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Project-based learning (PjBL) has been widely promoted in educational practice, for 
example, computer programming education. While PiBL may help learners to connect 
abstract knowledge with authentic practice, the complexity of completing an authentic 
project may overwhelm learners, making them unable to achieve the desired learning 
outcomes. This study proposes a visualisation-based and progressive learning environment 
as a cognitive tool to support PjBL of programming. The cognitive tool is designed to 
externalise the complex process of completing a realistic programming project. It aims to 
scaffold the complex project process, foster effective thinking and reflection, and allow the 
teacher to track and give feedback on individual performance throughout the project process. 
Moreover, simple-to-complex sequencing of whole-task projects is incorporated into the 
cognitive tool to support progressive learning with authentic projects. Senior college students 
participated in this study by completing a project-based programming learning module using 
the proposed cognitive tool. The results showed that after incorporating the simple-to-
complex approach, the visualisation-based cognitive tool is more effective in improving 
students’ programming performance and better perceived by students in terms of its support 
for scaffolding and articulating the complex project process. 

 
Introduction 
 
Project-based learning (PjBL) is a student-centred pedagogy that encourages students to learn by working 
with authentic whole-tasks or projects. It highlights the integration of knowing and doing based on the 
belief that students acquire deep knowledge through active exploration of real-world problems. PjBL 
distinguishes itself from a related pedagogy called problem-based learning (PBL) by placing more attention 
on the development of realistic products closer to professional reality and on the assessment of product 
quality. By creating artefacts as solutions to real-world problems, PjBL helps students to connect abstract 
knowledge with real-world practice (Blumenfeld et al., 2011). 
 
PjBL has been widely promoted in educational practice especially in senior-year curricula in higher 
education. One big concern in higher education is about the graduates’ ability to apply knowledge to solve 
industry problems. As reported in prior studies, competency gaps were found between graduates’ 
professional attributes and the expectations of their employees in areas such as problem-solving and 
communication skills (Jollands, Jolly, & Molyneaux, 2012). Researchers also discussed the relationship 
between school learning and workplace learning and transitioning graduates from novices to experts 
through practice (Tynjälä, 2008; Wang, Yuan, Kirschner, Kushniruk, & Peng, 2018). In these studies, PjBL 
was recognised as a promising approach to addressing the gap between knowledge and practice and to 
pushing professional readiness. 
 
Nevertheless, PjBL is much more easily advocated than accomplished. Completing an authentic project 
often involves complex cognitive processes, which are difficult for learners to capture and for teachers to 
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facilitate. On the other hand, research reveals the advantages of computer-based cognitive tools in allowing 
people to construct, recall, and modify their understanding of complex issues by reflecting complex 
cognition on the screen (Jonassen, 1996). While computer-based cognitive tools have the potential to 
facilitate complex learning with authentic projects (Peng, Wang, & Sampson, 2017), there is inadequate 
research examining whether and how PjBL can be supported by computer-based cognitive tools. To this 
end, this study explored the design and effects of a visualisation-based learning environment as a computer-
based cognitive tool to support PjBL. 
 
Computer programming, a learning subject in engineering education, was selected for this study. PjBL is 
particularly suitable for engineering education because almost every task undertaken in professional 
practice by an engineer is related to a project. Computer programming is an important subject in engineering 
education. It is also considered a hard subject to learn. A programmer needs to master programming 
knowledge (e.g., concepts, syntax, semantics) and apply it to programming tasks. The strategies and skills 
for applying programming to realistic tasks are often implicit and hard to capture, yet are critical for 
programming performance (Robins, Rountree, & Rountree, 2003; Soloway, 1986). PjBL has therefore been 
increasingly promoted in programming education by encouraging students to work with realistic 
programming projects and developing artefacts, such as computer programs or design plans, which are 
realistic products closer to professional reality (Blumenfeld et al., 2011). However, the implementation of 
PjBL in programming courses remains a struggle for many educators to facilitate the complex process of 
analysis, design, and development of computer programs (Pucher & Lehner, 2011). Such complexity can 
overwhelm learners, making them unable to engage in effective learning experiences and achieve the 
desired learning outcomes (Helle, Tynjälä, & Olkinuora, 2006; Pucher & Lehner, 2011). 
 
This study aimed to address the challenge of PjBL in programming education by (a) proposing a 
visualisation-based cognitive tool for PjBL and (b) applying a simple-to-complex progressive approach to 
learning with complex projects. Firstly, a visualisation-based learning environment was proposed by 
externalising the complex process of completing a realistic programming project in visual formats. It aimed 
to scaffold complex learning, foster effective thinking and reflection, and enable the teacher to track and 
give feedback on individual performance. Secondly, considering that completing a realistic whole-task 
project might be too challenging for novices initially, the simple-to-complex sequencing of whole-task 
projects was incorporated into the learning environment. A realistic project was deconstructed into a set of 
sub-projects arrayed in a simple-to-complex order; each sub-project comprised all central elements of a 
project. 
 
