemann ' s mel t ing law 

Tm-ldTm/dP = 2 ( r — 1 / 3 ) / * [6] 

holds for pressure ranges where the solid is present in the 
densest spherical packing (i.e., in fee or hep s t ructure) . Stacey 
and Irvine (1977), using a d i f ferent , i. e. a thermo-dynamical , 
approach also achieved this result . T,„ is the melt ing tempera ture , 
x is the bulk modulus . Irvine and Stacey (1975) have shown that 
for purely central forces, and thus also for potent ia ls of fo rm 
[5], the Griineisen pa ramete r y depends on pressure P in the 
following manner : 

T = 

d x 

d P 
5 2 P + 
6 9 x 

3 

P 

v. 

[7] 
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This formula had already been deduced in a completely 
different way f rom the free volume theory by Vashchenko and 
Zubarev (1963). Using a simple method that has already been 
employed by Kittel (1953), we deduce the equation of state 
belonging to [5 ] . From [5] we obtain 

P = _ 1 1 = l i l A _ n_ B 
ö x 3 x2"/3+1 3 x"/3+1 ' 

y. = dP 2 n 
— + i ) 

3 I X2"> / 3+1 
+ 

B n I n ' 

T \ T + i x-'3+i [9] 

as well as 

— X 
9 •/-

Ö X 

2 n / 2 n A 
.2.1/3+1 + 

t ( f + l i 
\2 B [10] 

If we note that 
S P 

Ö X 

9 X 

and if we use x0 = y. 
X - 1 

and y-i = 3 x / c ) P 
X = 1 

the costants A, B, n can be expressed through x„ and x, with the 
help of [8], [9] and [10]. This is very advantageous, becausc 
the latter quantities are macroscopically observable. In this 
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way, using a different approach, we obtain f rom [8] the equation 
of state Ml by Ullmann and Pan'kov (1976) 

3 x -L - J- x, J_ _L x, 
P = X 3 3 1 - 3 - 3 1 [ 1 1 ] 

2 — x, 

We now use the compatible formulas [6], [7] and [11] for 
an examination of the pressure dependence of the dimensionless 
quantities Q„ and A/,-

From formula [1] it follows that 

/?„ 9 JVi 1 3 x x 9 Tm x 3 p 
F 3 P Tm p 3 P T1,,, p 3 P r„ , p2 3 P 

[12] 

which is reformulated by means of Lindemann's law into 

3 In Ni 
3 P 3 P 

3 x _ , 
— 2 Y 

/ 1 \ x 3 p ] 
(T " T) " 7 ¥7. [13] 

Y can be eliminated by formula [7], Furthermore, we note that 

— . Thus, we obtain f rom [13] 
3 P x 

P 3.x-
1 

3 In A/, x 3 P r , _ n = [14] 
J - , - P 
4 
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Through similar computations we obtain f rom Vashchenko's 
and Zubarev's (1963) formula [7] 

92x _4_ / J P_ 9 x \ A /_L 
5 In Y _ 5 P2 9 \ x x2 9 P ) + 9 \ x x2 5 P ) 

9 P 9 x J 
9 P 3 9 x 3 9 x 

[15] 

From equations [1] , [4] and [14] we obtain 

5 In 0„ 
9 P 

x 
9 
9 P 

+ J? 
— x — P 
4 

9 In Y 
9 P 

[16] 

If [15] is substituted in [16], we obtain a formula by 
means of which it is principally possible to determine Q„ = Q„ (P) 
by integration. So far, no use has been made of the specially 
chosen equation of state [11]. One mathematical difficulty arises 
because of the fact that the Ullmann-Pan'kov equation of state 
(like its special case, the Birch equation of state) cannot be 
analytically t ransformed f rom P = P (x) to x = x (P). This diffi-
culty has been eluded by the following t ransformations 

9 In Q0 

9 P 

P(x) 9x c'x — 1 
x (x ) 9 x . 9 x 

— 1 

4 

[17] 
x (x) — P (x) 

x = — x 9 P / 9 x [18] 

c) x 
~9P~ 

x 9 x 
x 9 x 

[19] 
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Ce Pr Nd Pm Sm Eu 6d Tb Dy Ho Er Tm Yb Lu 

Fig. 7 - Grüneisen ratio y a f te r values given by Guinan and 
and Steinberg (1974), plotted in the Periodic Table. This 
means in cases where the column has a disappearing height 

that no numerical value is known. 

