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In this study, we applied natural language processing (NLP) techniques, within an 

educational environment, to evaluate their usefulness for automated assessment of students’ 

conceptual understanding from their short answer responses. Assessing understanding 

provides insight into and feedback on students’ conceptual understanding, which is often 

overlooked in automated grading. Students and educators benefit from automated formative 

assessment, especially in online education and large cohorts, by providing insights into 

conceptual understanding as and when required. We selected the ELECTRA-small, 

RoBERTa-base, XLNet-base and ALBERT-base-v2 NLP machine learning models to 

determine the free-text validity of students’ justification and the level of confidence in their 

responses. These two pieces of information provide key insights into students’ conceptual 

understanding and the nature of their understanding. We developed a free-text validity 

ensemble using high performance NLP models to assess the validity of students’ justification 

with accuracies ranging from 91.46% to 98.66%. In addition, we proposed a general, non-

question-specific confidence-in-response model that can categorise a response as high or low 

confidence with accuracies ranging from 93.07% to 99.46%. With the strong performance of 

these models being applicable to small data sets, there is a great opportunity for educators to 

implement these techniques within their own classes. 

 

Implications for practice or policy: 

• Students’ conceptual understanding can be accurately and automatically extracted from 

their short answer responses using NLP to assess the level and nature of their 

understanding. 

• Educators and students can receive feedback on conceptual understanding as and when 

required through the automated assessment of conceptual understanding, without the 

overhead of traditional formative assessment. 

• Educators can implement accurate automated assessment of conceptual understanding 

models with fewer than 100 student responses for their short response questions. 

 

Keywords: natural language processing (NLP), automated assessment of understanding, 

formative assessment, machine learning, conceptual understanding, mixed methods 

 

Introduction 
 

Assessing students’ conceptual understanding and providing timely feedback are crucial aspects of teaching 

as these allow for teaching to be tailored to better develop conceptual understanding efficiently. With the 

emerging shift in favour of flexible study arrangements, traditional formative assessment techniques are 

less suitable and applicable in today’s teaching (Gikandi et al., 2011). Automated assessment allows 

feedback to be delivered to educators and students as and when required in a reproducible manner. 

Furthermore, with an automated approach, the detrimental effects of increasing class sizes are significantly 

reduced with the time requirements of traditional assessment being drastically reduced. 

 

There exists a plethora of potential applications for natural language processing (NLP) in education, such 

as dialogue-based tutoring systems, paraphrasing tools and text quality software (Burstein, 2009). Examples 

of NLP applications are educational chatbots (Kerly et al., 2007), automatic grading systems (Smith et al., 

2020) and tools for tracking educational experiences (Denny et al., 2009). However, there have been few 

examples of NLP applied to assess a deeper level of understanding. Therefore, this study aimed to 

complement existing works of NLP applications in education, by investigating their potential in 

automatically assessing students’ conceptual understanding. 
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Automated assessment solutions have primarily focused on the accurate marking and grading of students’ 

work. Automated understanding assessment differs in that it provides students with the opportunity to 

receive accurate feedback into their conceptual understanding, allowing students to self-assess and review 

their knowledge when they desire, without restrictions due to educator availability and time. The ability to 

review conceptual understanding presents additional benefits to students; they can identify and address 

misconceptions and confirm their understanding on concepts rapidly, enabling them to build confidence in 

their understanding. 

 

By reducing the time dedicated to traditional formative assessment, educators reap additional benefits by 

implementing automated assessment of students’ conceptual understanding as part of their teaching. 

Educators can dedicate more time to teaching, developing their teaching practices and resources and 

addressing students’ questions and uncertainties. With feedback on a cohort’s conceptual understanding, 

educators have the opportunity to tailor their teaching to most effectively build their students’ conceptual 

understanding while addressing misconceptions. This feedback also presents opportunities for educators to 

reflect and improve upon their teaching practices and resources, for both their current and future classes. 

 

For students, formative assessment provides valuable feedback as a means of reviewing their conceptual 

understanding. With larger cohorts, the amount of time educators can dedicate to accurately assessing and 

providing useful feedback to students is restricted (McCarthy, 2017). Furthermore, with the reduction in 

face-to-face time in online education, there are fewer opportunities for traditional formative assessment that 

provides students with timely feedback on their conceptual understanding. NLP provides an opportunity to 

extract key insights into students’ conceptual understanding allowing for an automated assessment 

approach. 

 

Literature review 
 

Assessment of conceptual understanding 
 

Assessment of a person’s conceptual understanding can be realised by evaluating evidence of their ability 

to transfer their knowledge and skills to new situations and scenarios (Wiggins & McTighe, 2005). This 

evidence can be found through appropriate assessment in a classroom environment. To assess conceptual 

understanding, assessments must be designed in a way that evidence of transferability can be discerned. 

Therefore, the design of assessment is paramount in its ability to provide this evidence. 

 

Formative assessment is valuable in its ability to provide feedback to both educators and students to guide 

decisions to achieve learning outcomes (Dodge, n.d.). Through formative assessment, educators can discern 

evidence of students’ skills, knowledge and conceptual understanding. Passing these insights onto the 

students provides them with an opportunity to guide their self-learning. The feedback students receive is 

valuable as people are often poor at accurately judging what they do and do not know (List & Alexander, 

2015). 

 

With evidence of students’ skills, knowledge and conceptual understanding, teachers can better achieve 

learning outcomes by implementing a constructivist teaching approach (Keeley, 2008). By evaluating 

preconceptions on topics, learning can be targeted to build and develop these effectively. Evaluating 

students’ current conceptions can provide insight into the accuracy of their knowledge, skills and 

conceptual understanding and can be used to evaluate whether misconceptions have been or are being 

developed. 

 

Automated assessment approaches 
 

Many automated formative and summative assessment techniques have been developed and adopted by 

educational institutes. However, due to their nature, most cannot be applied to assess conceptual 

understanding; those that do have often lacked in accuracy or their ability to provide insight into the nature 

of students’ conceptual understanding. 