This study may contribute to knowledge of how effective learning with complex authentic projects can be 
realised through a visualisation-based and progressive learning environment as a computer-based cognitive 
tool. While research has shown the promising effects of visualisation-based cognitive tools on improving 
learning with authentic projects by externalising the complex cognitive processes (Peng et al., 2017), 
novices may have problems in completing an authentic project even though its complex process has been 
visualised. This study explored whether and how learning with complex projects can be supported not only 
by visualising the cognitive processes, but also by simple-to-complex sequencing of whole-task projects. 
Both are important elements of a computer-based cognitive tool for learning with complex authentic 
projects. 
 
Literature review 
 
Scaffolding learning with complex tasks 
 
Learning by working with a realistic project is characterised by performing a complex task or solving a 
sophisticated problem, which usually involves complex, implicit processes. The complexity of the process 
may generate heavy cognitive loads for learners, making them unable to achieve the desired learning 
outcomes (Kirschner, Sweller, & Clark, 2006). Providing learners with a scaffold or necessary support is 
important, if not essential, to learning with complex tasks or problems (Belland, Walker, Kim, & Lefler, 
2016; Hmelo-Silver, Duncan, & Chinn, 2007). The commonly used approaches to scaffolding complex 
learning involve structuring a complex task into a set of main actions or using key questions to help learners 
recognise the important goals to pursue in their task (Reiser, 2004), in addition to using prompts to bring 
learners’ attention to the important issues of complex tasks (Ge & Land, 2003). 
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Scaffolding learning with complex tasks echoes to a certain extent the cognitive apprenticeship model, 
which claims that performing a complex task involves implicit processes, and it is critical to make such 
processes visible for novices to observe, enact, and practise with the necessary help (Collins, Brown, & 
Holum, 1991). The cognitive apprenticeship model suggests a set of cognitive strategies (namely 
exploration, scaffolding, modelling, coaching, articulation, and reflection) to support learning in complex 
task situations. Scaffolding and articulation focus on the externalisation of complex processes; modelling 
and coaching highlight the provision of instructional support and feedback; exploration and reflection 
encourage learners to work with realistic problems or tasks and reflect on the task experience. 
 
Computer-based visual representations as cognitive tools 
 
To support the externalisation of complex processes in learning with complex tasks, visual representations 
have been increasingly employed to represent the complex cognitive process in visual forms. Visual 
representations like diagrams, maps, tables, and pictures, if used appropriately, can reduce human cognitive 
load by utilising the human brain’s capacity to rapidly process visual images (Scaife & Rogers, 1996) and 
by meaningful representation of complex ideas (e.g., representing information verbally and spatially, 
reducing ambiguous expression, grouping together relevant information). They can work as cognitive tools 
to extend mental capability and afford efficient cognitive processing. 
 
In recent decades, computer-based visual representation tools such as concept maps, procedural flowcharts, 
causal maps, and integrated cognitive maps have been increasingly applied to educational practices and 
incorporated in computer-based learning environments to foster higher-order thinking and self-directed 
learning (Lajoie & Derry, 1993; Lee, Pradhan, & Dalgarno, 2008; Spector & Anderson, 2000; Wang, Derry, 
& Ge, 2017). Such visualisation-based cognitive tools (Jonassen, Carr, & Yueh, 1998) can help represent 
complex, abstract issues and processes that are difficult to convey in traditional formats. Research has 
shown the promising effects of such tools in improving students’ knowledge and task performance in 
various contexts (Gijlers & de Jong, 2013; Slof, Erkens, Kirschner, Janssen, & Jaspers, 2012; Suthers, 
Vatrapu, Medina, Joseph, & Dwyer, 2008; Wang, Cheng, Chen, Mercer, & Kirschner, 2017; Wang, Wu, 
Kirschner, & Spector, 2018). 
 
In programming education, visual representations (e.g., diagrams, pictures, animations) with relevant tools 
have been used to visualise the complex structures and algorithms of software programs and demonstrate 
the run-time behaviour of programs (Koschke, 2003; Sorva, Karavirta, & Malmi, 2013). For example, the 
instructor using the tool may start by demonstrating a program segment with learned elements, and then 
make some change (e.g., adding a for loop) to the segment to introduce a new language element to students. 
During the process, the added code lines are highlighted, and the output is visually presented to show how 
the new element is used to achieve the goal (Hooper et al., 2007). Other tools, such as BlueJ, can visualise 
the class structure to help students understand classes and objects and their relationships, which are 
important issues in object-oriented programming, but difficult to explain to students (Kölling, Quig, 
Patterson, & Rosenberg, 2003). Visualising the class structure enables students to see and interact with 
objects before being confronted with syntax details that bother students most. These approaches have been 
mainly used to help students to understand the abstract concepts and complicated behaviour of programs 
and to support the coding process. They are effective in introductory programming courses and predefined 
programming problems, but inadequate for ill-defined realistic programming projects (Sykes, 2007). The 
literature has reported the promising advantages of these approaches in engaging programming learners, 
but their effect on improving learners’ programming performance is inconclusive (Rajala, Laakso, Kaila, 
& Salakoski, 2008; Sorva et al., 2013). In this study, the visualisation-based cognitive tool was designed to 
externalise the complex cognitive process of completing a realistic programming project, which involves 
not only coding and debugging but also other stages such as problem formulation, solution planning, and 
solution design. Visualisation of such kind of mental images for problem-solving is crucial to programming 
(Gómez-Albarrán, 2005), especially for ill-defined realistic programming projects. 
 