Na Mg Al 

ö 2 x __ / ö2-/. ò y. ö 2 P / ì ) x 2 

ö P2 \ ö x ) \ d x 2 d x ö P / S x 
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In the auxiliary function q„ defined by [16] we eliminate 
P, x, Sx/3P and 32x/P2 through the equations [11], [15] and [17] 
to [20], Thus, q„ is known as a function of x. The equation of 
state effects that P-values bi-uniquely correspond to the x-values. 
Using a computer, we calculated Q„ as a function of pressure P 
by means of numerical integration of [16]. 

4 . T H E SYSTEMATICS OF THE QUANTITIES Q„ IN THE PERIODIC TABLE 

TO study the distribution of the dimensionless quantity Qi (i.e., 
Q„ for n — 1), we plotted this quantity in Fig. 8 against the groups of 
the Periodic Table. Using the formulas of the previous section; we 
computed Q\ for the pressure at the core-mantle boundary (CMB) 
for the chemical elements and plotted it in Fig. 9 against the gro-
ups. Fig. 10 shows the corresponding distribution for the pressure 
at the inner-core boundary (ICB). A comparison of these three 
Figures shows that the change seen in the characteristic curves 
is less considerable for the outer core than for the mantle. The 
material parameters required for the computation have been 
listed in Tab. 1, their origin is given in the legend of the Table. 
In Figures 11 to 13, the quantities Q, have been plotted as a 
function of pressure. Generally, no strong concentration of the 
curves can be found for the elements of periods 4 to 6. It is 
particularly apparent for the 5th and 6th periods that the 
elements with the densest spherical packing (i. e., those present 
in hep or fee structure) are predominant in the upper curves. 
Much more favourable results are obtained for the dimension-
less quantity Q„ which is plotted against the pressure in Fig. 14 
for the 4th period, in Fig. 15 for the 5th period and in Fig. 16 
for the 6th period. In Fig. 14, all fee and hep materials arc 
found in the strong middle bundle. Only the element Sc does 
not fit in this scheme. In Fig. 15, the same result is found for 
the elements of the 5th period- With the exception of Y and Sr, 
all elements with fee or hep lattices are found in the strong 
middle bundle of curves. Two clearly separated curve bundles 
can also be seen for the elements of the 6th period in Fig. 16. 
Except Hf and Re, all elements with fee and hep structures 
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Group 

Fig. 8 - Plot of the d imensionless quan t i ty Q, in the Periodic 
Table for the e lements of the 4th per iod (con t inuous line), 
5th per iod (do t ted line) and 6th per iod (point line) at 

p r e s su re P = 0. 
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are found in the lower nar row bundle of curves, while the bee 
structure is predominant in the upper bundle. Since, if the 
temperatures were lower, one would have to reckon with the 
densest spherical packings for the pressures existing in the 
outer core, the fcc-hcp bundles of Q„ provide a possibility for 
estimating the quotient T,„/F for the outer core without becom-
ing too specific in regard of the chemical composition. In Fig. 17, 
Q„ has been plotted against the groups of the Periodic Table, the 
pressure being P = 1354 kbars. These characteristics do not 
significantly vary for the higher pressures existing in the interior 
of the outer core. The characteristic curves of Q„ at P = PCmb 
reveal a slight similarity to the Leibfried number L, the modified 
Leibfried number L', and the Bragg number B, as can be seen 
f rom a comparison of Fig. 17 with Figs. 18 to 20. However, these 
quantities are given for zero pressure. The Figures were plotted 
according to the numerical values given by Gschneidner (1964). 
As defined in the paper by Leibfried (1950), the Leibfried number 
is 

L = ^ ^ , [21] 
H v 

where v is the atomic volume and |J. the shear modulus. This 
quantity was modified by Gschneidner (1964): 

L ' = 
K T m 

¡x v 
[22] 

In this modified Leibfried number, K is a constant which, 
however, has a different value for each crystal s tructure, while 
R„ denotes the universal gas constant as before. The Bragg (1948) 
number, on the other hand, is defined by 

B = [23] 
|i v 
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Group 
f ig . 10 - Plot of the quan t i ty Q, in the Periodic Table at 
the p re s su re exist ing at the inner-core boundary . Design-

a t ions as in Fig. 8. 
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Pressure [Mbar] 