 

Multiple-choice style assessments are widely used due to their objective nature and efficient marking, 

which can be easily automated to provide fast feedback to students and educators (Survey Anyplace, n.d.). 

To overcome the inherent disadvantages of this assessment type with regards to assessing conceptual 
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understanding, careful consideration must be given to the questions and available answers. Concept 

inventories have been developed to measure students’ understanding of specific concepts using multiple-

choice style questions (D'Avanzo, 2008; Hestenes et al., 1992; Madsen et al., 2017). By combining effective 

questioning and carefully designed distractors, these tests can assess students’ understanding and identify 

misconceptions. Despite this, they are lacking in their ability to evaluate guessed selections, provide 

evidence for the cause or reasoning behind students’ misconceptions or provide insight into the nature of 

students’ understanding (Goncher & Boles, 2017). 

 

Computer software has been extensively used to automatically mark short- and long-text responses. There 

exist several autograding approaches that can grade textual responses in a similar manner to educators, such 

as semantic and graph alignment features (Krithika & Narayanan, 2015) and text similarity combined with 

grading-specific constructs (Sultan et al., 2016); however, these approaches do not necessarily provide 

insight into conceptual understanding. A shortcoming in many of these is that they use text-similarity 

approaches to grading, comparing a student’s response to a model. Therefore, they are often limited in 

applications where there are multiple correct responses or when different responses should be classified 

into the same category. Overall, the greatest drawback of autograders in terms of assessing conceptual 

understanding is that they have not been designed to do so; they grade textual responses, they do not assess 

conceptual understanding or discern evidence of understanding from students’ responses. 

 

Extraction of meaning from text through NLP 
 

As computers cannot directly understand text, they are incapable of drawing meaning from it (Garbade, 

2018). Hence, the NLP process aims to transform text into an interpretable, numerical representation. The 

challenge of the NLP process, specifically in the education space, is maintaining the semantic meaning of 

the original text in its numerical representation. The NLP process structure (see Figure 1) details the overall 

steps of NLP in real-world applications. 

Figure 1. The NLP process structure (adapted from Cunningham-Nelson, 2019, p. 40) 

 

The preprocessing stage aims to make the text more predictable and analysable (Ganesan, 2019). It is 

common practice in most NLP applications to perform lower-casing and punctuation removal as 

preprocessing. Additional techniques such as stemming, lemmatisation and text-enrichment may be 

beneficial, dependant on the application and amount of text data available. 

 

The preprocessed text is transformed into numerical data through feature extraction (Kowsari et al., 2019). 

Text features can be as simple as the number of words in the text, or more complex, such as vector 

representations of the words (Alammar, 2019). Depending on the feature extraction techniques used, feature 

reduction may be beneficial. The aim on feature reduction is to reduce the size of the numerical data to 

make it more interpretable (Widmann & Silipo, 2015). Broadly, feature reduction techniques achieve this 

by either removing or changing unnecessary features or creating a new, smaller set of features (Kumbhar 

& Mali, 2016). Model training and testing is where machine learning is applied to achieve the desired task 

(Guo, 2017). 

 

In recent years, the emergence of the transformer model has produced an area of rapid advancement in 

language modelling (Agarwal, 2019). The transformer model is based on a sequence-to-sequence 

architecture and implements an attention mechanism within it (Allard, 2019). The attention mechanism 

recursively determines which words in an input sequence are important to each other, emulating the human 

thought process of reading. Transformer-based NLP models use this as a feature extraction technique, 

creating a vector representation for each word in the sequence based on their importance to the other words 

in the sequence (Ankit, 2020). 

 

Many transformer-based NLP models have surpassed the performance of more traditional machine learning 

NLP approaches (Wolf et al., 2019). This is largely due to the attention mechanism being used in 

combination with a neural network deep learning model. Using a large amount of textual data and training 
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techniques such as masked learning modelling and next sentence prediction, the transformer-based models 

can build an understanding of language in their neural networks; this is known as pretraining a model. 

These pretrained models can then be fine-tuned by training them on additional data to apply it to a desired 

application. This opens up the benefits of deep learning to much smaller NLP-type data sets and is a large 

reason why these models have achieved their high level of performance (Agarwal, 2019). 

 

The field of NLP applications in education, specifically in the assessment of conceptual understanding, is 

relatively new and has not been widely adopted by educational institutes. There are several studies that 

have developed differing approaches to the automated assessment of understanding. 

 

In one study, the NLP technique latent semantic analysis was used as a similarity comparator between a 

textual response and idealised peer responses as a means for accurately producing human grading and 

predicting post-test performance (Guerrero & Wiley, 2019). This approach lacked in its ability to provide 

insight into a students’ conceptions and the nature of their conceptual understanding. 

 

In another study, a combination of NLP techniques and node link representations was used to assess 

students’ understanding in short-response questions (Lajis & Aziz, 2010). This provided a means of 

performing a similarity comparison at a knowledge level rather than at a textual semantic level. What this 

entails is that the developed technique has the ability to assess the reproduction of knowledge. As such, a 

limited insight into the nature of students’ conceptual understanding is provided. 

 

In another study, a framework was developed to automatically assesses students’ conceptual understanding 

in adapted concept inventory questions (Cunningham-Nelson, 2019). The questions used were from the 

signals and systems concept inventory, with a text response field added for students to provide justification 

for their multiple-choice selection (Wage et al., 2005). NLP techniques were applied to assess whether a 

student mentioned the correct concept in their response and whether they provided accurate justification. 

In conjunction with the multiple-choice selection and an algorithm that checked for keywords indicating 

uncertainty, the model would determine a student’s level of conceptual understanding. An accuracy of 

approximately 85% was achieved with this technique, which is not high enough for reliable use in the 

classroom. 