Simple-to-complex sequencing of whole-tasks for learning with complex tasks 
 
Completing a realistic task or project might be too challenging for novices at the initial stage. They may 
have problems in completing the project even though the process has been demonstrated or externalised in 
visible forms. In relation to this issue, the four-component instructional design (4C/ID) model presents a 
framework for systematic learning with complex tasks (van Merriënboer & Kirschner, 2017). In the 4C/ID 
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model, learners are asked to perform meaningful whole tasks in authentic situations, where the tasks 
comprise all key aspects of the complete task. In addition to providing learners with procedural information 
and supportive guidance to complete complex tasks, authentic whole-tasks need to be organised in a simple-
to-complex order. Initial complex tasks can focus on the most fundamental and central elements of the 
whole task, to help students form a holistic view of the complex task’s skeleton that could be enriched by 
later learning tasks (van Merrienboer & Sweller, 2005). The simple-to-complex progressive learning 
approach has been empirically explored and has shown its great potential in complex learning domains, 
including programming learning in high-school classrooms and computer-based learning environments 
(Marcellis, Barendsen, & van Merrienboer, 2018; van Merriënboer, 1990; van Merriënboer & De Croock, 
1992). 
 
Research questions 
 
This study adopted a pre- and post-test control group design. Both experimental and control groups were 
asked to complete a PjBL module of ASP.NET. ASP.NET is a popular programming language and a 
widely-used web application framework for developing dynamic modern web applications and services. 
The PjBL module was designed for students to develop senior-level programming skills by working on 
realistic programming projects after they have completed basic computer programming courses. Students 
were expected to apply basic programming knowledge and skills to create program artefacts as solutions to 
ill-defined real-world problems. 
 
To achieve the learning goal, students needed instructional support that allows them to capture the complex 
cognitive process of completing a realistic programming project. Such support was offered to students in 
both experimental and control groups via using the visualisation-based learning environment. Considering 
the possible need for simple-to-complex sequencing of whole-task projects, students in the experimental 
group were asked to work with a realistic project in a progressive way, while those in the control group 
worked with the same project in a non-progressive way. 
 
The research questions (RQs) were specified as follows: 
 

• RQ1. Is the visualisation-based cognitive tool for PjBL of programming effective for improving 
students’ programming performance after the study? 

 
To answer this question, students’ pre-test and post-test scores of programming performance before and 
after the study were analysed to examine the pre-post difference. 
 

• RQ2. Will the incorporation of the simple-to-complex progressive learning approach influence the 
effects of the visualisation-based learning environment for PjBL of programming (as reflected in 
students’ programming performance and their perceptions of the learning environment)? 

 
To answer this question, students’ perceptions of the learning environment (in terms of its cognitive 
strategies for support of learning with complex tasks) were collected and compared between those using 
the progressive approach and others using the non-progressive approach. The programming performance 
was also analysed and compared between the two groups of students. 
 
Method 
 
The study received the ethical approval from the Human Research Ethics Committee of the researchers’ 
university. The participants gave informed consent to participate in this study. 
 
Participants 
 
There were 69 year-three undergraduates (44 males and 25 females) in computer science participating in 
this study. They had completed basic computer programming courses before the study. Each student was 
randomly assigned to either the experimental condition using the progressive learning approach or to the 
control condition using the non-progressive learning approach. All the 34 students (20 males and 14 
females) assigned to the experimental group completed the entire study. Among the 35 students assigned 
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to the control group, 33 of them (22 males and 11 females) completed the entire study, and other 2 failed 
to take the post-test. The data of 69 students completing the entire study were used for analysis. 
 
Visualisation-based learning environment 
 
In this study, the visualisation-based cognitive tool was designed in response to the aforementioned need 
for externalising the complex cognitive process of completing a realistic programming project, with 
particular attention to problem formulation, solution planning, and solution design, rather than coding and 
debugging only. Based on the literature and practice of computer programming (Bassil, 2012; Deek & 
McHugh, 2002), the cognitive process of completing a programming project was visualised as a set of key 
actions (listed below). The tacit knowledge or key strategies underlying these actions were also highlighted. 
Visualisation of such kind of mental images for problem-solving is crucial to computer programming 
(Gómez-Albarrán, 2005), especially for ill-defined realistic programming projects (Peng et al., 2017). It 
can scaffold student learning with a complex project, foster effective thinking and reflection during the 
project, and enable the teacher to track and give feedback on individual performance. 
 

• Problem understanding (to formulate a problem). The first step of a programming project is to 
formulate a clear understanding of the problem. The problem understanding should highlight the 
requirements and goals of the project. Learners can present their understanding by specifying the 
requirements and goals of the project in a structured form. 

• Modular design (to design a plan of the solution). A computer program is often organised as a set 
of functions or modules to be developed independently and then combined to solve the problem. 
Based on the understanding of the problem, a solution plan can be generated by decomposing the 
main goals into sub-goals, identifying modular functions to accomplish each sub-goal, and 
specifying the relationships between the functions. The modular design strategies highlight the 
independence and completeness of the modules. A diagramming tool is offered for learners to 
build a functional block diagram to outline the plan of the solution. 

