

Australian Journal of Educational Technology

Definitions of instructional control in learning environments

Som Naidu, PhD University of Southern Queensland

A fundamental question in the design of learning environments is determining the nature of instructional control which will facilitate optimal learning outcomes. The assumptions that increased control in the hands of learners will produce enhanced learning outcomes is untenable. This short paper reviews a select body of research with varying types and levels of control in learning environments and presents a summary of operational definitions of control applied in those studies. Analysis of these definitions revealed variations in the amount of control allowed which is most meaningful if represented on a continuum ranging from maximum program control on the one hand, to maximum learner control on the other. The impacts of control in learning environments is briefly discussed.

Locus of instructional control in learning environments whether CAI (computer-assisted instruction) or CAVI (computer-assisted video instruction) may range from maximal program control on the one hand to maximal learner control on the other. Program control refers to a learning environment in which the selection and sequence of instructional stimuli are made without strategy inputs from the learner, while learner control refers to one where the learner is responsible for the learning strategy. The condition in which there is maximal or complete learner control of everything (ie., learner control) has been described by Snow (1980) as the 'Adult Scholar Model'; and one where the learner has virtually no control (ie., program control) as 'Child Robot Model'. In the former the learner commands complete independence and self direction while in the latter he/she is subjected to fixed tasks, a fixed pace, and no remediation.

Naidu

As it is now clear that each learner and learning context is different and that learners will always differ in their preferences for self-control, and also to the extent that they may be able to exercise it effectively for their own benefit, the program/learner control dichotomy in the design and arrangement of learning environments is far from adequate. The assumption that all learners know what is best for themselves at any given moment in an instructional sequence, and that all are capable of acting on this knowledge is untenable, at least for many learners (Snow, 1980). The current feeling is that one can perhaps give control to all of the learners some of the time, and to some of the learners all of the time, but one should probably not give control to all of the learners all of the time. A fundamental instructional design question is to determine what kind of control should be given and when.

Recent research has identified the existence of a whole range of possibilities in the arrangement of learning environments with varying degrees of learner and program control so much so that instructional control in learning environments is now represented more fully and appropriately as a continuum varying or ranging from maximum program control on the one hand to maximum learner control on the other. Between the two there is a range of variations, each recognisable by its placement on the continuum.

The choice of the nature and degree of control in instruction is the net result of a variety of factors pertaining to the learner, the learning environment, and the subject matter being learned. As learners, learning environments, and subject matter become more complex, the design and arrangement of learning environments have become equally complex. The accompanying chart is a summary of recent research on instructional control in learning environments. It is intended to show: a) how various researchers and authors have defined locus of instructional control, and b) the nature of the overlap.

Summary comment

Two issues arising from the above chart are worth further comment. First, clearly there is general concurrence amongst those cited on the existence of *degrees* of instructional control in the arrangement of learning environments ranging from program controlled to learner controlled, and with variations in between. The terminology is not quite the same but the meaning is similar.

Source	Definition				
Holmes, Robson & Steward (1985)	Program Control Frame displays and selections made by the computer program.			Learner Control Students have pre-instructional advice on self- estimation of comprehension and decision making process on selection of next frame.	
Ross & Rakow (1981)	Program Control Examples adapted to subjects' pretest scores. Prescri- ptions varied according to subjects' scores	<i>Lecture</i> Students could attend either one of two lecture presentations.	<i>Non-Adaptive</i> Five examples selected per rule considered as optimum.	<i>Learner Control</i> Examples selected by subjects who could ask for more.	
Gay (1986)	Program Control Computer con- trolled present- ation of concepts in hierarchical form with remediation and review. Student controlled pace.			<i>Learner Control</i> Student control of pace, sequence, depth, amount of practice, mode of presentation and type of content.	
Judd (1972)		Forced Group: Forced Group: directed through sequence dictat- ed by task analy- sis of subject matter.	Yoked Control Members paired with learner control group.	Learner Control Determined their own sequence through the materials.	
Judd (1972)	Program Control Learners proceed through fix-ed, optimally ordered sequence.			<i>Learner Control</i> Student control over sequence and selection of materials.	
Judd (1972)	Program Control Order of presentation fixed in an assumed optimal order for all treatments.			Learner Control Instructional decisions based on learner's ability to do self- evaluation.	