 

Research questions 
 

With this background, the following research questions guided this study: 

 

(1) Which NLP techniques can be applied to best extract evidence of conceptual understanding from 

text? 

(2) What performance can be achieved by applying NLP to automatically assess conceptual 

understanding from students’ textual responses? 

(3) What impact does the amount of data have on the performance of an automated conceptual 

understanding assessment model and what implications does this have for future use? 

 

Method 
 

Automated assessment of conceptual understanding approach 
 

Upon investigation of several existing approaches to the automated assessment of understanding, we 

decided to expand on the techniques developed by Cunningham-Nelson (2019). This is because the 

approach taken in their study provided a high level of insight into students’ conceptual understanding. With 

the increased language understanding that transformer-based NLP models offer, there was also an 

opportunity for them to discern additional information from responses that might provide further insight 

into the nature of students’ conceptual understanding. Therefore, we selected transformer-based NLP 

models for performing the NLP tasks of this study. 

 

The approach developed in this study shares six of the adapted concept inventory questions used in the 

previous study (Cunningham-Nelson, 2019). We determined that a model would be developed which would 

assess four pieces of information, called pointers, from a student’s response and determine a level of 

conceptual understanding from these. This study commenced with the hypothesis that NLP techniques 
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could assist in automatically assessing students’ conceptual understanding. This was later tested through 

further investigations that adopted a positivist research paradigm, with statistical measures (namely, 

accuracy and area under the receiver operating characteristic (ROC) curve) used to evaluate the 

performance of the model’s ability to assess the pointers and hence, conceptual understanding. By using 

several pointers, a more nuanced level of conceptual understanding in text can be evaluated. 

 

Table 1 details the four pointers and their binary classification classes. The confidence-in-response pointer 

provides insight into the nature of a student’s conceptual understanding: it provides an indication of how 

strongly formed their conceptions are. 

 

Table 1 

Descriptions of the four pointers of conceptual understanding and their binary classification classes  

Pointer Description Classification classes 

Multiple-choice Whether the student has answered the multiple-

choice component correctly 

Correct/incorrect 

Concept-mentioned Whether the correct concept or concepts have 

been mentioned in the student’s written 

justification  

Yes/no 

Free-text validity Whether the student’s reasoning is valid and 

correct in their written justification 

Correct/incorrect 

Confidence-in-response Level of confidence the student has in their 

written justification 

High/low 

 

With pointer models that can automatically classify each pointer from a response, an overall model would 

assess the level of a student’s conceptual understanding and the level of misconception present on a 5-point 

scale from very low to very high. Table 2 displays how the overall classifications are determined from the 

pointer classifications. 

 

Table 2 

How pointer classifications impact the overall level of misconception and conceptual understanding 

classifications 

Multiple-choice  Concept-

mentioned 

Free-text 

validity 

Confidence-in-

response 

Level of 

misconception 

Level of conceptual 

understanding 

Incorrect  No Incorrect Low Very low Very low 

Incorrect  No Incorrect High Very high Very low 

Incorrect  No Correct Low Impossible 

classification 

Impossible 

classification 

Incorrect  No Correct High Impossible 

classification 

Impossible 

classification 

Incorrect  Yes Incorrect Low Very low Low 

Incorrect  Yes Incorrect High High Low 

Incorrect  Yes Correct Low Impossible 

classification 

Impossible 

classification 

Incorrect  Yes Correct High Impossible 

classification 

Impossible 

classification 

Correct  No Incorrect Low Very low Very low 

Correct  No Incorrect High Very high Very low 

Correct  No Correct Low Impossible 

classification 

Impossible 

classification 

Correct  No Correct High Impossible 

classification 

Impossible 

classification 

Correct  Yes Incorrect Low Moderate Moderate 

Correct  Yes Incorrect High High Low 

Correct  Yes Correct Low Very low High 

Correct  Yes Correct High Very low Very high 
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This dual-output classification model provides valuable insight to educators on both the nature and level of 

students’ conceptual understanding. Areas where students have strongly formed misconceptions (incorrect 

conceptual understanding with high confidence) can be rapidly identified at very high levels of 

misconception. This is beneficial to educators as these areas will generally take the greatest effort to 

address. Similarly, educators can rapidly identify when students have very low levels of conceptual 

understanding; another situation in which greater effort is likely to be required. 

 

There are two impossible classifications that cannot logically be reached but can occur: 

 

• When the model assesses that the student has provided the correct reasoning in their justification 

without mentioning the correct concept or concepts in their response. This situation is deemed to 

be impossible as a correct justification to an adapted concept inventory question requires the 

student to mention an appropriate concept. This scenario would likely result from a free-text 

validity misclassification. 

• When the model assess that the student has provided the correct reasoning in their justification but 

selected the incorrect multiple-choice answer. This situation is deemed to be impossible as a 

student who has provided the correct reasoning would logically have selected the correct multiple-

choice answer. This scenario would also likely result from a free-text validity misclassification, 

rather than student error. 

 

The multiple-choice pointer can be assessed with a simple algorithm which compares the student’s selection 

to the correct answer. The concept-mentioned pointer can also be simply assessed by implementing an 

algorithm that compares the words in a student’s justification to a list of predefined concept words for each 

adapted concept inventory question. 

 

The free-text validity and confidence-in-response pointers will both require NLP modelling to assess. Due 

to the simplicity of the multiple-choice and concept-mentioned pointers, this study focused only on the 

free-text validity and confidence-in-response pointers. 

 

NLP model selection 
 

As there exist a wide variety of transformer-based NLP models suited for different tasks, it was important 

to select models which are most suitable for the specific application in this study. Within this, it was 

beneficial to differentiate between suitable models to select those which have the greatest potential for 

strong performance. 

 

The general language understanding evaluation (GLUE) benchmark (https://gluebenchmark.com/) is a 

collection of data sets used for training, evaluating and analysing NLP models relative to one another. The 

public leader board provides an overview of the performance of the ranked models and a human baseline. 