• Process design (to design a detailed solution). The process within and across the functions must 
be outlined to illustrate the solution to or algorithm of a given problem, mainly by showing the 
steps and connections between them. The process design strategies focus on priority analysis and 
critical analysis when designing a complex flowchart involving a number of interactive modules. 
Learners can use the diagramming tool to build a flowchart, which demonstrates a detailed design 
of the solution. 

• Coding (to implement a solution). The modular design and process design can then be translated 
into program code as a solution to the project. Learners can upload their program codes, which 
can be reviewed and revised throughout their projects. The coding strategies focus on top-down 
gradual refinement in addition to the data structures and algorithms. 

• Evaluation and reflection. After completing their codes, learners need to evaluate their programs 
by testing and debugging them. Moreover, they can reflect on their performance and areas for 
possible improvement by reviewing the artefacts generated in each action along with the 
comments and feedback from the teacher. They can update their artefacts or solutions and receive 
further feedback. 

 
As shown in Figure 1, the process of completing a programming project is externalised in a visual format. 
By clicking on the icon of each action, learners can enter the action space, view the key strategies underlying 
the action, and present the output of the action for effective thinking and reflection. 
 

 
Figure 1. Visualisation-based learning environment 
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As shown in Figure 2, a diagramming tool is provided for learners to build a functional block diagram to 
outline the plan of the solution. Moreover, learners can use the diagramming tool to build a flowchart for 
the software program, which demonstrates a detailed design of the solution. 
 

 
Figure 2. Modular design and process design 
 
After completing an action, learners can review and refine their outputs. Moreover, the teacher can use the 
system to observe students’ artefacts and provide feedback to individuals by giving specific comments on 
their outputs on problem statement, modular design, program flowchart, and program code, as shown in 
Figure 3. 
 

 
Figure 3. Reflection with feedback 
 
The overall design of the learning environment was aligned with the six strategies proposed in the cognitive 
apprenticeship model, namely exploration, scaffolding, modelling, coaching, articulation, and reflection. 
 

• Exploration: providing learners with opportunities to work with realistic projects 
• Scaffolding: making the complex process accessible to learners by visualising the process of 

completing a programming project into a set of main actions (problem understanding, modular 
design, process design, coding, and evaluation and reflection) and externalising the key strategies 
or tacit knowledge underlying the actions 

• Modelling: the teacher’s demonstration of the process of completing a sample project using the 
system 

• Coaching: providing feedback on individual performance by the teacher via the system 
• Articulation: enabling learners to present their project process in visible forms 
• Reflection: enabling learners to review and reflect on their project process and identify the gap in 

their knowledge and performance. 
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Learning task 
 
During the study, students in both groups used the proposed visualisation-based cognitive tool to work on 
a realistic programming project – membership management. The control group worked with the project in 
a non-progressive way, that is, without deconstructing the project. The experimental group worked with 
the project in a progressive way. According to the 4C/ID model (van Merriënboer & Kirschner, 2017), 
authentic whole-tasks need to be organised in a simple-to-complex order; initial complex tasks can focus 
on the most fundamental and central elements of the whole task, helping students to form a holistic view 
of the complex task’s skeleton that could be enriched by later learning tasks. In this study, the membership 
management project was deconstructed into a set of sub-projects arrayed in a simple-to-complex order. As 
outlined in Table 1, the requirement of each sub-project was based on the function of the prior sub-project, 
with extended functions in the variant. For each sub-project, students need to go through all key aspects of 
the task – problem understanding, modular design, process design, coding, and evaluation and reflection. 
In this way, students worked with a realistic whole project in a progressive way, instead of being exposed 
to its full complexity from the outset. 
 
Table 1 
Learning with a programming project in a progressive and non-progressive way 

Learning approach Project Main requirement 
Progressive  Sub-project 1 Develop a program that allows for member registration 

and user login  
Sub-project 2 Add functions for login validation and update of member 

information 
Sub-project 3 Add further functions for password setting and resetting 

Non-progressive Project Develop an integrated program that includes all the 
functions mentioned above 

 
To complete a project or sub-project, students went through the main actions – problem understanding, 
modular design, process design, coding, and evaluation and reflection. They completed each action by 
submitting relevant learning artefacts (i.e., problem statement, modular design, program flowchart, and 
code). During the project, the teacher, who was also a programming expert, reviewed the students’ learning 
artefacts and provided comments on individual performance via the learning system. Students could view 
the teacher’s comments for improvement and work on a project more than once for practice. They could 
also use online forums for flexible discussion and communication among peers in the same group. 
 
Measures and instruments 
 
Programming performance 
Students’ programming performance concerning the programming process and programming product was 
assessed before and after the study using a programming task. An experienced programming teacher and a 
programming expert worked together to design two programming tasks, one for the pre-test and the other 
for the post-test. The two tasks were different in content but at the same level of difficulty as validated by 
the domain experts. Both tasks were practical and moderately difficult. For example, in a program, the 
students were asked to create a class of students, store the name and grades of five courses for each student, 
calculate the average grade for each student, and display the results of all students. The two tasks were 
randomly assigned to the two tests. 
 