Judd (1972)	Program Control No access to memory sup- port. (Control group 1).		Learner Control with Memory Support Previous stimuli and their correct classifications displayed on request.	<i>Learner Control</i> Memory Supp- ort always pre- sented. (Control group 2).
Laurillard (1984)	Program Control Designer determined route; a subset of many possible routes.			Student Control Interface that allows students free access to materials at any time, in any sequence.
Fisher & Blackwell (1975)	Yoked No choice of problem. Same amount of time allowed as in the choice group.		<i>Choice Control</i> Selected their own problems from CAI. Time taken (within limits).	
Tennyson, Robert & Rothen (1979)	Program Control Selection and sequence made without learner input.		Adaptive Control Anon-line algor- ithm adjusts the learning envir- onment to indiv- idual learners or on-task error patterns.	<i>Learner Control</i> Learners resp- onsible for learn- ing strategy. Learners made decisions about their own learning.
Tennyson, Tennyson, & Wolfgang (1980)		Adaptive Control Strategy Regulated by MAIS: - selects number of inst- ances presented to learners based on pre-task and on-task perform- ance - learners not told how program opera- ted: advised of posttest.		Learner Control Strategy Learners decide whether or not to continue receiving instances or go to posttest.
Tennyson (1980)	Adaptive Control No student control: examples presented in rational sets.		Learner-Adaptive Control Student control of amount and sequence. Advis- ement on diagn- osis and prescription.	<i>Learner Control</i> Student control of amount and sequence: pres- ented concepts presented separately.

Tennyson & Buttery (1980)	Adaptive Control Number of presentations based on pretask and on-task performance. Sequence determined by response pattern. Program directions given.	Learner Control with or without advisement With: Advice on amount of examples necessary. Without: No advice on progress or diagnostic help.	<i>Learner Control</i> Students decide whether or not to continue gett- ing examples or go to posttest informed of pro- gram directions and had control of amount and sequence.
Hannafin (1984)	External Locus of Control Learners follow a predetermined path: no indivi- dual judgement as to its approp- riateness.		Internal Locus of Control Individuals con- trol path, pace and contingen- cies of instruct- ion by specifying choices from among a range of options presented by designer.
Goetzfried & Hannafin (1985)	Linear Control Sequence same as Learner Control with Advisement, but no advisement, no individual control to review of select examples. No externally imposed decisions based on response accuracies. Students controlled pace. Followed predetermined path.	Adaptive Control Computer branched students for reteaching or more examples based on response accuracy. Students completed full lesson. No control over pacing or amount. Mastery learning principles used.	Learner Control with advisement Internally controlled CAI. Students continuously advised of progress and permitted to determine if reteaching or examples needed. Students free to move from lesson to lesson after each tutorial session.

	Linear Control	Designer Imposed	Learner Selected
Hannafin	Students follow	Students	Students control-
&	a linear path	followed a	led path through
Colomaio	through the	predetermined	lesson. Given
(1987, 1988)	lesson. Feedback	path deemed	advice on reco-
	given. No option	best by experts.	mmended
	for controlling	Given	sequence, but
	sequence of	knowledge of	sequence select-
	lesson. No	response to	ion was their
	imposed	question:	own. Feedback
	decision for	branched if	provided, option
	remediation	wrong after	to review. Perm-
	provided.	second incorrect	itted to make
		attempt, correct	decisions on des-
		answer given.	igner imposed
			design features.

Program control/ External Locus of Control/ Designer Imposed/ Forced Group/ Lecture all referred to learning environments in which learners were permitted to exert only minimal influence on the learning exercise. Conversely, *Learner Control/ Student Control/ Internal Locus of Control/ Learner Control with Advisement* referred to learning environments in which learners were permitted to exercise a much greater influence on their learning experience. *Adaptive Control* refers to arrangements in between in which varying degrees of control were incorporated into the instructional process. Hannafin and associates (1987, 1988) are responsible for introducing yet another category, *linear control* which is different from designer control and refers to environments where the learning path is very fixed. Learners enter at one end and proceed through to the other with no options for controlling either sequence or remediation.

The second point worth further comment has to do with the subtle variations in the definition of each categorisation by different researchers. While there is general consensus on the meaning of these, 'learner control' for example, is not seen in exactly the same vein by all. Tennyson and Buttery (1980) operationalised learner control, quite specifically, as when "students decided whether to continue getting examples, and which ones, or go on to the post test. Students were informed on program directions but had complete control of amount and sequence". On the other hand, for Hannafin and Colomaio (1988), learner control was also very specific: when "students controlled their sequence through the lesson ...students were permitted to make an individual control decision at each point at which a designer-imposed decision had been enforced. Students could choose the order of video segments. They were advised on recommended lesson sequence. They got advice before and after answering embedded questions and feedback on results." For her purposes, Gay (1986) defined learner control as when her "students had control of pace, sequence, depth, or amount of practice, mode of presentation (video, audio, graphics, or text), and type of content (rules, key ideas, examples, or practice). Similar variations in definitions is true of program control and adaptive control.