With the GLUE data sets being varied, it is possible to get an idea of how the ranked models will perform 

in specific applications. Using the performance of models displayed on the GLUE benchmark, we selected 

the models best suited and most likely to perform well in classifying the free-text validity and confidence-

in-response pointers. 

 

Data collection and preprocessing 
 

The collection of students’ responses, to be used for model training and testing, was undertaken in a second-

year undergraduate signal analysis course. Students’ responses to six adapted concept inventory questions 

adopted from Cunningham-Nelson’s (2019) study were collected between 2015 and 2020. Ethics approval 

for the collection of student text data was granted by the Queensland University of Technology Human 

Research Ethics Committee, under approval number 1600000964. The questions were delivered online as 

non-compulsory coursework to ensure that the ethics considerations were met. 

 

The students’ responses to each question were manually classified to create free-text validity and 

confidence-in-response pointer data sets. We undertook the manual classifications to check for 

disagreements. Table 3 provides an overview of the number of instances of each class for the question’s 

data sets displaying imbalances and overall sizes. The response lengths ranged from one word to lengthy 

run-on sentences; the majority of the responses were simple short phrases or sentences. 

https://gluebenchmark.com/
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Table 3 

Number of class instances per question for the free-text validity and confidence-in-response data sets  

Question  Incorrect justification 

responses 

Correct justification 

responses 

Low confidence 

responses 

High confidence 

responses 

1  95 711 53 753 

2  451 168 297 322 

3  192 333 110 415 

4  383 193 188 388 

5  225 130 134 221 

6  173 185 80 278 

 

Standard preprocessing techniques were applied to prepare the data for training. To uphold the semantics 

of students’ responses and ensure that the conceptual meaning given from a student remained, minimal 

preprocessing was done. This is also in line with standards for transformer-based models, where exhaustive 

preprocessing is unnecessary (Potamias et al., 2020). Lower-casing and punctuation removal was 

performed on all text. A spell check and autocorrection of misspelled words was then performed using the 

pyspellchecker Python library (Barrus, 2021). Concept specific, out-of-standard-dictionary words had to 

be incorporated into the spellcheck dictionary to ensure that these words were not autocorrected incorrectly; 

examples of such words are Laplace, Fourier, convolution and Nyquist. As the questions were delivered 

online, there were several cases in each question where duplicate responses were submitted; these likely 

resulted from students’ reattempting the questions to discover the correct multiple-choice answer. As a 

result, duplicate responses were removed during preprocessing to eliminate any bias which may have 

occurred as a result of these. 

 

Single word responses were removed from the data sets during preprocessing. This is because it was 

deemed impossible to justify a multiple-choice selection with a single word. For that reason, a single word 

response would not provide substantial information to assess confidence or justification accurately. 

Additionally, many single word responses, such as a string of random characters, were non-valid. These 

were likely a result of students wanting to check their multiple-choice selection without caring for justifying 

their response. 

 

As a variety of transformer-based NLP models were tested, the simple transformers library (Rajapakse, 

n.d.) was used to automatically apply the correct tokeniser for each model. These tokenisers have been 

specifically designed and chosen to work optimally with each relevant transformer. This was the final stage 

of preprocessing, converting the response to its required tokens. 

 

Several students provided justification in the form of a question, denoted with a question mark ending their 

response. This indicated that the student was not confident in their understanding. Therefore, it was decided 

that for the confidence-in-response pointer modelling, these responses would be automatically classified as 

non-confident and would be omitted from the model training data sets. 

 

Optimising model training parameters 
 

Machine learning model performance varies substantially with changes to model training parameters. 

Hence, optimal model parameters for the selected NLP models needed to be found for both the confidence-

in-response and free-text validity pointer data sets. 

 

The effects on model performance of adjusting the number of batches and epochs training parameters were 

assessed. An early stopping algorithm was developed to determine the optimal values for the parameters 

without overfitting the data. Evaluation loss was used as the early stopping metric with a stopping delta of 

0.01 and a stopping patience of 5. The evaluation loss was calculated 5 times in each epoch. 

 

Evaluating performance and ensemble modelling 
 

For the free-text validity pointer model, individual models were trained for each question on their respective 

data sets. Using a training testing split of 80:20, the accuracy and area under the ROC curve of the selected 

NLP models with the optimal training parameters were recorded for each question. This was then repeated 

using smaller subset data sets to investigate the effect of reduced data set sizes. Using these results, the 
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performance of the different NLP models could be compared. To create a better performing model, the best 

performing models were then brought together to create an ensemble. This allowed the benefits of each 

individual model to be leveraged to achieve a higher overall accuracy. It was decided to combine the three 

best performing models as the ensemble would then provide an overall classification based on majority 

voting (Rojarath et al., 2016); an overview of an ensemble model is shown in Figure 2. The performance 

of the ensemble was then compared to the individual models. 

 

 
Figure 2. Ensemble NLP model structure 

 

It was decided that confidence in response is not question specific and consequently a non-question-specific 

model would be developed. The rationale for this is that there were common elements of students’ responses 

across all questions which indicated that they were confident or not confident. To verify this, models would 

be trained on a data set from one question and then tested against all question’s data sets. Using these 

results, the performance of the different selected NLP models could be compared. An ensemble model 

would then be created to improve performance. 

 

Results 
 

Investigating GLUE benchmark leader board 
 

The free-text validity and confidence-in-response pointers require the evaluation of the meaning of a 

sentence or phase, so a strong understanding of language is required. Upon evaluation of the GLUE 

benchmark data sets, it was decided that all data sets except the corpus of linguistic acceptability required 

classification based on text meaning. Hence, the performance of the ranked NLP models on all data sets 

except the linguistic acceptability data set were used to assess which would likely perform well on 

classifying free-text validity and confidence-in-response. Seven sequence classification NLP models 

available in the open-source Hugging Face Transformers Library (Hugging Face, 2020) are ranked on the 

GLUE benchmark leader board: 

 

• ELECTRA 

• RoBERTa 

• BERT 

• MobileBERT 

• XLNet 

• ALBERT 

• XLM. 