Fig. 11 - Dependence of the dimensionless quant i ty Q, on 
pressure for the chemical elements on pressure for the 
chemical elements of the 4th period of the Periodic Table 



Pressure [Mbar] 
Fig. 13 - Dependence of the quant i ty Q, on pressure for 

the elements of the 6th period. 
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Fig. 14 - Dependence of the dimensionless quant i ty 0„ on 
pressure for the chemical elements of the 4th group of 
the Periodic Table. A comparison with Fig. 11 reveals a 

significantly closer proximity of the curves. 
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N T E 

o Nb 

Pressure [Mbar] 
Fig. 15 - Pressure dependence of the quant i ty Q0 fo r the 

elements of the 5th period. 
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Group 

Fig. 17 - The dimensionless quant i ty Q„ sub jec ted to the 
p re s su re existing at the core-mantle bounda ry (CMB). 
Representa t ion in the Periodic Table for the e lements of 
the 4th per iod (cont inuous line), 5th per iod (dot ted line) 

and 6th period (point lint). 
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Fig. 18 - The Leibfried number L, plotted in the Periodic 
Table for zero pressure. Designations as in Fig. 17. 
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G R O U P 

Fig. 19 - The modified Leibfried number L', plotted in the 
the Periodic Table for zero pressure. Designations as in 

Fig. 17. 
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Group 

Fig. 20 - The Bragg number, plotted in the Periodic Table 
for zero pressure. Designations as in Fig. 17. 
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where AH is the heat of fusion. In view of Richard 's rule 
AH ~ R„Tm is does not surpr ise that L. L' and B, when plotted 
in the Periodic Table, yield very similar character is t ic curves 
(cf. Figs- 18 to 20). However, these quant i t ies are not suited 
for es t imat ing T,„ in the outer core, because the shear modulus 

d isappears in the liquid state. In cont ras t to this the bulk 
modulus x does not vary considerably dur ing melting. Therefore, 
Q„ appears to be a quant i ty useful for geophysical purposes . 
It goes wi thout saying that the pressure dependence of the 
individual quant i t ies mus t be taken into account . Thus, Fig. 17 
shows a comparab le representa t ion of Qu for the pressure at 
the core-mantle boundary . 

5 . C O N C L U S I O N S 

A systematic correlat ion between the melt ing t empera tu re 
and other physical quant i t ies has been found. In par t icular , two 
new, dimensionless quanti t ies , Qi and Q0, depending on T„„ were 
investigated with respect to their dependence on pressure as 
well as to their dis t r ibut ion in the Periodic Table. While the 
Qi for pressures in the Mbar range strongly di f fer f r o m one 
another for the individual chemical elements, it was found for 
Q„ that the curves of mater ia ls having the same lattice s t ruc ture 
prior to melt ing run very close to one another . The results 
suggest that it should be possible even wi thout detailed know-
ledge of the chemical composit ion of the outer core to deter-
mine the melt ing t empera tu re to fo rmula weight rat io as a 
funct ion of depth. 
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TABLE I 
See caption at page 34. 

m i n t T ' " [ K ] P [ g/cm3 ] x j k b a r ] F[kg /mol ] N 

Li 454 0.534 115 6.94 39.59 3.56 
Be 1557 1.84 1100 9.01 41.61 4.6 
B 2498 2.31 1785 10.81 40.22 3.26 

Na 370.8 0.970 61.8 22.99 47.51 3.59 
Mg 923 1.74 344.2 24.31 62.66 4.16 
Al 933.2 2.697 729.1 26.98 94.00 4.7 
Si 1685 2.33 970.8 28.09 83.54 4.16 
P f r ) 868 2.35 192 30.97 35.06 6.68 

K 336.6 0.86 31.2 39.10 50.69 3.85 
Ca 1112 1.53 163 40.08 46.18 2.7 
Sc 1812 2.98 546 44.96 54.68 2.1 
Ti 1941 4.50 1060 47.90 69.91 4.37 
Cr 2148 7.194 1600 52.00 64.76 4.89 
V 2178 6.09 1537 50.94 70.99 3.5 
Mn 1517 7.47 597 54.94 34.81 5.0 
Fe(e) 1808 8.36 2060 55.85 91.55 4.0 
Co 1765 8.79 1860 58.93 84.98 4.26 
Ni 1726 8.90 1790 58.71 82.28 6.20 
Cu 1356 8.932 1330 63.55 83.93 5.65 
Zn 692.655 7.14 647 65.37 102.86 6.40 
Ga 302.8 5.91 568 69.72 266.15 3.6 
Ge 1209 5.33 724.3 72.59 98.13 4.35 
As 1090 5.77 631 74.92 90.40 5.2 
Se 490 4.81 89.7 78.96 36.14 5.8 

