
Australasian Journal of Educational Technology, 2019, 35(2).

52

Using a visualisation-based and progressive learning
environment as a cognitive tool for learning computer
programming
Jun Peng
School of Education, City University of Macau, China

Minhong Wang
KM&EL Lab, Faculty of Education, University of Hong Kong, China
Department of Educational Information Technology, East China Normal University, China

Demetrios Sampson
Department of Digital Systems, University of Piraeus, Greece; School of Education, Curtin University,
Australia

Jeroen J. G. van Merriënboer
School of Health Professions Education, Maastricht University, The Netherlands

Project-based learning (PjBL) has been widely promoted in educational practice, for
example, computer programming education. While PiBL may help learners to connect
abstract knowledge with authentic practice, the complexity of completing an authentic
project may overwhelm learners, making them unable to achieve the desired learning
outcomes. This study proposes a visualisation-based and progressive learning environment
as a cognitive tool to support PjBL of programming. The cognitive tool is designed to
externalise the complex process of completing a realistic programming project. It aims to
scaffold the complex project process, foster effective thinking and reflection, and allow the
teacher to track and give feedback on individual performance throughout the project process.
Moreover, simple-to-complex sequencing of whole-task projects is incorporated into the
cognitive tool to support progressive learning with authentic projects. Senior college students
participated in this study by completing a project-based programming learning module using
the proposed cognitive tool. The results showed that after incorporating the simple-to-
complex approach, the visualisation-based cognitive tool is more effective in improving
students’ programming performance and better perceived by students in terms of its support
for scaffolding and articulating the complex project process.

Introduction

Project-based learning (PjBL) is a student-centred pedagogy that encourages students to learn by working
with authentic whole-tasks or projects. It highlights the integration of knowing and doing based on the
belief that students acquire deep knowledge through active exploration of real-world problems. PjBL
distinguishes itself from a related pedagogy called problem-based learning (PBL) by placing more attention
on the development of realistic products closer to professional reality and on the assessment of product
quality. By creating artefacts as solutions to real-world problems, PjBL helps students to connect abstract
knowledge with real-world practice (Blumenfeld et al., 2011).

PjBL has been widely promoted in educational practice especially in senior-year curricula in higher
education. One big concern in higher education is about the graduates’ ability to apply knowledge to solve
industry problems. As reported in prior studies, competency gaps were found between graduates’
professional attributes and the expectations of their employees in areas such as problem-solving and
communication skills (Jollands, Jolly, & Molyneaux, 2012). Researchers also discussed the relationship
between school learning and workplace learning and transitioning graduates from novices to experts
through practice (Tynjälä, 2008; Wang, Yuan, Kirschner, Kushniruk, & Peng, 2018). In these studies, PjBL
was recognised as a promising approach to addressing the gap between knowledge and practice and to
pushing professional readiness.

Nevertheless, PjBL is much more easily advocated than accomplished. Completing an authentic project
often involves complex cognitive processes, which are difficult for learners to capture and for teachers to

Australasian Journal of Educational Technology, 2019, 35(2).

53

facilitate. On the other hand, research reveals the advantages of computer-based cognitive tools in allowing
people to construct, recall, and modify their understanding of complex issues by reflecting complex
cognition on the screen (Jonassen, 1996). While computer-based cognitive tools have the potential to
facilitate complex learning with authentic projects (Peng, Wang, & Sampson, 2017), there is inadequate
research examining whether and how PjBL can be supported by computer-based cognitive tools. To this
end, this study explored the design and effects of a visualisation-based learning environment as a computer-
based cognitive tool to support PjBL.

Computer programming, a learning subject in engineering education, was selected for this study. PjBL is
particularly suitable for engineering education because almost every task undertaken in professional
practice by an engineer is related to a project. Computer programming is an important subject in engineering
education. It is also considered a hard subject to learn. A programmer needs to master programming
knowledge (e.g., concepts, syntax, semantics) and apply it to programming tasks. The strategies and skills
for applying programming to realistic tasks are often implicit and hard to capture, yet are critical for
programming performance (Robins, Rountree, & Rountree, 2003; Soloway, 1986). PjBL has therefore been
increasingly promoted in programming education by encouraging students to work with realistic
programming projects and developing artefacts, such as computer programs or design plans, which are
realistic products closer to professional reality (Blumenfeld et al., 2011). However, the implementation of
PjBL in programming courses remains a struggle for many educators to facilitate the complex process of
analysis, design, and development of computer programs (Pucher & Lehner, 2011). Such complexity can
overwhelm learners, making them unable to engage in effective learning experiences and achieve the
desired learning outcomes (Helle, Tynjälä, & Olkinuora, 2006; Pucher & Lehner, 2011).

This study aimed to address the challenge of PjBL in programming education by (a) proposing a
visualisation-based cognitive tool for PjBL and (b) applying a simple-to-complex progressive approach to
learning with complex projects. Firstly, a visualisation-based learning environment was proposed by
externalising the complex process of completing a realistic programming project in visual formats. It aimed
to scaffold complex learning, foster effective thinking and reflection, and enable the teacher to track and
give feedback on individual performance. Secondly, considering that completing a realistic whole-task
project might be too challenging for novices initially, the simple-to-complex sequencing of whole-task
projects was incorporated into the learning environment. A realistic project was deconstructed into a set of
sub-projects arrayed in a simple-to-complex order; each sub-project comprised all central elements of a
project.

This study may contribute to knowledge of how effective learning with complex authentic projects can be
realised through a visualisation-based and progressive learning environment as a computer-based cognitive
tool. While research has shown the promising effects of visualisation-based cognitive tools on improving
learning with authentic projects by externalising the complex cognitive processes (Peng et al., 2017),
novices may have problems in completing an authentic project even though its complex process has been
visualised. This study explored whether and how learning with complex projects can be supported not only
by visualising the cognitive processes, but also by simple-to-complex sequencing of whole-task projects.
Both are important elements of a computer-based cognitive tool for learning with complex authentic
projects.

Literature review

Scaffolding learning with complex tasks

Learning by working with a realistic project is characterised by performing a complex task or solving a
sophisticated problem, which usually involves complex, implicit processes. The complexity of the process
may generate heavy cognitive loads for learners, making them unable to achieve the desired learning
outcomes (Kirschner, Sweller, & Clark, 2006). Providing learners with a scaffold or necessary support is
important, if not essential, to learning with complex tasks or problems (Belland, Walker, Kim, & Lefler,
2016; Hmelo-Silver, Duncan, & Chinn, 2007). The commonly used approaches to scaffolding complex
learning involve structuring a complex task into a set of main actions or using key questions to help learners
recognise the important goals to pursue in their task (Reiser, 2004), in addition to using prompts to bring
learners’ attention to the important issues of complex tasks (Ge & Land, 2003).

Australasian Journal of Educational Technology, 2019, 35(2).