 

The ELECTRA, RoBERTa, XLNET and ALBERT models have a greater average accuracy than the human 

baseline on the GLUE data sets requiring classification based on text meaning. Due to the relatively small 

size of the data sets available in this study, the smallest versions of these models were selected to model 

free-text validity and confidence-in-response: ELECTRA-small, RoBERTa-base, XLNet-base and 

ALBERT-base-v2. 

Labelled textual 
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NLP model 1 
classifications
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Modelling free-text validity 
 

To evaluate the impact of the number of batches and epochs training parameters, a range of values was 

chosen and tested for the selected models on each question’s free-text validity data set. The following 

parameter values were tested: 

 

• The number of epochs was incremented from 1 to 10 in steps of 1, while the number of batches 

was kept at 8. 

• The number of batches was incremented from 1 to 200 in steps of 50, with the number of epochs 

set to 1, 5 and 10. 

 

It was found that the performance of the models varied with the number of epochs but was independent of 

the number of batches. With the number of batches having no impact on model performance, it was kept 

constant at its default value of 8 for all modelling. The number of batches parameter had no impact due to 

the relatively small training data sets used throughout. With larger data sets, the effect of adjusting the 

number of batches parameter may become noticeable. 

 

An early stopping algorithm was designed to determine the optimal number of epochs for each of the 

selected NLP models. The results of early stopping are displayed in Table 4. 

 

Table 4 

Optimal number of epochs identified by the early stopping algorithm for each model and question free-text 

validity data set  

Model No more improvement after epoch number 

Question number 

1  2  3  4  5  6  

ELECTRA-small  1  3  6  3  5  6  

RoBERTa-base  1  3  3  3  4  5  

XLNet-base  1  2  3  3  5  4  

ALBERT-base-v2  1  3  3  2  3  4  

 

To investigate how the optimal number of epochs varied with a reduction in the amount of available data, 

subset data sets were created for each question by taking a random sample of 100 correct and 100 incorrect 

justification responses. An equal number of responses from each class was selected to ensure that the 

training data was balanced and to avoid overfitting. The early stopping results for the subset data sets are 

displayed in Table 5. 

 

Table 5 

Optimal number of epochs identified by the early stopping algorithm for each model and question free-text 

validity subset data set  

Model  No more improvement after epoch number 

Question number 

1  2  3  4  5  6  

ELECTRA-small  6  5  5  6  6  3  

RoBERTa-base  4  3  4  5  3  1  

XLNet-base  4  3  4  1  4  1  

ALBERT-base-v2  3  4  3  3  3  2  

 

Comparing the results displayed in Tables 4 and 5, there are slight differences in the optimal number of 

epochs. To determine an optimal number of epochs which is independent of data set size, a sample of values 

was selected for each model based on the results presented in Tables 4 and 5. 

 

For the ELECTRA-small model, six epochs was selected as the optimal parameter based on its consistent 

appearance in the early stopping results. The performance of the ELECTRA-small model trained with six 

epochs is displayed in Table 6. 
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Table 6 

ELECTRA-small model performance with six epochs, trained on each question’s free-text validity data set 

and subset  

Data set  Accuracy (%) Area under ROC curve 

Question 1  93.96 0.6630 

Question 2  93.67 0.9465 

Question 3  92.31 0.8762 

Question 4  94.29 0.9466 

Question 5  90.24 0.9055 

Question 6  90.57 0.8973 

Data set average  92.51 0.8725 

Question 1 subset  85.71 0.8937 

Question 2 subset  84.85 0.8212 

Question 3 subset  92.31 0.8571 

Question 4 subset  90.00 0.8937 

Question 5 subset  91.67 0.9063 

Question 6 subset  92.31 0.9226 

Subset average  89.48 0.8824 

Note. The best results in model performance are highlighted in bold. 

 

For the RoBERTa-base model, three and four epochs were selected for testing based on the early stopping 

results. The performance of the RoBERTa-base model trained with three and four epochs is displayed in 

Table 7. 

 

Table 7 

RoBERTa-base model performance with three and four epochs, trained on each question’s free-text validity 

data set and subset  

Data set  3 epoch accuracy 

(%) 

3 epoch area under 

ROC curve 

4 epoch accuracy 

(%) 

4 epoch area under 

ROC curve 

Question 1  93.96 0.6630 93.96 0.7010 

Question 2  91.14 0.9099 92.41 0.9204 

Question 3  92.31 0.8254 91.03 0.7921 

Question 4  92.86 0.9350 95.71 0.9651 

Question 5  92.68 0.9282 95.12 0.9510 

Question 6  86.79 0.8497 90.57 0.8891 

Data set average  91.62 0.8519 92.97 0.9035 

Question 1 subset  89.29 0.8918 82.14 0.8392 

Question 2 subset  84.85 0.8346 87.88 0.8596 

Question 3 subset  88.46 0.7857 96.15 0.9737 

Question 4 subset  93.33 0.9231 96.67 0.9615 

Question 5 subset  87.50 0.8438 87.50 0.8438 

Question 6 subset  84.62 0.8333 92.31 0.9167 

Subset average  88.01 0.8521 90.44 0.8991 

Note. The best results in model performance are highlighted in bold. 