Rb 311.8 1.53 26.2 85.47 56.46 3.39 
Sr 1045 2.58 116.1 87.62 45.38 2.1 
Y 1775 4.47 410 88.91 55.26 2.1 
Zr 2123 6.53 949 91.22 75.11 4.11 
Nb 2741 8.63 1690 92.91 79.84 6.9 
Mo 2888 10.218 2610 95.94 102.06 4.4 
Tc 2443 98.91 
Ru 2553 12.44 3030 101.07 115.97 6.61 
Rh 2233 12.42 2820 102.91 126.87 4.50 
Pd 1825 12.04 1880 106.4 109.49 5.35 
Ag 1234 10.50 1015 107.87 101.63 5.53 
Cd 594.18 8.65 457.9 112.40 120.44 6.77 
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TABLE I (cont inuat ion) 

Ele-
ment 

Tm[K] p[g/cm 3] x j k b a r ] F [ k g / m o l ] *1 

In 429.76 7.29 392 114.82 172.78 6.0 
Sn 505.06 7.28 532 118.69 206.55 6.01 
Sb 903.6 6.69 411 121.75 99.56 4.9 
Te 722.8 6.27 233 127.60 78.90 8.3 

Cs 301.8 1.83 17.9 132.91 51.81 3.17 
Ba 998 3.61 94.3 137.34 43.24 2.43 
La 1193 6.16 267 138.91 60.70 3.2 

Ce 1070 6.77 239 140.12 55.60 
Pr 1208 6.78 306 140.10 62.95 
Nd 1297 7.00 327 144.24 62.48 
Pm 1308 141.91 
Sm 1345 7.54 294 150.4 52.44 
Eu 1099 5.25 147 151.96 46.57 
Gd 1585 7.89 383 157.25 57.92 
Tb 1629 8.27 399 158.93 56.61 
Dy 1680 8.53 384 162.50 52.37 
Ho 1734 8.80 397 164.93 51.61 
Er 1770 9.04 411 167.26 51.67 
Tm 1818 9.32 397 168.93 47.61 
Yb 1097 6.97 133 173.04 36.20 
Lu 1925 9.84 411 179.97 46.97 

Hf 2495 13.25 1080 178.49 70.13 3.95 
Ta 3271 16.62 1910 180.95 76.46 3.15 
W 3653 19.26 3060 183.85 96.17 3.95 
Re 3433 21.03 3587 186.2 111.27 5.41 
Os 3300 22.58 4200 190.2 128.94 3.4 
I r 2716 22.65 3580 192.22 134.53 4.83 
Pt 2042 21.47 2770 195.09 148.25 5.18 
Au 1336.2 19.30 1664 196.97 152.86 6.51 
Hg 234.28 14.24 282 200.59 203.92 4.6 
T1 576 11.85 337 204.37 121.37 5.1 
Pb 600.576 11.34 419 207.2 153.31 5.72 
Bi 544.525 9.807 332 208.98 156.26 6.06 

Th 2024 11.72 543 232.04 63.88 
U 1404 19.05 987 238.03 105.65 
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TABLE I - Physical constants of chemical elements used for P = 0. Melting 
tempera ture Tm according to Gschneidner (1964), fo rmula weight 
F according to Eber t (1976), density p and bulk modulus x for 
the lanthanons and actinons according to Kittel (1973), density, 
bulk modulus and its derivative with respect to pressure for 
the other elements according to Ullmann and Pan'kov (1976). 
N{ is the dimensionless quant i ty for P = 0 defined by Eq. [1], 
where Ra = 8.31441 J / (K • mol). The value denoted by a) actually 
applies to bcc iron, if the hypothetical melting point curve for 
hep iron by Liu (1975) is d rawn for low pressures, one a t ta ins 
the same value. The Griineisen pa ramete r s y used are not listed 
in the Table. The values given by Guinan and Steinberg (1974) 
were used. Only for Fe, the value y = 1.67 according to Plendl 
(1973) was preferred. 
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