The assessment of students’ programming performance was informed by the programming assessment 
model proposed by Deek, Hiltz, Kimmel, and Rotter (1999), which consists of two distinct categories: 
programming process and programming product. The programming process was measured by three sub-
scales: problem understanding, solution planning (i.e., modular design), and solution design (i.e., process 
design). The programming product (i.e., code) was measured in terms of correctness, efficiency, reliability, 
and readability. Accordingly, the assessment of programming performance in this study consisted of four 
items: problem understanding, modular design, process design, and coding. Based on the literature and 
common practice, the rubric weighting was 40% for coding and 20% for each of the other items. The 
assessment rubrics with respect to the description, weight, rating criteria, and score range of each item are 
outlined in Table 2. The full programming performance score was 20 (8 points for coding and 4 points for 
each of the three other aspects). 
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Table 2 
Assessment rubrics for programming performance 

Category Item Weight Description Score 
range 

Programming 
process 

Problem 
understanding 

20% 4 – Problem is clearly and correctly stated. All 
requirements and goals are identified. 
3 – Problem is correctly stated. Most requirements 
and goals are identified. 
2 – Problem is partially stated and/or some facts 
are identified. 
1 – Problem statement is incorrect and 
meaningless facts are identified. 
0 – No problem representation/fact identification 
attempted or completely irrelevant work. 

0 to 4 
 

Modular 
design 

20% 4 – Detailed and clear planning, with complete 
goal refinement and task identification. 
3 – Adequate planning, with sufficient goal 
refinement and task identification. 
2 – Partially correct planning, with some goal 
refinement and task identification. 
1 – Incorrect planning and meaningless goal 
refinement. 
0 – No planning/refinement attempted or 
completely irrelevant work. 

0 to 4 
 

Process 
design 

20% 4 – Complete module decomposition, 
organisation, and detailed specifications. 
3 – Sufficient module decomposition, 
organisation, and sufficient specifications. 
2 – Partial design and/or some module 
specifications. 
1 – Improper module decomposition, organisation, 
and specifications. 
0 – No design/specifications attempted or 
completely irrelevant work. 

0 to 4 
 

Programming 
product 

Coding 10% Correctness 2 – Correct solution 
specifications/program code and 
results consistent with problem 
requirements. 
1 – Partial solution 
specifications/program code and/or 
some results 
0 – No solution 
specifications/program code, or 
results inconsistent with problem 
requirements. 

0 to 2 
 

10% Efficiency 2 – Most algorithms, data 
structures, control structures, and 
language constructs for this 
problem situation are appropriate. 
1 – Program accomplishes its task, 
but lacks coherence in choice of 
either data and/or control structures. 
0 – Program solution lacks 
coherence in choice of both data 
and control structures. 

0 to 2 
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10% Reliability 2 – Program functions properly 
under all test cases. Works for and 
responds to all valid inputs. 
1 – Program functions under limited 
test cases. Only works for valid 
inputs, but fails to respond to 
invalid inputs. 
0 – Program fails under most test 
cases. 

0 to 2 
 

10% Readability 2 – Program includes commented 
code, meaningful identifiers, 
indentation to clarify logical 
structure, and user instructions. 
1 – Program lacks clear 
documentation and/or user 
instructions. 
0 – Program is totally incoherent. 

0 to 2 
 

 
Two programming experts graded the students’ programming tests blindly and independently, and their 
scores were averaged. The inter-rater reliability analysis using Cohen’s kappa coefficients confirmed the 
inter-rater reliability for students’ programming tests (.86 for problem understanding, .83 for modular 
design, .88 for process design, .89 for coding). 
 
Learner perceptions 
The post-test questionnaire was used to collect students’ perceptions of the learning environment in terms 
of its cognitive strategies for support of learning with complex tasks. It used a 5-point Likert scale ranging 
from 1 (strongly disagree) to 5 (strongly agree). Fifteen items were developed from the instrument 
proposed by Stalmeijer, Dolmans, Wolfhagen, Muijtjens, and Scherpbier (2008) on the basis of the 
cognitive apprenticeship model. They involve six sub-scales of cognitive strategies: exploration (working 
with realistic problems or tasks), scaffolding (providing support to learners for the tasks that learners are 
unable to complete without help), modelling (providing learners with examples or models of desired 
performance), articulation (learners’ articulation of their thinking and understanding), coaching (observing 
learners’ performance and offering feedback), and reflection (learners’ reflection on their performance and 
comparison with the performance of others). 
 
The validity and reliability of the instrument have been well established (Stalmeijer et al., 2008, 2010). 
Examples of the questions in the survey included: “The learning system helped me to complete a task that 
is beyond my level of competence,” “The learning system allowed me to articulate my task process,” “The 
learning system provided me useful feedback during the study,” and “The learning system stimulated me 
to thinking about how to improve my task performance.” In this study, an internal consistency analysis 
using Cronbach’s alpha coefficients confirmed that all of the sub-scales were reliable (.82 for exploration, 
.70 for scaffolding, .77 for modelling, .84 for articulation, .74 for coaching, .84 for reflection). 
 