54

Scaffolding learning with complex tasks echoes to a certain extent the cognitive apprenticeship model,
which claims that performing a complex task involves implicit processes, and it is critical to make such
processes visible for novices to observe, enact, and practise with the necessary help (Collins, Brown, &
Holum, 1991). The cognitive apprenticeship model suggests a set of cognitive strategies (namely
exploration, scaffolding, modelling, coaching, articulation, and reflection) to support learning in complex
task situations. Scaffolding and articulation focus on the externalisation of complex processes; modelling
and coaching highlight the provision of instructional support and feedback; exploration and reflection
encourage learners to work with realistic problems or tasks and reflect on the task experience.

Computer-based visual representations as cognitive tools

To support the externalisation of complex processes in learning with complex tasks, visual representations
have been increasingly employed to represent the complex cognitive process in visual forms. Visual
representations like diagrams, maps, tables, and pictures, if used appropriately, can reduce human cognitive
load by utilising the human brain’s capacity to rapidly process visual images (Scaife & Rogers, 1996) and
by meaningful representation of complex ideas (e.g., representing information verbally and spatially,
reducing ambiguous expression, grouping together relevant information). They can work as cognitive tools
to extend mental capability and afford efficient cognitive processing.

In recent decades, computer-based visual representation tools such as concept maps, procedural flowcharts,
causal maps, and integrated cognitive maps have been increasingly applied to educational practices and
incorporated in computer-based learning environments to foster higher-order thinking and self-directed
learning (Lajoie & Derry, 1993; Lee, Pradhan, & Dalgarno, 2008; Spector & Anderson, 2000; Wang, Derry,
& Ge, 2017). Such visualisation-based cognitive tools (Jonassen, Carr, & Yueh, 1998) can help represent
complex, abstract issues and processes that are difficult to convey in traditional formats. Research has
shown the promising effects of such tools in improving students’ knowledge and task performance in
various contexts (Gijlers & de Jong, 2013; Slof, Erkens, Kirschner, Janssen, & Jaspers, 2012; Suthers,
Vatrapu, Medina, Joseph, & Dwyer, 2008; Wang, Cheng, Chen, Mercer, & Kirschner, 2017; Wang, Wu,
Kirschner, & Spector, 2018).

In programming education, visual representations (e.g., diagrams, pictures, animations) with relevant tools
have been used to visualise the complex structures and algorithms of software programs and demonstrate
the run-time behaviour of programs (Koschke, 2003; Sorva, Karavirta, & Malmi, 2013). For example, the
instructor using the tool may start by demonstrating a program segment with learned elements, and then
make some change (e.g., adding a for loop) to the segment to introduce a new language element to students.
During the process, the added code lines are highlighted, and the output is visually presented to show how
the new element is used to achieve the goal (Hooper et al., 2007). Other tools, such as BlueJ, can visualise
the class structure to help students understand classes and objects and their relationships, which are
important issues in object-oriented programming, but difficult to explain to students (Kölling, Quig,
Patterson, & Rosenberg, 2003). Visualising the class structure enables students to see and interact with
objects before being confronted with syntax details that bother students most. These approaches have been
mainly used to help students to understand the abstract concepts and complicated behaviour of programs
and to support the coding process. They are effective in introductory programming courses and predefined
programming problems, but inadequate for ill-defined realistic programming projects (Sykes, 2007). The
literature has reported the promising advantages of these approaches in engaging programming learners,
but their effect on improving learners’ programming performance is inconclusive (Rajala, Laakso, Kaila,
& Salakoski, 2008; Sorva et al., 2013). In this study, the visualisation-based cognitive tool was designed to
externalise the complex cognitive process of completing a realistic programming project, which involves
not only coding and debugging but also other stages such as problem formulation, solution planning, and
solution design. Visualisation of such kind of mental images for problem-solving is crucial to programming
(Gómez-Albarrán, 2005), especially for ill-defined realistic programming projects.

Simple-to-complex sequencing of whole-tasks for learning with complex tasks

Completing a realistic task or project might be too challenging for novices at the initial stage. They may
have problems in completing the project even though the process has been demonstrated or externalised in
visible forms. In relation to this issue, the four-component instructional design (4C/ID) model presents a
framework for systematic learning with complex tasks (van Merriënboer & Kirschner, 2017). In the 4C/ID

Australasian Journal of Educational Technology, 2019, 35(2).

55

model, learners are asked to perform meaningful whole tasks in authentic situations, where the tasks
comprise all key aspects of the complete task. In addition to providing learners with procedural information
and supportive guidance to complete complex tasks, authentic whole-tasks need to be organised in a simple-
to-complex order. Initial complex tasks can focus on the most fundamental and central elements of the
whole task, to help students form a holistic view of the complex task’s skeleton that could be enriched by
later learning tasks (van Merrienboer & Sweller, 2005). The simple-to-complex progressive learning
approach has been empirically explored and has shown its great potential in complex learning domains,
including programming learning in high-school classrooms and computer-based learning environments
(Marcellis, Barendsen, & van Merrienboer, 2018; van Merriënboer, 1990; van Merriënboer & De Croock,
1992).

Research questions

This study adopted a pre- and post-test control group design. Both experimental and control groups were
asked to complete a PjBL module of ASP.NET. ASP.NET is a popular programming language and a
widely-used web application framework for developing dynamic modern web applications and services.
The PjBL module was designed for students to develop senior-level programming skills by working on
realistic programming projects after they have completed basic computer programming courses. Students
were expected to apply basic programming knowledge and skills to create program artefacts as solutions to
ill-defined real-world problems.

To achieve the learning goal, students needed instructional support that allows them to capture the complex
cognitive process of completing a realistic programming project. Such support was offered to students in
both experimental and control groups via using the visualisation-based learning environment. Considering
the possible need for simple-to-complex sequencing of whole-task projects, students in the experimental
group were asked to work with a realistic project in a progressive way, while those in the control group
worked with the same project in a non-progressive way.

The research questions (RQs) were specified as follows:

• RQ1. Is the visualisation-based cognitive tool for PjBL of programming effective for improving
students’ programming performance after the study?

To answer this question, students’ pre-test and post-test scores of programming performance before and
after the study were analysed to examine the pre-post difference.

• RQ2. Will the incorporation of the simple-to-complex progressive learning approach influence the
effects of the visualisation-based learning environment for PjBL of programming (as reflected in
students’ programming performance and their perceptions of the learning environment)?

To answer this question, students’ perceptions of the learning environment (in terms of its cognitive
strategies for support of learning with complex tasks) were collected and compared between those using
the progressive approach and others using the non-progressive approach. The programming performance
was also analysed and compared between the two groups of students.

Method

The study received the ethical approval from the Human Research Ethics Committee of the researchers’
university. The participants gave informed consent to participate in this study.

Participants

There were 69 year-three undergraduates (44 males and 25 females) in computer science participating in
this study. They had completed basic computer programming courses before the study. Each student was
randomly assigned to either the experimental condition using the progressive learning approach or to the
control condition using the non-progressive learning approach. All the 34 students (20 males and 14
females) assigned to the experimental group completed the entire study. Among the 35 students assigned

Australasian Journal of Educational Technology, 2019, 35(2).

56

to the control group, 33 of them (22 males and 11 females) completed the entire study, and other 2 failed
to take the post-test. The data of 69 students completing the entire study were used for analysis.