In the case of the latter point the variation is somewhat more noticeable. Tennyson and Rothen (1979) offer a nice review of various definitions of adaptive control. Their own definition of adaptive control, similar to the others, refers to "strategies which prescribed the optimal amount of instruction necessary to achieve a given objective" (Tennyson & Rothen, 1977). This variation in the use of terminology is not being pointed out as a criticism but rather as a truism in the literature: a truism necessitated by the need to operationalise definitions for the purpose of measurement of effect.

Existing research on instructional control is limited and critically so in the design of CAVI. We are aware that learners will always differ in the degree of control they would prefer, and on how well they might be able to exercise that control if allowed directly or indirectly. We are also aware that learners always exercise some degree of control over their overt and covert learning activities during instruction regardless of treatment. Snow (1980) has suggested that, bearing the above in mind, instructional treatment variables not ostensibly concerned with learner control contrasts often have different implications for learner control of these activities. Moreover, that the question of research on learner control is too simply put if it concerns only whether or not learners are allowed to choose their own amounts, sequences, contents, or methods of instruction. The arrangement of instructional control ought to be seen in relation to a measure of prior individual dispositions (aptitude treatment interaction) than only something worthwhile could be said about learning and achievement, and instruction. There is a basic research need for a measure of differences in prior *individual dispositions* of learners as this is invariably a critical factor in learning achievement (Gary, 1986; Snow, 1980).

References

- Fisher, M. D., & Blackwell, L. R. (1975). The effects of student control and choice on engagement in a CAI Arithmetic task in low-income schools. *Journal of Educational Psychology*, 67(6), 776-783.
- Gay, G. (1986). Interaction of Learner Control and prior understanding in computer-assisted video instruction. *Journal of Educational Psychology*, 78(3), 225-227.
- Goetzfried, L., & Hannafin, M. J. (1985). The effect of the locus of CAI control strategies on the learning of Mathematics rules. *American Educational Research Journal*, 22(2), 273-278.
- Hannafin, M. J. (1984). Guidelines for using locus of instructional control in the design of computer-assisted instruction. *Journal of Instructional Development*, 7(3), 6-9.

Naidu

- Hannafin, M. J., & Colomaio, M. E. (1988). The effects of variations in lesson control and practice on learning from interactive video. *Educational Communication and Technology Journal*, 35(4), 203-212.
- Hannafin, M. J. & Colomaio, M. E. (1987). The effects of locus of instructional and practice on learning from interactive video. Paper presented at the Annual Meeting of the Association of Educational Communications and Technology, Atlanta, Georgia.
- Holmes, N., Robson, E. H. & Steward, A. P. (1985). Learner control in computer-assisted learning. *Journal of Computer-Assisted Learning*, 1, 99-107.
- Judd, W. A. (1972). Learner controlled computer-assisted instruction. Paper presented at the International School on Computers in Education, Pugnochiusco, Italy. (ERIC Document Number: ED 072 635).
- Laurillard, D. (1984). Interactive video and the control of learning. *Educational Technology*, 24(6), 7-144.
- Ross, S. M. & Rakow, E. A. (1981). Learner control versus program control as adaptive strategies for selection of instructional support on Math rules. *Journal of Educational Psychology*, 73(5), 745-753.
- Snow, R. E. (1980). Aptitude, learner control and adaptive instruction. *Educational Psychologist*, 15(3), 151-158.
- Tennyson, R. D., Robert, D. & Rothen, W. (1979). Management of computer-based instruction: design of an adaptive control strategy. *Journal of Computer-Based Instruction*, 5(3) 63-71.
- Tennyson, C. L., Tennyson, R. D. & Wolfgang, R. (1980). Content structure and instructional control strategies as design variables in concept acquisition. *Journal of Educational Psychology*, 72 (4), 499-505.
- Tennyson R. D. (1980). Instructional control strategies and content structure as design variables in concept acquisition using computer based instruction. *Journal of Educational Psychology*, 72 (4), 525-532.
- Tennyson, R. D. & Buttery, T. (1980). Advisement and management strategies as design variables in computer-assisted instruction. *Educational Communication and Technology Journal*, 28 (3), 169-176.

Contributor: Dr Som Naidu lecturers in Instructional Science and Technology at the University of Southern Queensland. His research interests are in the areas of instructional systems design, human performance technology, instructional technology, and open and distance learning. Dr Naidu can be contacted at: University of Southern Queensland, Distance Education Centre, Queensland, 4350, Australia. Email: naidu@usq.edu.au

Please cite as: Naidu, S. (1995). Definitions of instructional control in learning environments. *Australian Journal of Educational Technology*, 11(1), 12-19. http://www.ascilite.org.au/ajet/ajet11/naidu.html