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Abstract: Wildlife census results often give very skewed
distributions which make a poor fit to the normal distri-
bution. The question arises whether we should use normal
or non-normal methods in calculating a census estimate
based on such data. In this study, four sets of sampling
experiments were based on wildlife census results which
made a good fit to the negative binomial or Poisson
distributions. Confidence 1imits of the mean based on
these distributions were similar in width to limits based
on the normal distribution, and they contained the true
population mean in an approximately equal proportion of
cases. This held even at sample sizes which were below
the level recommended for the normal approximation to be
valid. It is concluded that the non-normal techniques
provided no substantial improvement in estimating the
confidence 1imits of the mean for a variety of positively
skewed results.

Wildlife census results often have very skewed frequency distri-
butions which make statistical treatment somewhat difficult. Studies
have shown that many such results correspond closely to the negative

binomial distribution, the Poisson distribution, or certain of the
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various "contagious" distributions for aggregated populations (Bowden
et al. 1969, McConnell and Smith 1970, Stormer et al. 1977). For a
given set of results, then, the best-fitting theoretical distribution
can be established by a goodness-of-fit test, and appropriate
variance and other statistics can be calculated on the basis of that
distribution. However, it is not clear how much precision will be
gained in the estimate of the mean by using the closest theoretical
distribution.

For most cases of this type, the normal approximation is adequate
for estimates of the mean so long as the sample size is large (Cochran
1963:38) . However the large number of enquiries we receive about
non-normal analysis made us feel that many wildlife biologists remain
uneasy over the application of normal statistics to very skewed

distributions, and that the problem warranted some empirical study.

MATERTAL AND ANALYSIS

The study is based on four examples of wildlife surveys chosen
because they have positively skewed frequency distributions which
correspond particularly well to one or more of the better-known
non-normal distributions.

Distribution 1 is from a fecal pellet group survey of mule deer

(0docoileus hemionus) on the Starkey Experimental Forest and Range,

Oregon, carried out in 1956. The results are based on a sampling unit
of 65 m2 (700 square feet), and were originally published by McConnell
and Smith (1970:34). Distribution 2 is based on a 1972 pellet group

survey of white-tailed deer (Odocoileus virginianus) in two winter yard

areas in North and South Canonto Townships, Ontario, with a plot size
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of 80.0 m®. Both of these sets of results give a good fit to the

negative binomial distribution, as is common for pellet group surveys
(Bowden et al. 1969, McConnell and Smith 1970, Stormer et al. 1977).

Distributions 3 and 4 are taken from the aerial moose survey
conducted in parts of northeastern Ontario in the winter of 1975-76.
Preliminary testing suggested that the number of moose per 25 km? plot
generally fits some of the “"contagious" distributions, (such as the
double Poisson), but the routine calculation of confidence limits from
these distributions is difficult. However, the number of groups of
moose per plot (with group defined as one or more individuals) generally
gave a good fit to the negative binomial, while the number of moose per
group gave a reasonable fit to the Poisson or the negative binomial
distribution. Accordingly distribution 3 is the number of groups of
moose per plot in the survey of Management Units 37 to 41, while
distribution 4 is the number of moose per group in Units 27, 33 and 39.
The latter group of data was chosen from a number of others because the
results give similar goodness of fit to the two distributions mentioned.
In distribution 4 the calculations were based on the number of moose in
excess of one in each group, thus yielding the more usual series of 0,
1, 2, ... items per unit instead of 1, 2, 3, ...

Table 1 shows the observed frequency distribution for each sample,
together with the expected frequencies generated by the negative binomial
and/or Poisson distribution, a chi-square test of goodness of fit cal-
culated with values combined to give expected frequencies of 5 or greater,
and Fisher's measure of skewness (G,) calculated from the observed
frequencies as described by Cochran (1963:41). The degrees of freedom
for the chi-square test equal three fewer than the number of ratios in

the test (Bliss and Fisher 1953:183). Values of k for the negative

Observed frequency distributions for the four examples, expected frequencies by non-normal theoretical distributions, and

Table 1.

Gy is Fisher‘s measure of skewness; k is the negative binomial parameter.

chi-square tests of goodness of fit.
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binomial were calculated by the maximum likelihood method of Bliss and
Fisher (1953:180).