Visualisation-based learning environment

In this study, the visualisation-based cognitive tool was designed in response to the aforementioned need
for externalising the complex cognitive process of completing a realistic programming project, with
particular attention to problem formulation, solution planning, and solution design, rather than coding and
debugging only. Based on the literature and practice of computer programming (Bassil, 2012; Deek &
McHugh, 2002), the cognitive process of completing a programming project was visualised as a set of key
actions (listed below). The tacit knowledge or key strategies underlying these actions were also highlighted.
Visualisation of such kind of mental images for problem-solving is crucial to computer programming
(Gómez-Albarrán, 2005), especially for ill-defined realistic programming projects (Peng et al., 2017). It
can scaffold student learning with a complex project, foster effective thinking and reflection during the
project, and enable the teacher to track and give feedback on individual performance.

• Problem understanding (to formulate a problem). The first step of a programming project is to
formulate a clear understanding of the problem. The problem understanding should highlight the
requirements and goals of the project. Learners can present their understanding by specifying the
requirements and goals of the project in a structured form.

• Modular design (to design a plan of the solution). A computer program is often organised as a set
of functions or modules to be developed independently and then combined to solve the problem.
Based on the understanding of the problem, a solution plan can be generated by decomposing the
main goals into sub-goals, identifying modular functions to accomplish each sub-goal, and
specifying the relationships between the functions. The modular design strategies highlight the
independence and completeness of the modules. A diagramming tool is offered for learners to
build a functional block diagram to outline the plan of the solution.

• Process design (to design a detailed solution). The process within and across the functions must
be outlined to illustrate the solution to or algorithm of a given problem, mainly by showing the
steps and connections between them. The process design strategies focus on priority analysis and
critical analysis when designing a complex flowchart involving a number of interactive modules.
Learners can use the diagramming tool to build a flowchart, which demonstrates a detailed design
of the solution.

• Coding (to implement a solution). The modular design and process design can then be translated
into program code as a solution to the project. Learners can upload their program codes, which
can be reviewed and revised throughout their projects. The coding strategies focus on top-down
gradual refinement in addition to the data structures and algorithms.

• Evaluation and reflection. After completing their codes, learners need to evaluate their programs
by testing and debugging them. Moreover, they can reflect on their performance and areas for
possible improvement by reviewing the artefacts generated in each action along with the
comments and feedback from the teacher. They can update their artefacts or solutions and receive
further feedback.

As shown in Figure 1, the process of completing a programming project is externalised in a visual format.
By clicking on the icon of each action, learners can enter the action space, view the key strategies underlying
the action, and present the output of the action for effective thinking and reflection.

Figure 1. Visualisation-based learning environment

Australasian Journal of Educational Technology, 2019, 35(2).

57

As shown in Figure 2, a diagramming tool is provided for learners to build a functional block diagram to
outline the plan of the solution. Moreover, learners can use the diagramming tool to build a flowchart for
the software program, which demonstrates a detailed design of the solution.

Figure 2. Modular design and process design

After completing an action, learners can review and refine their outputs. Moreover, the teacher can use the
system to observe students’ artefacts and provide feedback to individuals by giving specific comments on
their outputs on problem statement, modular design, program flowchart, and program code, as shown in
Figure 3.

Figure 3. Reflection with feedback

The overall design of the learning environment was aligned with the six strategies proposed in the cognitive
apprenticeship model, namely exploration, scaffolding, modelling, coaching, articulation, and reflection.

• Exploration: providing learners with opportunities to work with realistic projects
• Scaffolding: making the complex process accessible to learners by visualising the process of

completing a programming project into a set of main actions (problem understanding, modular
design, process design, coding, and evaluation and reflection) and externalising the key strategies
or tacit knowledge underlying the actions

• Modelling: the teacher’s demonstration of the process of completing a sample project using the
system

• Coaching: providing feedback on individual performance by the teacher via the system
• Articulation: enabling learners to present their project process in visible forms
• Reflection: enabling learners to review and reflect on their project process and identify the gap in

their knowledge and performance.

Australasian Journal of Educational Technology, 2019, 35(2).

58

Learning task

During the study, students in both groups used the proposed visualisation-based cognitive tool to work on
a realistic programming project – membership management. The control group worked with the project in
a non-progressive way, that is, without deconstructing the project. The experimental group worked with
the project in a progressive way. According to the 4C/ID model (van Merriënboer & Kirschner, 2017),
authentic whole-tasks need to be organised in a simple-to-complex order; initial complex tasks can focus
on the most fundamental and central elements of the whole task, helping students to form a holistic view
of the complex task’s skeleton that could be enriched by later learning tasks. In this study, the membership
management project was deconstructed into a set of sub-projects arrayed in a simple-to-complex order. As
outlined in Table 1, the requirement of each sub-project was based on the function of the prior sub-project,
with extended functions in the variant. For each sub-project, students need to go through all key aspects of
the task – problem understanding, modular design, process design, coding, and evaluation and reflection.
In this way, students worked with a realistic whole project in a progressive way, instead of being exposed
to its full complexity from the outset.

Table 1
Learning with a programming project in a progressive and non-progressive way

Learning approach Project Main requirement
Progressive Sub-project 1 Develop a program that allows for member registration

and user login
Sub-project 2 Add functions for login validation and update of member

information
Sub-project 3 Add further functions for password setting and resetting

Non-progressive Project Develop an integrated program that includes all the
functions mentioned above

To complete a project or sub-project, students went through the main actions – problem understanding,
modular design, process design, coding, and evaluation and reflection. They completed each action by
submitting relevant learning artefacts (i.e., problem statement, modular design, program flowchart, and
code). During the project, the teacher, who was also a programming expert, reviewed the students’ learning
artefacts and provided comments on individual performance via the learning system. Students could view
the teacher’s comments for improvement and work on a project more than once for practice. They could
also use online forums for flexible discussion and communication among peers in the same group.

Measures and instruments

Programming performance
Students’ programming performance concerning the programming process and programming product was
assessed before and after the study using a programming task. An experienced programming teacher and a
programming expert worked together to design two programming tasks, one for the pre-test and the other
for the post-test. The two tasks were different in content but at the same level of difficulty as validated by
the domain experts. Both tasks were practical and moderately difficult. For example, in a program, the
students were asked to create a class of students, store the name and grades of five courses for each student,
calculate the average grade for each student, and display the results of all students. The two tasks were
randomly assigned to the two tests.

The assessment of students’ programming performance was informed by the programming assessment
model proposed by Deek, Hiltz, Kimmel, and Rotter (1999), which consists of two distinct categories:
programming process and programming product. The programming process was measured by three sub-
scales: problem understanding, solution planning (i.e., modular design), and solution design (i.e., process
design). The programming product (i.e., code) was measured in terms of correctness, efficiency, reliability,
and readability. Accordingly, the assessment of programming performance in this study consisted of four
items: problem understanding, modular design, process design, and coding. Based on the literature and
common practice, the rubric weighting was 40% for coding and 20% for each of the other items. The
assessment rubrics with respect to the description, weight, rating criteria, and score range of each item are
outlined in Table 2. The full programming performance score was 20 (8 points for coding and 4 points for
each of the three other aspects).