Procedure 
 
The learning module lasted for 6 weeks. In the first week, the participants were given 30-minute face-to-
face instruction on how to use the visualisation-based learning environment and how to apply relevant 
programming skills and strategies to perform each action in completing a programming project. Relevant 
information and guidance were also available in the system for flexible access. During the instruction, a 
sample project was used for demonstration by the teacher. Students could use the sample project to practise 
and become familiar with the learning environment. In addition, a programming task was used to assess 
their programming performance before the study. 
 
The students started their independent learning in the second week. They were asked to complete the 
membership management project in their free time over a 4-week period. They were asked to pace 
themselves and spend 4 hours per week on the project. Based on the log data, most of them spent 
approximately 3 hours per week with the system. For each project, most of the students received two or 
three comments on problem understanding and one or two comments on each of the other parts, including 
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modular design, process design, and coding. In the sixth week, a questionnaire survey was administered to 
collect students’ perceptions, and the post-test of programming performance was arranged to assess their 
programming performance after the study. 
 
Data analysis 
 
The collected data were analysed using the following methods: 
 

(1) Paired samples t tests were used to determine whether there were differences between the pre-test 
and post-test scores of all participants. 

(2) Independent samples t tests were conducted on the pre-test scores to identify whether students in 
the two groups differed in their programming performance before the study. 

(3) One-way analysis of covariance (ANCOVA) was used to examine group differences in the post-
test scores, whereby the students’ pre-test score was used as covariate. 

(4) ANOVA was conducted on the survey data to determine the differences in student perceptions of 
the learning environment between the two groups. 

(5) A two-way ANOVA was conducted on programming performance to examine whether there was 
an interaction between the two factors (learning time (pre-test vs. post-test) as a within-subject 
factor; group condition (progressive vs. non-progressive) as a between-subject factor). 

(6) Cohen’s d effect size was calculated for the effects on programming performance. 
 
Results 
 
RQ1. Is the visualisation-based cognitive tool for PjBL of programming effective for 
improving students’ programming performance after the study? 
 
As shown in Table 3, the participants made a significant pre-post improvement on all scales of the 
programming performance (problem understanding, modular design, process design, coding). The effect 
size (Cohen's d = 0.97 for problem understanding, 0.97 for modular design, 1.15 for process design, 1.27 
for coding, 1.29 for total score) indicated a large effect of the visualisation-based learning environment in 
improving students’ programming performance after the study. 
 
Table 3 
Descriptive statistics and t tests on pre-test and post-test scores of programming performance 

Aspect Test N Mean SD t df p Cohen’s d 
Problem 
understanding 

a 67 14.142 4.187 -5.627 123.359 0.000*** -0.97 
b 67 17.761 3.193 

Modular 
design  

a 67 13.769 3.803 -5.527 127.103 0.000*** -0.97 
b 67 17.149 3.117 

Process 
design 

a 67 13.396 3.446 -6.673 132 0.000*** -1.15 
b 67 17.313 3.349 

Coding a 67 19.030 5.589 -7.322 115.451 0.000*** -1.27 
b 67 28.000 8.325 

Total a 67 60.336 15.069 -7.466 132 0.000*** -1.29 
b 67 80.224 15.758 

Notes. a = pre-test. b = post-test. *** p < 0.001 
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RQ2. Will the incorporation of the simple-to-complex progressive learning approach 
influence the effects to the visualisation-based learning environment for PjBL of 
programming (as reflected in students’ programming performance and their perceptions 
of the learning environment)? 
 
Programming performance 
As shown in Table 4, there were no significant differences between the experimental and control groups in 
the pre-test scores of programming performance. The results indicated that the two groups had comparable 
programming performance before the study. 
 
Table 4 
Descriptive statistics and t tests on the pre-test scores of programming performance of both groups 

Aspect Condition N Mean SD t df p 
Problem 
understanding 

E 34 13.82 4.09 -0.629 65 0.532 C 33 14.47 4.32 

Modular design  E 34 13.53 3.59 -0.520 65 0.605 C 33 14.02 4.05 

Process design E 34 13.38 3.42 -0.032 65 0.975 C 33 13.41 3.53 

Coding E 34 19.12 5.70 0.130 65 0.897 C 33 18.94 5.56 

Total E 34 59.85 14.27 -0.264 65 0.792 C 33 60.83 16.05 
Notes. E = Experimental group. C = Control group. 
 
Based on the ANCOVA results shown in Table 5, students in the experimental group outperformed those 
in the control group in all scales of programming performance. The large effect size (Cohen’s d = 1.01 for 
problem understanding, 0.78 for modular design, 0.73 for process design, 0.86 for coding, 0.09 for total 
score) indicated that the progressive learning approach made the visualisation-based learning environment 
more effective in improving students’ programming performance after the study. 
 