 

For the XLNet-base model, three and four epochs were selected for testing based on the early stopping 

results. The performance of the XLNet-base models trained with three and four epochs is displayed in Table 

8. 
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Table 8 

XLNet-base model performance with three and four epochs, trained on each question’s free-text validity 

data set and subset 

Data set  3 epoch accuracy 

(%) 

3 epoch area under 

ROC curve 

4 epoch accuracy 

(%) 

4 epoch area under 

ROC curve 

Question 1  93.96 0.6602 93.96 0.6630 

Question 2  93.67 0.9308 93.67 0.9422 

Question 3  89.74 0.7333 91.03 0.8175 

Question 4  98.57 0.9884 97.14 0.9767 

Question 5  100.00 1.000 97.56 0.9737 

Question 6  83.02 0.8185 83.02 0.8348 

Data set average  93.16 0.8552 92.73 0.8680 

Question 1 subset  85.71 0.8363 82.14 0.7807 

Question 2 subset  87.88 0.8462 90.91 0.8846 

Question 3 subset  88.46 0.8308 88.46 0.8308 

Question 4 subset  90.00 0.8846 96.67 0.9615 

Question 5 subset  84.62 0.8512 87.50 0.8438 

Question 6 subset  84.62 0.8512 96.15 0.9583 

Subset average  86.88 0.8501 90.31 0.8766 

Note. The best results in model performance are highlighted in bold. 

 

For the ALBERT-base-v2 model, three and four epochs were selected for testing based on the early 

stopping results. The performance of the ALBERT-base-v2 models trained with three and four epochs is 

displayed in Table 9. 

 

Table 9 

ALBERT-base-v2 model performance with three and four epochs, trained on each question’s free-text 

validity data set and subset  

Data set  3 epoch accuracy 

(%) 

3 epoch area under 

ROC curve 

4 epoch accuracy 

(%) 

4 epoch area under 

ROC curve 

Question 1  93.96 0.663 91.95 0.576 

Question 2  94.94 0.9583 94.94 0.9583 

Question 3  85.9 0.6841 88.46 0.7762 

Question 4  95.71 0.9651 95.71 0.9651 

Question 5  87.8 0.8792 90.24 0.9055 

Question 6  73.58 0.7076 96.05 0.9643 

Data set average  88.65 0.8096 92.89 0.8576 

Question 1 subset  71.43 0.7018 78.57 0.7544 

Question 2 subset  87.88 0.8731 87.88 0.8462 

Question 3 subset  73.08 0.6353 80.77 0.688 

Question 4 subset  90 0.8937 93.33 0.9231 

Question 5 subset  79.17 0.8125 83.33 0.8438 

Question 6 subset  92.31 0.9167 96.15 0.9643 

Subset average  82.31 0.8055 86.67 0.8366 

Note. The best results in model performance are highlighted in bold. 

 

Based on the performance results presented in Tables 6, 7, 8 and 9, the ELECTRA-small model trained 

with six epochs, RoBERTa-base model trained with four epochs and the XLNet-base model trained with 

four epochs produced the strongest results. Therefore, these three models were selected for an ensemble. 

On a computer with a 6-core 12-thread central processing unit (CPU) and 128 gigabytes (GB) of random-

access memory (RAM), it took an average of 39 minutes to train the free-text validity ensembles, ranging 

from 57 minutes for the largest data set to 27 minutes for the smallest. It should be noted that the ensembles 

could not be trained on a computer with 8 GB of RAM due to insufficient memory. The performance of the 

ensemble model on each question’s data set is displayed in Table 10. 
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Table 10 

Free-text validity ensemble model performance on question data sets using 5-fold cross-validation  

Data set  Accuracy (%) Area under ROC curve 

Question 1  97.97 0.8641 

Question 2  97.34 0.9747 

Question 3  98.66 0.9814 

Question 4  96.86 0.9661 

Question 5  93.54 0.9376 

Question 6  95.95 0.9577 

Average  96.72 0.9469 

Note. The best results in model performance are highlighted in bold. 

 

The performance of the ensemble exceeded the performance of the individual models. The average 

accuracy of 96.72% and area under the ROC curve of 0.9469 indicate that the model could distinguish 

between correct and incorrect justification well and accurately. With a study indicating that educators assess 

their students’ understanding with accuracies lower than this (Chi et al., 2004), the ensemble model 

provides very promising results. 

 

To evaluate the ensemble’s suitability and adaptability to smaller data sets, its performance was also found 

on two subset data sets for each question: one subset comprised of 100 correct and incorrect justification 

responses and another with 40 correct and incorrect justification responses. The performance of the 

ensemble model on these data sets is displayed in Tables 11 and 12 respectively. 

 

Table 11 

Ensemble model performance on subsets of 100 correct and incorrect justification data sets  

Data set  Accuracy (%) Area under ROC curve 

Question 1 subset  91.46 0.8976 

Question 2 subset  97.95 0.9770 

Question 3 subset  97.78 0.9707 

Question 4 subset  97.62 0.9756 

Question 5 subset  96.35 0.9583 

Question 6 subset  97.09 0.9691 

Average  96.38 0.9581 

Note. The best results in model performance are highlighted in bold. 

 

Table 12 

Ensemble model performance on subsets of 40 correct and incorrect justification data sets  

Data set  Accuracy (%) Area under ROC curve 

Question 1 subset  92.47 0.8985 

Question 2 subset  98.33 0.9500 

Question 3 subset  93.57 0.8607 

Question 4 subset  96.00 0.9524 

Question 5 subset  94.00 0.8875 

Question 6 subset  94.07 0.9578 

Average  94.74 0.9178 

Note. The best results in model performance are highlighted in bold. 

 

The performance of the ensemble model was found to be very strong with high accuracies and area under 

the ROC curves being achieved across all subset data sets. Effectively identical performance was achieved 

between the ensembles trained on the complete data sets and the subsets of 100 correct and incorrect 

justification responses, with only a drop in average accuracy of 0.34%. Furthermore, there was a minimal 

drop of 1.98% in accuracy on the significantly smaller subset of 40 correct and incorrect justification 

responses. This indicates that educators wishing to adapt this automated conceptual understanding 

assessment approach into their own classes can do so with minimal data and achieve strong, human-like 

performance. 
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Table 10 shows that the free-text validity ensemble trained on the entire question data sets had the weakest 

performance on the last three questions. This can be explained by the relative sizes of the data sets for each 

question. The first three data sets contained more responses than the last three. As these models gain an 

understanding of how to classify data through training, they improve at classifying with more responses. 