Australasian Journal of Educational Technology, 2019, 35(2).

59

Table 2
Assessment rubrics for programming performance

Category Item Weight Description Score
range

Programming
process

Problem
understanding

20% 4 – Problem is clearly and correctly stated. All
requirements and goals are identified.
3 – Problem is correctly stated. Most requirements
and goals are identified.
2 – Problem is partially stated and/or some facts
are identified.
1 – Problem statement is incorrect and
meaningless facts are identified.
0 – No problem representation/fact identification
attempted or completely irrelevant work.

0 to 4

Modular
design

20% 4 – Detailed and clear planning, with complete
goal refinement and task identification.
3 – Adequate planning, with sufficient goal
refinement and task identification.
2 – Partially correct planning, with some goal
refinement and task identification.
1 – Incorrect planning and meaningless goal
refinement.
0 – No planning/refinement attempted or
completely irrelevant work.

0 to 4

Process
design

20% 4 – Complete module decomposition,
organisation, and detailed specifications.
3 – Sufficient module decomposition,
organisation, and sufficient specifications.
2 – Partial design and/or some module
specifications.
1 – Improper module decomposition, organisation,
and specifications.
0 – No design/specifications attempted or
completely irrelevant work.

0 to 4

Programming
product

Coding 10% Correctness 2 – Correct solution
specifications/program code and
results consistent with problem
requirements.
1 – Partial solution
specifications/program code and/or
some results
0 – No solution
specifications/program code, or
results inconsistent with problem
requirements.

0 to 2

10% Efficiency 2 – Most algorithms, data
structures, control structures, and
language constructs for this
problem situation are appropriate.
1 – Program accomplishes its task,
but lacks coherence in choice of
either data and/or control structures.
0 – Program solution lacks
coherence in choice of both data
and control structures.

0 to 2

Australasian Journal of Educational Technology, 2019, 35(2).

60

10% Reliability 2 – Program functions properly
under all test cases. Works for and
responds to all valid inputs.
1 – Program functions under limited
test cases. Only works for valid
inputs, but fails to respond to
invalid inputs.
0 – Program fails under most test
cases.

0 to 2

10% Readability 2 – Program includes commented
code, meaningful identifiers,
indentation to clarify logical
structure, and user instructions.
1 – Program lacks clear
documentation and/or user
instructions.
0 – Program is totally incoherent.

0 to 2

Two programming experts graded the students’ programming tests blindly and independently, and their
scores were averaged. The inter-rater reliability analysis using Cohen’s kappa coefficients confirmed the
inter-rater reliability for students’ programming tests (.86 for problem understanding, .83 for modular
design, .88 for process design, .89 for coding).

Learner perceptions
The post-test questionnaire was used to collect students’ perceptions of the learning environment in terms
of its cognitive strategies for support of learning with complex tasks. It used a 5-point Likert scale ranging
from 1 (strongly disagree) to 5 (strongly agree). Fifteen items were developed from the instrument
proposed by Stalmeijer, Dolmans, Wolfhagen, Muijtjens, and Scherpbier (2008) on the basis of the
cognitive apprenticeship model. They involve six sub-scales of cognitive strategies: exploration (working
with realistic problems or tasks), scaffolding (providing support to learners for the tasks that learners are
unable to complete without help), modelling (providing learners with examples or models of desired
performance), articulation (learners’ articulation of their thinking and understanding), coaching (observing
learners’ performance and offering feedback), and reflection (learners’ reflection on their performance and
comparison with the performance of others).

The validity and reliability of the instrument have been well established (Stalmeijer et al., 2008, 2010).
Examples of the questions in the survey included: “The learning system helped me to complete a task that
is beyond my level of competence,” “The learning system allowed me to articulate my task process,” “The
learning system provided me useful feedback during the study,” and “The learning system stimulated me
to thinking about how to improve my task performance.” In this study, an internal consistency analysis
using Cronbach’s alpha coefficients confirmed that all of the sub-scales were reliable (.82 for exploration,
.70 for scaffolding, .77 for modelling, .84 for articulation, .74 for coaching, .84 for reflection).

Procedure

The learning module lasted for 6 weeks. In the first week, the participants were given 30-minute face-to-
face instruction on how to use the visualisation-based learning environment and how to apply relevant
programming skills and strategies to perform each action in completing a programming project. Relevant
information and guidance were also available in the system for flexible access. During the instruction, a
sample project was used for demonstration by the teacher. Students could use the sample project to practise
and become familiar with the learning environment. In addition, a programming task was used to assess
their programming performance before the study.

The students started their independent learning in the second week. They were asked to complete the
membership management project in their free time over a 4-week period. They were asked to pace
themselves and spend 4 hours per week on the project. Based on the log data, most of them spent
approximately 3 hours per week with the system. For each project, most of the students received two or
three comments on problem understanding and one or two comments on each of the other parts, including

Australasian Journal of Educational Technology, 2019, 35(2).

61

modular design, process design, and coding. In the sixth week, a questionnaire survey was administered to
collect students’ perceptions, and the post-test of programming performance was arranged to assess their
programming performance after the study.

Data analysis

The collected data were analysed using the following methods:

(1) Paired samples t tests were used to determine whether there were differences between the pre-test
and post-test scores of all participants.

(2) Independent samples t tests were conducted on the pre-test scores to identify whether students in
the two groups differed in their programming performance before the study.

(3) One-way analysis of covariance (ANCOVA) was used to examine group differences in the post-
test scores, whereby the students’ pre-test score was used as covariate.

(4) ANOVA was conducted on the survey data to determine the differences in student perceptions of
the learning environment between the two groups.

(5) A two-way ANOVA was conducted on programming performance to examine whether there was
an interaction between the two factors (learning time (pre-test vs. post-test) as a within-subject
factor; group condition (progressive vs. non-progressive) as a between-subject factor).

(6) Cohen’s d effect size was calculated for the effects on programming performance.

Results

RQ1. Is the visualisation-based cognitive tool for PjBL of programming effective for
improving students’ programming performance after the study?

As shown in Table 3, the participants made a significant pre-post improvement on all scales of the
programming performance (problem understanding, modular design, process design, coding). The effect
size (Cohen's d = 0.97 for problem understanding, 0.97 for modular design, 1.15 for process design, 1.27
for coding, 1.29 for total score) indicated a large effect of the visualisation-based learning environment in
improving students’ programming performance after the study.

Table 3
Descriptive statistics and t tests on pre-test and post-test scores of programming performance

Aspect Test N Mean SD t df p Cohen’s d
Problem
understanding

a 67 14.142 4.187 -5.627 123.359 0.000*** -0.97
b 67 17.761 3.193

Modular
design

a 67 13.769 3.803 -5.527 127.103 0.000*** -0.97
b 67 17.149 3.117

Process
design

a 67 13.396 3.446 -6.673 132 0.000*** -1.15
b 67 17.313 3.349

Coding a 67 19.030 5.589 -7.322 115.451 0.000*** -1.27
b 67 28.000 8.325

Total a 67 60.336 15.069 -7.466 132 0.000*** -1.29
b 67 80.224 15.758

Notes. a = pre-test. b = post-test. *** p < 0.001

Australasian Journal of Educational Technology, 2019, 35(2).