Table 5 
Descriptive statistics and ANCOVA on programming performance of both groups after the study 

Aspect Condition N Mean SD Adjusted 
mean 

F(1, 65) p Cohen’s 
d 

Problem 
understanding 

E 34 19.19 1.56 19.25 20.566 0.000*** 1.01 
C 33 16.29 3.76 16.23 

Modular 
design 

E 34 18.27 1.98 18.33 12.024 0.001** 0.78 
C 33 15.99 3.64 15.94 

Process design E 34 18.46 2.53 18.46 8.872 0.004** 0.73 
C 33 16.14 3.70 16.14 

Coding E 34 31.28 3.82 31.26 12.691 0.001** 0.86 
C 33 24.62 10.23 24.65 

Total E 34 87.20 5.29 87.32 18.481 0.000*** 0.99 
C 33 73.04 19.45 72.91 

Notes. E = Experimental group. C = Control group. *** p < 0.001; ** p < 0.01 
 
The two-way ANOVA results showed that students in the experimental group outperformed their 
counterparts in the overall programming performance (F(1, 130) = 6.753, p < 0.05), that is, group condition 
influenced the performance. In addition, students in both groups had improved their programming 
performance after the study; in other words, learning time had an effect on the programming performance 
of both groups (F(1, 130) = 60.806, p < 0.001). The interaction between learning time and group condition 
reached statistical significance (F(1, 130) = 8.912, p < 0.01), suggesting that the effects of the progressive 
learning approach interacted with the effects of learning time. 
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Learner perceptions 
As shown in Table 5, both groups reported having positive perceptions of the learning environment in terms 
of its cognitive strategies that support the learning with complex tasks. The experimental group recorded 
higher scores than the control group on two scales – scaffolding and articulation, but no significant 
differences in the other four scales – modelling, coaching, reflection, and exploration. 
 
Table 6 
Descriptive statistics and ANOVA on students’ perceptions of the learning environment 

 Condition N Mean SD p value of 
Levene’s test 

F p 

Modelling E 34 4.17 0.59 0.250 0.120 0.730 
C 33 4.12 0.47 

Coaching E 34 4.25 0.62 0.742 0.132 0.718 
C 33 4.19 0.58 

Scaffolding E 34 4.24 0.57 0.337 4.448 0.039* 
C 33 3.92 0.64 

Articulation E 34 4.37 0.59 0.320 5.781 0.019* 
C 33 4.02 0.61 

Reflection E 34 4.25 0.61 0.800 0.525 0.471 
C 33 4.14 0.68 

Exploration E 34 4.24 0.68 0.444 0.008 0.930 
C 33 4.22 0.51 

Notes. E = Experimental group. C = Control group. * p < 0.05 
 
Discussion 
 
This study proposed a visualisation-based cognitive tool that externalised the complex process of 
completing a realistic programming project in visual formats. It aimed to scaffold students’ learning with 
projects, facilitate their thinking and reflection, and enable the teacher to track and give feedback on student 
performance during the project. Considering that completing a realistic whole-task project might be too 
challenging for novices initially, the simple-to-complex sequencing of whole-task projects was 
incorporated into the learning environment. It allowed students to start from relatively simple but authentic 
whole-tasks and then progress to practice that increasingly approximates the reality of professional practice. 
 
The proposed visualisation-based progressive learning environment as a computer-based cognitive tool for 
project-based learning extends the literature in two aspects. Firstly, while existing visualisation-based tools 
for programming education have focused on helping students to understand the abstract concepts and 
complicated behaviour of programs and supporting the coding process, the visualisation-based cognitive 
tool proposed in this study focuses on externalising the complex cognitive process of completing a realistic 
programming project, which includes not only coding and debugging but also problem formulation, 
solution planning, and solution design. Visualisation of such kind of mental images for problem solving is 
crucial to programming, especially for ill-defined realistic programming projects (Peng et al., 2017). 
Secondly, this study demonstrates that learning with complex projects may need instructional support in 
multiple aspects. In addition to visualising the complex cognitive process, simple-to-complex sequencing 
of whole-task projects needs to be taken into account since completing a realistic project might be too 
challenging for students at the initial stage even though its process has been visualised. The findings of the 
study reveal that both visualising the complex cognitive process and simple-to-complex sequencing of 
whole-task projects are important elements of a computer-based cognitive tool for learning with complex 
authentic projects. The detailed findings of the study are discussed as follows. 
 
RQ1. Is the visualisation-based cognitive tool for PjBL of programming effective for 
improving students’ programming performance after the study? 
 
After completing the PjBL module using the visualisation-based learning environment, the students were 
found to make a significant improvement on all scales of the programming performance concerning 
programming process (problem understanding, modular design, and process design) and programming 
product (coding). The results have shown the promising effects of the visualisation-based learning 
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environment for PjBL of programming. The finding is consistent with a previous study (Peng et al., 2017). 
The finding also supports the claimed advantages of computer-based cognitive tools in representing and 
manipulating complex cognition so as to improve student thinking and performance (Chen, Wang, Grotzer, 
& Dede, 2018; Toth, Suthers, & Lesgold, 2002; Wu & Wang, 2012) and expertise development (Wang, 
Yuan, et al., 2018). 
 
The improvement made by the students in programming performance after the study was in alignment with 
their positive perceptions of the learning environment. The participants, either in the experimental group 
or in the control group, had positive perceptions of the visualisation-based learning environment in terms 
of its cognitive strategies for support of learning with complex tasks (exploration, scaffolding, modelling, 
articulation, coaching, and reflection). Students perceived its affordances in scaffolding the complex task 
process and enabling them to articulate and reflect on their task process; moreover, learners found the 
learning environment helpful in encouraging learning with authentic projects and enabling the teacher to 
demonstrate the project process and provide useful feedback to individuals during the project. 
 