In each of the four examples the observed frequency distribution
was treated as a known population from which random samples were drawn
with replacement by a computer. Twenty samples were drawn at each of
n = 20, 40, 60, 80, 120, 240 and 480, in order to study the effect of
sample size on the calculations. An additional 300 samples were drawn
with n > 25 G2, the sample size suggested by Cochran (1963:41) as
giving an approximately normal distribution of sample means, in order
to examine the accuracy of the estimates in a large number of samples
of uniform size. In each case the 95 percent confidence limits of the
mean were calculated using the normal and non-normal statistics without

the finite population correction (Cochran 1963:23).

RESULTS

The precision of the estimates of the mean (i.e., the width of the

confidence 1imits) was related to sample size and the skewness of the

parent population as shown in Fig. 1. Essentially all sets of confidence

limits declined in width with increasing sample size, and were wider for

the more skewed distributions. In every case the negative binomial and
normal distribution statistics gave very similar results. There was
some tendency for the normal confidence 1imits to be slightly narrower
with small samples and slightly wider with large samples, but the
difference rarely exceeded 1 percent of the mean averaged over the 20
cases in each set of calculations.

The accuracy of the estimates, measured as the percentage of cases

in which the 95 percent confidence 1imits contained the true population
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Fig. 1. The 95 percent confidence 1imits as a percentage of the mean,

based on 20 samples at each of n=20 to 480 for the four examples.
" Calculations are based on the normal, negative binomial, and

Poisson distributions.
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mean, was almost identical for the normal and negative binomial calcula-
tions. In examples 1 to 4, for the 140 samples with n = 20 to 480, the
95 percent confidence 1imits contained the true mean in 126, 138, 135
and 132 of the cases by the normal calculations and in 127, 138, 134 and
133 of the cases by negative binomial calculations.

The similarity held at all samole sizes. Since n ranged from 20
to 480, each example had some estimates with n less than 25 G,? and
some with B larger. Combinina the four examples, there were 300 estimates
with n < 25 G2, and the 95 percent confidence limits contained the true
mean in 93.7 and 94.3 percent of cases by the normal and neqatiQe
binomial calculations respectively. With n > 25 G,2, there were 260
estimates, and the confidence 1imits contained the mean in 96.2 and 95.8
percent of cases respectively.

In example 4 the Poisson calculations gave narrower confidence
limits than the other two sets at every sample size, and the true
population mean was in the range in 130 of the 140 cases.

The additional sets of 300 samples with n > 25 G,® are summarized
in Table 2. The normal and negative binomial calculations gave very
similar results, with the true population mean generally falling within
the 95 percent confidence 1limits in a Tittle less than 95 percent of
cases. The normal confidence 1imits were typically a little wider and
contained the true mean slightly more often, but all differences were
small. In example 4 the Poisson confidence limits were narrower than
the other two, and contained the true mean less often. In the great
majority of the errors, the true mean exceeded the upper confidence

Timit, especially with the normal calculations.

Analysis of 300 random samples from each population with sample size of n > 25 G,2 in each case.

Table 2.
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DISCUSSION

O0f the four examples tested, three gave a good fit to the negative
binomial and one gave a moderately good fit to both the negative binomial
and Poisson distributions. Nonetheless, the normal and negative binomial
confidence 1imits were very similar, bore about the same relation to the
size and skewness of the sample, and contained the true population mean
in an approximately equal percentage of cases. In the one example which
warraﬁted Poisson calculations, the confidence 1imits were somewhat
narrower but did not contain the true mean as often, presumably because
the fit to the Poisson distribution was imperfect.

These findings will come as no surprise to statisticians. The
validity of the normal approximation can be shown by statistical
theory. These examples simply illustrate the principle with some
actual results. In addition they show, for the range of results studied,
that the normal and negative binomial calculations give very similar
results, even at sample sizes below the level recommended for the normatl
approximation to be valid.

Cochran (1963:40) points out that with positively skewed distri-
butions the true population mean will generally fall within the 95
percent confidence 1imits in less than 95 percent of cases, and that
sampling error will produce underestimation of the true mean more often
than overestimation in the remaining small percentage of cases. Both
of these observations apply to the above results. However, the true
mean was within the confidence 1imits in only slightly less than 95
percent of cases in each of the examples.

In recent years, considerable effort has been given to fitting

wildlife census results to various non-normal distributions. This
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information can be used in a number of ways as summarized by McConnell
and Smith (1970:29), and non-normal calculations may well improve
certain types of statistical analysis. However, for straightforward
census estimates based simply on the mean and its confidence interval,
the familiar normal distribution statistics provide virtually as
precise an estimate as calculations based on some of the best-fitting

non-normal distributions, over a variety of conditions.
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