Therefore, the models trained on large data sets (the first three questions) have stronger performance than 

those trained on smaller data sets (the last three question). This is reflected in Tables 11 and 12; when the 

models are trained on equal numbers of student responses, the performance is similar across the questions. 

 

Modelling confidence-in-response 
 

Confidence is another key pointer which provides valuable insight into the nature of students’ conceptual 

understanding. The number of batches parameter was kept constant at 8 as it had not impacted model 

performance during the free-text validity modelling. The early stopping algorithm developed in the free-

text validity modelling was used to determine the optimal number of epochs for the confidence models. 

The question 1 data set was arbitrarily selected to develop the confidence model. Due to the large imbalance 

in favour of the high confidence responses in the Question 1 data set, it was assumed that a substantial bias 

would exist without rebalancing measures. As such, a training data set was created, consisting of a random 

sample 50 high confidence responses and all 53 low confidence responses. The early stopping results of 

the models on the training data set are displayed in Table 13. 

 

Table 13 

Optimal number of epochs identified by the early stopping algorithm for each model on the Question 1 

training data set  

Model  No more improvements after epoch number 

ELECTRA-small  7 

RoBERTa-base  4 

XLNet-base  5 

ALBERT-base-v2  5 

 

Each question’s confidence in response data set was combined to form a large testing data set used to 

evaluate the performance of the confidence in response models. With the models trained on the training 

data set with the optimal number of epochs, the performance of each on the testing data set was found; the 

results are displayed in Table 14. 

 

Table 14 

Performance of optimal epoch models on the testing data set when trained on the Question 1 training data 

set 

Model  Accuracy (%) Area under ROC curve 

ELECTRA-small  87.89 0.8738 

RoBERTa-base  91.24 0.8663 

XLNet-base  88.13 0.8983 

ALBERT-base-v2  86.50 0.8897 

Note. The best results in model performance are highlighted in bold. 

 

Based on the performance results presented in Table 14, the RoBERTa-base model trained with four 

epochs, the XLNet-base model trained with five epochs and the ALBERT-base-v2 model trained with five 

epochs produced the strongest results. As a result, these three models were selected for an ensemble. 

Although the accuracy of the ELECTRA-small model exceeded that of the ALBERT-base-v2 model 

slightly, the ALBERT-base-v2 model had the second highest area under ROC curve and was hence 

preferentially selected. On a computer with a 6-core 12-thread CPU and 128 GB of RAM, it took 

approximately 13 minutes to train this confidence-in-response ensemble. It should be noted that the 

ensemble could not be trained on a computer with 8 GB of RAM due to insufficient memory. The 

performance of the ensemble model on each question’s data set is displayed in Table 15. 

 

  



Australasian Journal of Educational Technology, 2021, 37(5). 

  

 

 
111 

Table 15 

Performance of the confidence-in-response ensemble on each question’s data set when trained on the 

Question 1 training data set  

Data set  Accuracy (%) Area under ROC curve 

Question 1  96.72 0.9834 

Question 2  91.87 0.9059 

Question 3  91.96 0.9576 

Question 4  80.89 0.8946 

Question 5  79.46 0.8644 

Question 6  91.71 0.8780 

Average 88.77 0.9140 

Note. The best results in model performance are highlighted in bold. 

 

The ensemble model produced an average accuracy of 88.77% which is only slightly above the average 

accuracy of the XLNet-base and ALBERT-base-v2 models and below the accuracy of the RoBERTa-base 

model. Table 15 shows that the performance of the ensemble is very strong on all questions except 4 and 

5. When inspecting the misclassification in these two questions, it was clear that many contained content-

specific, non-standard-dictionary words. A potential reason for the drop in performance could be the nature 

of the selected NLP models; they rely heavily on their understanding of language from pretraining. It seems 

feasible to expect that despite being pretrained on large data sets, the relative frequency of the content-

specific words would be very small in comparison to standard-dictionary words; so, it could be expected 

that the pretrained models have a limited understanding of these content-specific words. When investigating 

the responses in the other questions, they rarely featured these content-specific words. With the ensemble 

being trained on responses that do not feature the content-specific words, there is no way for the ensemble 

to build an understanding of the words and hence it would struggle classifying them. 

 

To test this hypothesis and strive for stronger performance with another question from the original data set, 

we tested the model with a training data set from the Question 5 responses. The training data set consisted 

of a random sample of 50 high confidence responses and all low confidence responses (35 after 

preprocessing). This ensemble took 10 minutes to train on a computer with a 6-core 12-thread CPU and 

128 GB of RAM. The performance of the ensemble trained on this data set on each question’s data set is 

displayed in Table 16. 

 

Table 16 

Performance of the confidence-in-response ensemble on each question’s data set when trained on the 

Question 5 training data set  

Data set  Accuracy (%) Area under ROC curve 

Question 1  98.52 0.6841 

Question 2  93.07 0.8387 

Question 3  98.07 0.9012 

Question 4  96.75 0.8456 

Question 5  99.46 0.9800 

Question 6  97.41 0.7917 

Average 97.21 0.8402 

Note. The best results in model performance are highlighted in bold. 

 

The performance of this ensemble was significantly greater than the first. With an average accuracy of 

97.21% and area under the ROC curve of 0.8402, the ensemble could distinguish between high and low 

confidence responses accurately and well. With this performance exceeding that of the free-text validity 

ensembles, it indicates that free-text validity is more complex and challenging to model. Furthermore, as 

explained in the free-text validity results, these accuracies are greater than the accuracy of which educators 

assess their students’ understanding (Chi et al., 2004), suggesting that the automated approach developed 

in this study may provide more consistent and accurate assessments. 
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The ensemble’s deficiencies with the Questions 4 and 5 data sets were eliminated by training the model on 

the Question 5 training data set, with significant jumps in performance. These results suggest that the 

pretrained NLP models may lack an understanding of content-specific, non-standard-dictionary words; 

however, this can be accounted for during training. 