62

RQ2. Will the incorporation of the simple-to-complex progressive learning approach
influence the effects to the visualisation-based learning environment for PjBL of
programming (as reflected in students’ programming performance and their perceptions
of the learning environment)?

Programming performance
As shown in Table 4, there were no significant differences between the experimental and control groups in
the pre-test scores of programming performance. The results indicated that the two groups had comparable
programming performance before the study.

Table 4
Descriptive statistics and t tests on the pre-test scores of programming performance of both groups

Aspect Condition N Mean SD t df p
Problem
understanding

E 34 13.82 4.09 -0.629 65 0.532 C 33 14.47 4.32

Modular design E 34 13.53 3.59 -0.520 65 0.605 C 33 14.02 4.05

Process design E 34 13.38 3.42 -0.032 65 0.975 C 33 13.41 3.53

Coding E 34 19.12 5.70 0.130 65 0.897 C 33 18.94 5.56

Total E 34 59.85 14.27 -0.264 65 0.792 C 33 60.83 16.05
Notes. E = Experimental group. C = Control group.

Based on the ANCOVA results shown in Table 5, students in the experimental group outperformed those
in the control group in all scales of programming performance. The large effect size (Cohen’s d = 1.01 for
problem understanding, 0.78 for modular design, 0.73 for process design, 0.86 for coding, 0.09 for total
score) indicated that the progressive learning approach made the visualisation-based learning environment
more effective in improving students’ programming performance after the study.

Table 5
Descriptive statistics and ANCOVA on programming performance of both groups after the study

Aspect Condition N Mean SD Adjusted
mean

F(1, 65) p Cohen’s
d

Problem
understanding

E 34 19.19 1.56 19.25 20.566 0.000*** 1.01
C 33 16.29 3.76 16.23

Modular
design

E 34 18.27 1.98 18.33 12.024 0.001** 0.78
C 33 15.99 3.64 15.94

Process design E 34 18.46 2.53 18.46 8.872 0.004** 0.73
C 33 16.14 3.70 16.14

Coding E 34 31.28 3.82 31.26 12.691 0.001** 0.86
C 33 24.62 10.23 24.65

Total E 34 87.20 5.29 87.32 18.481 0.000*** 0.99
C 33 73.04 19.45 72.91

Notes. E = Experimental group. C = Control group. *** p < 0.001; ** p < 0.01

The two-way ANOVA results showed that students in the experimental group outperformed their
counterparts in the overall programming performance (F(1, 130) = 6.753, p < 0.05), that is, group condition
influenced the performance. In addition, students in both groups had improved their programming
performance after the study; in other words, learning time had an effect on the programming performance
of both groups (F(1, 130) = 60.806, p < 0.001). The interaction between learning time and group condition
reached statistical significance (F(1, 130) = 8.912, p < 0.01), suggesting that the effects of the progressive
learning approach interacted with the effects of learning time.

Australasian Journal of Educational Technology, 2019, 35(2).

63

Learner perceptions
As shown in Table 5, both groups reported having positive perceptions of the learning environment in terms
of its cognitive strategies that support the learning with complex tasks. The experimental group recorded
higher scores than the control group on two scales – scaffolding and articulation, but no significant
differences in the other four scales – modelling, coaching, reflection, and exploration.

Table 6
Descriptive statistics and ANOVA on students’ perceptions of the learning environment

 Condition N Mean SD p value of
Levene’s test

F p

Modelling E 34 4.17 0.59 0.250 0.120 0.730
C 33 4.12 0.47

Coaching E 34 4.25 0.62 0.742 0.132 0.718
C 33 4.19 0.58

Scaffolding E 34 4.24 0.57 0.337 4.448 0.039*
C 33 3.92 0.64

Articulation E 34 4.37 0.59 0.320 5.781 0.019*
C 33 4.02 0.61

Reflection E 34 4.25 0.61 0.800 0.525 0.471
C 33 4.14 0.68

Exploration E 34 4.24 0.68 0.444 0.008 0.930
C 33 4.22 0.51

Notes. E = Experimental group. C = Control group. * p < 0.05

Discussion

This study proposed a visualisation-based cognitive tool that externalised the complex process of
completing a realistic programming project in visual formats. It aimed to scaffold students’ learning with
projects, facilitate their thinking and reflection, and enable the teacher to track and give feedback on student
performance during the project. Considering that completing a realistic whole-task project might be too
challenging for novices initially, the simple-to-complex sequencing of whole-task projects was
incorporated into the learning environment. It allowed students to start from relatively simple but authentic
whole-tasks and then progress to practice that increasingly approximates the reality of professional practice.

The proposed visualisation-based progressive learning environment as a computer-based cognitive tool for
project-based learning extends the literature in two aspects. Firstly, while existing visualisation-based tools
for programming education have focused on helping students to understand the abstract concepts and
complicated behaviour of programs and supporting the coding process, the visualisation-based cognitive
tool proposed in this study focuses on externalising the complex cognitive process of completing a realistic
programming project, which includes not only coding and debugging but also problem formulation,
solution planning, and solution design. Visualisation of such kind of mental images for problem solving is
crucial to programming, especially for ill-defined realistic programming projects (Peng et al., 2017).
Secondly, this study demonstrates that learning with complex projects may need instructional support in
multiple aspects. In addition to visualising the complex cognitive process, simple-to-complex sequencing
of whole-task projects needs to be taken into account since completing a realistic project might be too
challenging for students at the initial stage even though its process has been visualised. The findings of the
study reveal that both visualising the complex cognitive process and simple-to-complex sequencing of
whole-task projects are important elements of a computer-based cognitive tool for learning with complex
authentic projects. The detailed findings of the study are discussed as follows.

RQ1. Is the visualisation-based cognitive tool for PjBL of programming effective for
improving students’ programming performance after the study?

After completing the PjBL module using the visualisation-based learning environment, the students were
found to make a significant improvement on all scales of the programming performance concerning
programming process (problem understanding, modular design, and process design) and programming
product (coding). The results have shown the promising effects of the visualisation-based learning

Australasian Journal of Educational Technology, 2019, 35(2).

64

environment for PjBL of programming. The finding is consistent with a previous study (Peng et al., 2017).
The finding also supports the claimed advantages of computer-based cognitive tools in representing and
manipulating complex cognition so as to improve student thinking and performance (Chen, Wang, Grotzer,
& Dede, 2018; Toth, Suthers, & Lesgold, 2002; Wu & Wang, 2012) and expertise development (Wang,
Yuan, et al., 2018).

The improvement made by the students in programming performance after the study was in alignment with
their positive perceptions of the learning environment. The participants, either in the experimental group
or in the control group, had positive perceptions of the visualisation-based learning environment in terms
of its cognitive strategies for support of learning with complex tasks (exploration, scaffolding, modelling,
articulation, coaching, and reflection). Students perceived its affordances in scaffolding the complex task
process and enabling them to articulate and reflect on their task process; moreover, learners found the
learning environment helpful in encouraging learning with authentic projects and enabling the teacher to
demonstrate the project process and provide useful feedback to individuals during the project.