RQ2. Will the incorporation of the simple-to-complex progressive learning approach 
influence the effects to the visualisation-based learning environment for PjBL of 
programming (as reflected in students’ programming performance and their perceptions 
of the learning environment)? 
 
Programming performance 
Students in the experimental group were found to outperform those in the control group in all aspects of 
their programming performance after the study. By incorporating a progressive approach to learning with 
complex projects, the visualisation-based cognitive tool for PjBL of programming helped students to 
achieve a better performance in programming. In using the visualisation-based cognitive tool for PjBL of 
programming, both learning time and the progressive learning approach played a role in improving 
students’ programming performance. The two factors interacted in their effects on improving student 
learning of programming using the visualisation-based learning environment. 
 
Learner perceptions 
Compared to students in the control group, those in the experimental group reported having more positive 
perceptions of the visualisation-based cognitive tool in terms of two strategies – scaffolding and articulation 
–  but no significant differences in the other four strategies (modelling, coaching, reflection, exploration). 
The results indicated that the learning environment was better received by learners using the progressive 
approach to work with a complex project. They found the learning environment more helpful in enabling 
them to capture the complex process and articulate their individual process of working on a project. By 
deconstructing a complex project into a set of sub-projects arrayed in a simple-to-complex order, the 
visualisation-based learning environment may better help students to capture the project process, thus 
helping them to achieve better performance through practice. Meanwhile, by applying the progressive 
learning approach, the visualisation-based learning environment may better help students to articulate their 
individual process for reflection and improvement without being overwhelmed by its full complexity from 
the outset. The result is in alignment with the findings of previous studies which reported the promising 
effects of the simple-to-complex progressive approach to learning in programming education (van 
Merriënboer, 1990; van Merriënboer & De Croock, 1992) and other complex domains (e.g., Tjiam et al., 
2012; Vandewaetere et al., 2015). 
 
The results showed no significant differences between the experimental and control groups in student 
perceptions of the learning environment in terms of its other four strategies (exploration, modelling, 
coaching, reflection). A plausible reason is that the learning environments for both groups were similar in 
providing learners with opportunities to work with realistic projects, demonstrating the process of 
completing a sample project, providing feedback to individual performance, and enabling learners to review 
and reflect on their individual performance. 
 
Limitations 
 
The study has some limitations. First, it was conducted in the domain of computer programming education. 
The findings from this domain are not necessarily generalisable to other domains. Second, while project-
based learning can be either individual- or group-based in practice, the present study focused on individual 
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learning. Third, while an authentic project in this study was deconstructed into three sub-projects in a 
simple-to-complex order to support student learning, the deconstruction method is not fixed for all kinds 
of projects. The limitations can be addressed in further research by exploring the effects of the proposed 
approach in collaborative learning contexts, extending the investigation in other domains, and investigating 
methods for organising authentic whole-task projects in a simple-to-complex order. 
 
Conclusion 
 
PjBL has been increasingly used to connect abstract knowledge with authentic practice in educational 
practice, including programming education. Nevertheless, completing the complex process of a realistic 
programming project is a pressing issue. This study proposed a visualisation-based cognitive tool to address 
the challenge by making the complex process of completing a realistic programming project visible to 
learners. It attempted to scaffold complex learning, enable effective thinking and reflection by learners, and 
enable the teacher to track and provide feedback on individual learning process. Moreover, a simple-to-
complex progressive approach was incorporated into the learning environment to facilitate student learning 
with complex projects without sacrificing authenticity. 
 
After using the visualisation-based cognitive tool to complete a PjBL module of computer programming, 
students made a significant pre-post improvement in their programming performance and reported having 
positive perceptions of the learning environment in terms of its cognitive strategies for support of learning 
with complex tasks. Further, students found the learning environment more helpful when it was 
incorporated with the progressive approach to learning with complex projects. The visualisation-based 
progressive learning environment helped students to achieve better programming performance after the 
study with projects. 
 
Project-based learning is much more easily advocated than accomplished. Although emerging learning 
technologies have substantially expanded the opportunities for working with authentic tasks or realistic 
projects, there is a great need to investigate the challenges experienced by learners in such contexts and 
examine how such challenges can be resolved by effective design of instructional scaffolds and cognitive 
tools with the support of technology. The findings of the study may contribute to knowledge of how 
effective learning with complex realistic projects can be realised through a visualisation-based progressive 
learning environment as a sort of computer-based cognitive tool. 
 
The implications of the findings are twofold. Firstly, while visualisation-based cognitive tools have been 
mainly used to help learners to understand abstract concepts and complicated behaviour of computer 
programs and supporting the coding process, it is important to visualise the complex cognitive process of 
programming problem-solving, which includes not only coding and debugging but also problem 
formulation, solution planning, and solution design. Secondly, while visualising the complex cognitive 
process has demonstrated its salient affordances in supporting learning with realistic projects, 
deconstructing a complex realistic project into a set of simple-to-complex sub-projects made the 
visualisation-based cognitive tool more effective in supporting learning with complex projects. 
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