 

The strong performance of the ensemble being achieved with a small training data set indicates that in 

future applications, a confidence-in-response ensemble model can be developed without its performance 

being restricted to large data sets. 

 

Discussion 
 

The results of the free-text validity and confidence-in-response modelling indicate that the tested NLP 

modelling techniques can be applied to accurately assess these two pointers of students’ conceptual 

understanding in their short answer textual responses. This is due to the strong performance of the ensemble 

pointer models, exceeding an average accuracy of 95% in combination with high area under the ROC 

curves. In conjunction with simple algorithms which determine the other two pointers, students’ multiple-

choice selection and concept-mentioned in justification, the automated assessment of conceptual 

understanding technique presented can be realised and implemented with accuracies exceeding 95%. 

 

As explained previously, accuracies above 95% are at least on par with educator assessments of conceptual 

understanding (Chi et al., 2004). Hence, the techniques developed in this study can be applied by educators 

as a formative assessment approach which can perform to a human standard. Additionally, with the 

approach being completely automated, the techniques can be readily applied into flexible and online 

educational environments, presenting a new formative assessment option for educators with the added 

benefits of fast feedback as and when required for themselves and students. 

 

Of the automated assessment approaches that have been reviewed, the approach developed in this study 

provides a unique insight into students’ conceptual understanding with more accurate performance. The 

incorporation of a justification text field allows for insight into the nature of students’ conceptual 

understanding beyond traditional multiple-choice concept inventory questions. Furthermore, the approach 

which this study expanded on assessed students’ conceptual understanding with accuracies around 85% 

(Cunningham-Nelson, 2019); our approach exceeds this performance considerably in all pointers. By 

designing our approach to assess conceptual understanding from pointers, rather than similarity to an 

exemplar response, it also provides substantially greater insight when compared to other automated 

understanding assessment approaches (Guerrero & Wiley, 2019; Lajis & Aziz, 2010). 

 

The performance of the free-text validity pointer ensembles experienced minimal loss when the 

significantly smaller subset data sets were used. The confidence-in-response ensembles achieved strong 

performance despite the very small training data sets used. These observations indicate that educators 

wishing to adapt this automated conceptual understanding assessment approach into their own classes can 

do so with minimal data and achieve strong, human-like performance. 

 

Training the ensemble models took an average of 39 minutes for the free-text validity model and 11.5 

minutes for the confidence-in-response model. By using pretrained models, the training (fine-tuning) time 

is fast when compared to training an entire transformer model and also allows for the utilisation of the 

language understanding that exists from their pretraining. The training times related to the size of the 

training data sets, with smaller data sets training significantly faster than the larger data sets. As training 

was done on a relatively powerful computer which had 128 GB of RAM, training would take longer on less 

powerful machines. Furthermore, machines with relatively low memory may be incapable of training such 

models; a computer with 8 GB of RAM failed to train all ensembles. This is due to the complexity and size 

of the transformer models as they require substantial computational resources. Fortunately, all ensemble 

models can also be trained on various free-to-use online platforms. This means that educators have the tools 

to train their own models, regardless of the computational resources at their disposal. 

 

With the smallest data set size having been tested containing 80 responses, educators should note that 

performance on smaller data sets is unknown and likely to decrease. Importantly, educators should be wary 

when responses are expected to contain content-specific words as the performance of the confidence-in-

response models was limited in cases where the training data did not contain such words. Therefore, to 
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achieve strong performance, responses containing content-specific words should be incorporated into the 

training data set. 

 

In applications where greater performance is required, educators could look at utilising larger data sets, 

which would lead to stronger performance. It should be noted that data sets containing a large class 

imbalance are expected to create bias and hence weaker performance. Therefore, if a large imbalance is 

present, we recommend that educators sample out a balanced data set for model training purposes. 

Additionally, greater performance may be achieved through further optimisation of training parameters as 

only the number of batches and epochs were optimised in this study. 

 

There were some common responses that the free-text validity and confidence-in-response models 

struggled with. Educators should be aware that both models would sometimes misclassify responses 

containing multiple non-valid words or phrases. An algorithm could be developed to deal with them during 

preprocessing. 

 

There were also other limitations which should be taken into consideration for future applications. The data 

sets all came from a single subject. Although there are differences in concepts between questions, they 

share similarities within the subject area of signal analysis. The models would perform strongly in other 

subject areas; however, this has not been validated. Additionally, further research needs to be conducted to 

assess how the models perform with more complex multi-sentence responses. 

 

Conclusion 
 

This study developed a technique to automatically assess students’ conceptual understanding from their 

responses to short response questions. Specifically, modelling the free-text validity of a student’s 

justification as well as the confidence in their response have been addressed. By training several open-

source NLP models, question specific ensemble models that could assess the validity of a student’s 

justification to accuracies exceeding 90% could be created. Furthermore, the detrimental effects on model 

performance due to a reduction in the amount of available training data were minimal. A confidence-in-

response model was developed which achieved accuracies above 95% on all question data sets. 

 

Transformer-based NLP models can be used to best extract evidence of conceptual understanding from 

text. By combining several of these models, human-like performance for the assessment of conceptual 

understanding can be achieved. The amount of available data had minimal impact on the performance of 

the models, suggesting that human-like conceptual understanding assessment models can be developed by 

educators with access to small numbers of student responses. This study complements the existing body of 

work of applied NLP in education, showcasing a novel approach to assessing conceptual understanding. 

 

The insights gained from this study indicate a promising future for NLP applications in education. With the 

viability of the automated assessment of conceptual understanding realised in this study, the advantages of 

this approach to formative assessment may soon be realised and adopted widely, providing opportunities 

for enhanced learning experiences for both educators and students alike. 
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