RQ2. Will the incorporation of the simple-to-complex progressive learning approach
influence the effects to the visualisation-based learning environment for PjBL of
programming (as reflected in students’ programming performance and their perceptions
of the learning environment)?

Programming performance
Students in the experimental group were found to outperform those in the control group in all aspects of
their programming performance after the study. By incorporating a progressive approach to learning with
complex projects, the visualisation-based cognitive tool for PjBL of programming helped students to
achieve a better performance in programming. In using the visualisation-based cognitive tool for PjBL of
programming, both learning time and the progressive learning approach played a role in improving
students’ programming performance. The two factors interacted in their effects on improving student
learning of programming using the visualisation-based learning environment.

Learner perceptions
Compared to students in the control group, those in the experimental group reported having more positive
perceptions of the visualisation-based cognitive tool in terms of two strategies – scaffolding and articulation
– but no significant differences in the other four strategies (modelling, coaching, reflection, exploration).
The results indicated that the learning environment was better received by learners using the progressive
approach to work with a complex project. They found the learning environment more helpful in enabling
them to capture the complex process and articulate their individual process of working on a project. By
deconstructing a complex project into a set of sub-projects arrayed in a simple-to-complex order, the
visualisation-based learning environment may better help students to capture the project process, thus
helping them to achieve better performance through practice. Meanwhile, by applying the progressive
learning approach, the visualisation-based learning environment may better help students to articulate their
individual process for reflection and improvement without being overwhelmed by its full complexity from
the outset. The result is in alignment with the findings of previous studies which reported the promising
effects of the simple-to-complex progressive approach to learning in programming education (van
Merriënboer, 1990; van Merriënboer & De Croock, 1992) and other complex domains (e.g., Tjiam et al.,
2012; Vandewaetere et al., 2015).

The results showed no significant differences between the experimental and control groups in student
perceptions of the learning environment in terms of its other four strategies (exploration, modelling,
coaching, reflection). A plausible reason is that the learning environments for both groups were similar in
providing learners with opportunities to work with realistic projects, demonstrating the process of
completing a sample project, providing feedback to individual performance, and enabling learners to review
and reflect on their individual performance.

Limitations

The study has some limitations. First, it was conducted in the domain of computer programming education.
The findings from this domain are not necessarily generalisable to other domains. Second, while project-
based learning can be either individual- or group-based in practice, the present study focused on individual

Australasian Journal of Educational Technology, 2019, 35(2).

65

learning. Third, while an authentic project in this study was deconstructed into three sub-projects in a
simple-to-complex order to support student learning, the deconstruction method is not fixed for all kinds
of projects. The limitations can be addressed in further research by exploring the effects of the proposed
approach in collaborative learning contexts, extending the investigation in other domains, and investigating
methods for organising authentic whole-task projects in a simple-to-complex order.

Conclusion

PjBL has been increasingly used to connect abstract knowledge with authentic practice in educational
practice, including programming education. Nevertheless, completing the complex process of a realistic
programming project is a pressing issue. This study proposed a visualisation-based cognitive tool to address
the challenge by making the complex process of completing a realistic programming project visible to
learners. It attempted to scaffold complex learning, enable effective thinking and reflection by learners, and
enable the teacher to track and provide feedback on individual learning process. Moreover, a simple-to-
complex progressive approach was incorporated into the learning environment to facilitate student learning
with complex projects without sacrificing authenticity.

After using the visualisation-based cognitive tool to complete a PjBL module of computer programming,
students made a significant pre-post improvement in their programming performance and reported having
positive perceptions of the learning environment in terms of its cognitive strategies for support of learning
with complex tasks. Further, students found the learning environment more helpful when it was
incorporated with the progressive approach to learning with complex projects. The visualisation-based
progressive learning environment helped students to achieve better programming performance after the
study with projects.

Project-based learning is much more easily advocated than accomplished. Although emerging learning
technologies have substantially expanded the opportunities for working with authentic tasks or realistic
projects, there is a great need to investigate the challenges experienced by learners in such contexts and
examine how such challenges can be resolved by effective design of instructional scaffolds and cognitive
tools with the support of technology. The findings of the study may contribute to knowledge of how
effective learning with complex realistic projects can be realised through a visualisation-based progressive
learning environment as a sort of computer-based cognitive tool.

The implications of the findings are twofold. Firstly, while visualisation-based cognitive tools have been
mainly used to help learners to understand abstract concepts and complicated behaviour of computer
programs and supporting the coding process, it is important to visualise the complex cognitive process of
programming problem-solving, which includes not only coding and debugging but also problem
formulation, solution planning, and solution design. Secondly, while visualising the complex cognitive
process has demonstrated its salient affordances in supporting learning with realistic projects,
deconstructing a complex realistic project into a set of simple-to-complex sub-projects made the
visualisation-based cognitive tool more effective in supporting learning with complex projects.

Acknowledgements

This project was supported by the General Research Fund from the Research Grants Council of the Hong
Kong SAR Government (Project No. 17201415), the Seeding Fund for Basic Research from the University
of Hong Kong (Projects No. 201811159019, No. 201611159071), and the Eastern Scholar Chair
Professorship Fund (No. JZ2017005) from the Shanghai Municipal Education Commission of China. The
authors thank Professor Haijing Jiang for his valuable support for this study.

References

Bassil, Y. (2012). A Simulation model for the waterfall software development life cycle. International

Journal of Engineering & Technology, 2(5), 742–749. https://doi.org/10.12691/ajse-5-1-2
Belland, B. R., Walker, A. E., Kim, N. J., & Lefler, M. (2016). Synthesizing results from empirical

research on computer-based scaffolding in STEM education: A meta-analysis. Review of Educational
Research, 87(2), 309–344. https://doi.org/10.3102/0034654316670999

https://doi.org/10.12691/ajse-5-1-2
https://doi.org/10.3102/0034654316670999

Australasian Journal of Educational Technology, 2019, 35(2).

66

Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (2011).
Motivating project-based learning: Sustaining the doing, supporting the learning. Educational
Psychologist, 26(3/4), 369–398. https://doi.org/10.1080/00461520.1991.9653139

Chen, J., Wang, M., Grotzer, T. A., & Dede, C. (2018). Using a three-dimensional thinking graph to
support inquiry learning. Journal of Research in Science Teaching, 55(9), 1239–1263.
https://doi.org/10.1002/tea.21450

Collins, A., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making thinking visible.
American Educator, 15(3), 6–11. https://doi.org/10.1.1.124.8616

Deek, F. P., Hiltz, S. R., Kimmel, H., & Rotter, N. (1999). Cognitive assessment of students’ problem
solving and program development skills. Journal of Engineering Education, 88(3), 317–326.
https://doi.org/10.1002/j.2168-9830.1999.tb00453.x

Deek, F. P., & McHugh, J. (2002). SOLVEIT: An Experimental environment for problem solving and
program development. Journal of Applied Systems Studies, 2(2), 376–396.
https://doi.org/10.1002/j.2168-9830.1997.tb00270.x

Ge, X., & Land, S. (2003). Scaffolding students’ problem-solving processes in an ill-structured task using
question prompts and peer interactions. Educational Technology Research and Development, 51(1),
21–38. https://doi.org/10.1007/BF02504515

Gijlers, H., & de Jong, T. (2013). Using concept maps to facilitate collaborative simulation-based inquiry
learning. Journal of the Learning Sciences, 22(3), 340–374.
https://doi.org/10.1080/10508406.2012.748664

Gómez-Albarrán, M. (2005). The teaching and learning of programming: A survey of supporting software
tools. The Computer Journal, 48(2), 130–144. https://doi.org/10.1093/comjnl/bxh080

Helle, L., Tynjälä, P., & Olkinuora, E. (2006). Project-based learning in post-secondary education–theory,
practice and rubber sling shots. Higher Education, 51(2), 287–314. https://doi.org/10.1007/s10734-
004-6386-5

Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-
based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational
Psychologist, 42(2), 99–107. https://doi.org/10.1080/00461520701263368

Hooper, C., Carr, L., Davis, H., Millard, D., White, S., & Wills, G. (2007). AnnAnn and AnnAnn. Net:
Tools for teaching programming. Journal of Computers, 2(5), 9–16. https://doi.org/10.4304/jcp.2.5.9-
16

Jollands, M., Jolly, L., & Molyneaux, T. (2012). Project-based learning as a contributing factor to
graduates' work readiness. European Journal of Engineering Education, 37(2), 143–154.
https://doi.org/10.1080/03043797.2012.665848

Jonassen, D. H. (1996). Computers in the classroom: Mindtools for critical thinking. Englewood Cliffs,
NJ: Prentice Hall.

Jonassen, D. H., Carr, C. & Yueh, H. P. (1998). Computers as mindtools for engaging learners in critical
thinking. TechTrends, 43(2), 24–32. https://doi.org/10.1007/BF02818172

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not
work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-
based teaching. Educational Psychologist, 41(2), 75–86. https://doi.org/10.1207/s15326985ep4102_1

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and its pedagogy.
Computer Science Education, 13(4), 249–268. https://doi.org/10.1076/csed.13.4.249.17496

Koschke, R. (2003). Software visualization in software maintenance, reverse engineering, and re-
engineering: A research survey. Journal of Software Maintenance and Evolution: Research and
Practice, 15(2), 87–109. https://doi.org/10.1002/smr.270

Lajoie, S. P., & Derry, S. J. (Eds.). (1993). Computers as cognitive tools. Hillsdale, NJ: Lawrence
Erlbaum. https://doi.org/10.4324/9780203052594

Lee, M. J. W., Pradhan, S., & Dalgarno, B. (2008). Using screencasting to scaffold exercises and promote
cognitive engagement for novice object-oriented programmers. Journal of Information Technology
Education, 7, 61–80. https://doi.org/10.28945/179

Marcellis, M., Barendsen, E., & van Merrienboer, J. J. G. (2018). Designing a blended course in Android
App development using 4C/ID. In Koli Calling ’18. Proceedings of the 18th Koli Calling
International Conference on Computing Education Research (pp. 1–5). New York, NY: ACM Press.
https://doi.org/10.1145/3279720.3279739

Peng, J., Wang, M., & Sampson, D. (2017). Visualizing the complex process for deep learning with an
authentic programming project. Journal of Educational Technology & Society, 20(4), 275–287.
Retrieved from https://www.jstor.org/stable/26229223

https://doi.org/10.1080/00461520.1991.9653139
https://doi.org/10.1002/tea.21450
https://doi.org/10.1.1.124.8616
https://doi.org/10.1002/j.2168-9830.1999.tb00453.x
https://doi.org/10.1002/j.2168-9830.1997.tb00270.x
https://doi.org/10.1007/BF02504515
https://doi.org/10.1080/10508406.2012.748664
https://doi.org/10.1093/comjnl/bxh080
https://doi.org/10.1007/s10734-004-6386-5
https://doi.org/10.1007/s10734-004-6386-5
https://doi.org/10.1080/00461520701263368
https://doi.org/10.4304/jcp.2.5.9-16
https://doi.org/10.4304/jcp.2.5.9-16
https://doi.org/10.1080/03043797.2012.665848
https://doi.org/10.1007/BF02818172
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/10.1002/smr.270
https://doi.org/10.4324/9780203052594
https://doi.org/10.28945/179
https://doi.org/10.1145/3279720.3279739
https://www.jstor.org/stable/26229223

Australasian Journal of Educational Technology, 2019, 35(2).

67

Pucher, R., & Lehner, M. (2011). Project based learning in computer science: A review of more than 500
projects. Procedia-Social and Behavioral Sciences, 29, 1561–1566.
https://doi.org/10.1016/j.sbspro.2011.11.398

Rajala, T., Laakso, M. J., Kaila, E., & Salakoski, T. (2008). Effectiveness of program visualization: A
Case study with the ViLLE tool. Journal of Information Technology Education, 7, 15–32.
https://doi.org/10.28945/3237

Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing
student work. Journal of the Learning Sciences, 13(3), 273–304.
https://doi.org/10.1207/s15327809jls1303_2

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and
discussion. Computer Science Education, 13(2), 137–172.
https://doi.org/10.1076/csed.13.2.137.14200

Scaife, M., & Rogers, Y. (1996). External cognition: How do graphical representations work?
International Journal of Human-Computer Studies, 45, 185–213.
https://doi.org/10.1006/ijhc.1996.0048

Slof, B., Erkens, G., Kirschner, P. A., Janssen, J., & Jaspers, J. G. M. (2012). Successfully carrying out
complex learning-tasks through guiding teams’ qualitative and quantitative reasoning. Instructional
Science, 40(3), 623–643. https://doi.org/10.1007/s11251-011-9185-2

Soloway, E. (1986). Learning to program = learning to construct mechanisms and explanations.
Communications of the ACM, 29(9), 850–858. https://doi.org/10.1145/6592.6594

Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of generic program visualization systems for
introductory programming education. ACM Transactions on Computing Education, 13(4), 15.
https://doi.org/10.1145/2490822

Spector, J. M., & Anderson, T. M. (Eds.) (2000). Integrated and holistic perspectives on learning,
instruction and technology: Understanding complexity. Dordrecht, The Netherlands: Kluwer
Academic Press. https://doi.org/10.1007/0-306-47584-7

Stalmeijer, R. E., Dolmans, D. H., Wolfhagen, I. H., Muijtjens, A. M., & Scherpbier, A. J. (2008). The
development of an instrument for evaluating clinical teachers: involving stakeholders to determine
content validity. Medical Teacher, 30(8), 272–277. https://doi.org/10.1080/01421590802258904

Stalmeijer, R. E., Dolmans, D. H., Wolfhagen, I. H., Muijtjens, A. M., & Scherpbier, A. J. (2010). The
Maastricht Clinical Teaching Questionnaire (MCTQ) as a valid and reliable instrument for the
evaluation of clinical teachers. Academic Medicine, 85(11), 1732–1738.
https://doi.org/10.1097/ACM.0b013e3181f554d6

Suthers, D. D., Vatrapu, R., Medina, R., Joseph, S., & Dwyer, N. (2008). Beyond threaded discussion:
Representational guidance in asynchronous collaborative learning environments. Computers &
Education, 50(4), 1103–1127. https://doi.org/10.1016/j.compedu.2006.10.007

Sykes, E. R. (2007). Determining the effectiveness of the 3D Alice programming environment at the
computer science I level. Journal of Educational Computing Research, 36(2), 223–244.
https://doi.org/10.2190/J175-Q735-1345-270M

Tjiam, I. M., Schout, B. M., Hendrikx, A. J., Scherpbier, A. J., Witjes, J. A., & van Merriënboer, J. J.
(2012). Designing simulator-based training: An approach integrating cognitive task analysis and four-
component instructional design. Medical Teacher, 34(10), e698–e707.
https://doi.org/10.3109/0142159X.2012.687480

Toth, E. E., Suthers, D. D., & Lesgold, A. M. (2002). “Mapping to know”: The effects of representational
guidance and reflective assessment on scientific inquiry. Science Education, 86(2), 264–286.
https://doi.org/10.1002/sce.10004

Tynjälä, P. (2008). Perspectives into learning at the workplace. Educational Research Review, 3(2), 130–
154. https://doi.org/10.1016/j.edurev.2007.12.001

Vandewaetere, M., Manhaeve, D., Aertgeerts, B., Clarebout, G., van Merrienboer, J. J., & Roex, A.
(2015). 4C/ID in medical education: How to design an educational program based on whole-task
learning: AMEE Guide No. 93. Medical Teacher, 37(1), 4–20.
https://doi.org/10.3109/0142159X.2014.928407

van Merriënboer, J. J. G. (1990). Strategies for programming instruction in high school: Program
completion vs. program generation. Journal of Educational Computing Research, 6(3), 265–285.
https://doi.org/10.2190/4NK5-17L7-TWQV-1EHL

van Merriënboer, J. J. G., & De Croock, M. B. M. (1992). Strategies for computer-based programming
instruction: Program completion vs. program generation. Journal of Educational Computing
Research, 8(3), 365–394. https://doi.org/10.2190/MJDX-9PP4-KFMT-09PM

https://doi.org/10.1016/j.sbspro.2011.11.398
https://doi.org/10.28945/3237
https://doi.org/10.1207/s15327809jls1303_2
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1006/ijhc.1996.0048
https://doi.org/10.1007/s11251-011-9185-2
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/2490822
https://doi.org/10.1007/0-306-47584-7
https://doi.org/10.1080/01421590802258904
https://doi.org/10.1097/ACM.0b013e3181f554d6
https://doi.org/10.1016/j.compedu.2006.10.007
https://doi.org/10.2190/J175-Q735-1345-270M
https://doi.org/10.3109/0142159X.2012.687480
https://doi.org/10.1002/sce.10004
https://doi.org/10.1016/j.edurev.2007.12.001
https://doi.org/10.3109/0142159X.2014.928407
https://doi.org/10.2190/4NK5-17L7-TWQV-1EHL
https://doi.org/10.2190/MJDX-9PP4-KFMT-09PM

Australasian Journal of Educational Technology, 2019, 35(2).

68

van Merriënboer, J. J. G., & Kirschner, P. A. (2017). Ten steps to complex learning: A systematic
approach to four-component instructional design (3rd ed.). New York, NY: Routledge.
https://doi.org/10.4324/9781315113210

van Merrienboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent
developments and future directions. Educational Psychology Review, 17(2), 147–177.
https://doi.org/10.1007/s10648-005-3951-0

Wang, M., Cheng, B., Chen, J., Mercer, N., & Kirschner, P. A. (2017). The use of web-based
collaborative concept mapping to support group learning and interaction in an online environment.
The Internet and Higher Education, 34, 28–40. https://doi.org/10.1016/j.iheduc.2017.04.003

Wang, M., Derry, S., & Ge, X. (2017). Guest Editorial: Fostering deep learning in problem solving
contexts with the support of technology. Educational Technology & Society, 20(4), 162–165.
Retrieved from https://www.jstor.org/stable/26229214

Wang, M., Wu, B., Kirschner, P. A., & Spector, J. M. (2018). Using cognitive mapping to foster deeper
learning with complex problems in a computer-based environment. Computers in Human Behavior,
87, 450–458. https://doi.org/10.1016/j.chb.2018.01.024

Wang, M., Yuan, B., Kirschner, P. A., Kushniruk, A. W., & Peng, J. (2018). Reflective learning with
complex problems in a visualization-based learning environment with expert support. Computers in
Human Behavior, 87, 406–415. https://doi.org/10.1016/j.chb.2018.01.025

Wu, B., & Wang, M. (2012). Integrating problem solving and knowledge construction through dual
mapping. Knowledge Management & E-Learning, 4(3), 248–257.
https://doi.org/10.34105/j.kmel.2012.04.021

Corresponding author: Minhong Wang, magwang@hku.hk

Please cite as: Peng. J., Wang, M., Sampson, D., & van Merriënboer, J. J. G. (2019). Using a

visualisation-based and progressive learning environment as a cognitive tool for learning computer
programming. Australasian Journal of Educational Technology, 35(2), 52–68.
https://doi.org/10.14742/ajet.4676

https://doi.org/10.4324/9781315113210
https://doi.org/10.1007/s10648-005-3951-0
https://doi.org/10.1016/j.iheduc.2017.04.003
https://www.jstor.org/stable/26229214
https://doi.org/10.1016/j.chb.2018.01.024
https://doi.org/10.1016/j.chb.2018.01.025
mailto:https://doi.org/10.34105/j.kmel.2012.04.021
mailto:magwang@hku.hk
https://doi.org/10.14742/ajet.4676

	Introduction
	Literature review
	Scaffolding learning with complex tasks
	Computer-based visual representations as cognitive tools
	Simple-to-complex sequencing of whole-tasks for learning with complex tasks

	Research questions
	Method
	Participants
	Visualisation-based learning environment
	Learning task
	Measures and instruments
	Programming performance
	Learner perceptions

	Procedure
	Data analysis

	Results
	RQ1. Is the visualisation-based cognitive tool for PjBL of programming effective for improving students’ programming performance after the study?
	RQ2. Will the incorporation of the simple-to-complex progressive learning approach influence the effects to the visualisation-based learning environment for PjBL of programming (as reflected in students’ programming performance and their perceptions o...
	Programming performance
	Learner perceptions

	Discussion
	RQ1. Is the visualisation-based cognitive tool for PjBL of programming effective for improving students’ programming performance after the study?
	RQ2. Will the incorporation of the simple-to-complex progressive learning approach influence the effects to the visualisation-based learning environment for PjBL of programming (as reflected in students’ programming performance and their perceptions o...
	Programming performance
	Learner perceptions

	Limitations

	Conclusion
	Acknowledgements
	References

