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This article presents key steps in the design and analysis of a computer based
problem-solving assessment featuring interactive tasks. The purpose of the assessment
is to support targeted instruction for students by diagnosing strengths and weaknesses
at different stages of problem-solving. The first focus of this article is the task piloting
methodology, which demonstrates the relationship between process data and a priori
documented problem-solving behaviours. This work culminated in the design of a
Microsoft Excel template for data transcription named a Temporal Evidence Map. The
second focus of this article is to illustrate how evidence from process data can be
accumulated to produce and report instructionally useful information not available
through traditional assessment approaches. This is demonstrated through the
production of reports profiling individual student outcomes against important aspects
of problem solving.

Introduction

The work described in this article is part of an ARC Linkage project undertaken in
cooperation with the industry partner, North Shore Development Centre, Ltd (NSDC).
NSDC is a private tuition college operating in Australia and New Zealand. The role of
the broader project was to migrate an existing program of research into the assessment
and instruction of problem solving (Wu, Griffin, Dulhunty & Mak, 2002; Wu & Adams,
2006) to computer based media. The rationale was that the computer could capture
detailed information about student cognition which could in turn be used to better
inform instruction.

Practical benefits of computer based assessment include automated and rater-free
scoring, rapid feedback, and increased accessibility. Benefits related to educational
measurement include the capacity to capture detailed process data and the potential to
build tasks which assess skills that cannot be examined (conveniently) by other means
(Mills, Potenza, Fremer & Ward, 2002; Ridgway & McCusker, 2003). Survey evidence
also suggests that interactive, computer based tasks are engaging through the
immediate appeal of their graphics and the sustained appeal of their interactivity
(Richardson et al., 2002).

Recently, computer-based assessments that go beyond being reproductions of existing
paper and pencil assessments have emerged in various domains of problem solving
(Bennett, Persky, Jenkins & Weiss, 2007; Vendlinski & Stevens, 2002; Williamson et al.,
2004, Masters, 2010). These assessments record detailed interactions between the
problem solver and the task environment and thereby capture salient solution
processes in an unobtrusive way (Bennett et al., 2007; Chung & Baker, 2003). These
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actions culminate in a large amount of process data that can be linked to theories of
cognition and developing competence (Pelligrino, Chudowsky & Glaser, 2001;
Williamson, Mislevy & Bejar, 2006). Importantly, this process data can be used to
evaluate the systematicity and efficiency with which a problem solver completes tasks
(Wirth & Klieme, 2003). This information makes it possible to describe how students
solve problems rather than simply if they solve them. In complex domains where a
variety of skills and dispositions may influence performance, knowing how students
solve problems will provide more valid links to their individualised instructional
needs.

The collection of process data from complex tasks presents a number of challenges to
the assessment designer. First, there is a need to establish an interpretative framework
for identifying meaningful performance features in potentially unwieldy strings of
process data. Second, there will be a strong motivation to automate this process, which
can require considerable programming expertise (Masters, 2010). Third, distinct
elements of process data can describe diverse aspects of cognition, so a theoretical
framework must be in place for deciphering which data can be used as evidence about
which proficiencies (Mislevy, 2008). Further, the last century of test analysis has
focussed on summative scoring models most often incorporating single scores per
assessment task. Therefore, emerging measurement models need to be evaluated so
that they can accommodate complex data, multiple observable and hypothesised
variables, and support the purpose of the assessment. Why go to the extra effort? The
answer is that assessments featuring complex tasks can provide cognitively diagnostic
inferences unlike those typically available from traditional educational assessment
instruments. This provides new information for targeting student instruction.

This section provides an overview of relevant problem-solving theory and its
implications for task design. A brief description of the Cognitive Task Analysis (CTA)
methodology applied in this study is provided with example tasks. The present study
focused on puzzle-type problem tasks that could be solved by search-based heuristic
strategies of varying sophistication. Schoenfeld (1985) described heuristics as
“strategies and techniques for making progress on unfamiliar or non-standard
problems; rules of thumb for effective problem solving” (p.15). This is very much the
educationalist perspective of heuristic search (which is more general and less
algorithmic than conceptions from cognitive science and artificial intelligence) and it is
well-suited to the problem types investigated here. Treatment of the problem-solving
process as a series of phases (understand, plan, try, check) is another important
concept championed by the likes of Georg Polya as early as 1945 (Polya, 1945). More
recently, the information processing perspective conceptualised problem solving as the
interplay between representation and search (Mayer & Wittrock, 1996; Newell &
Simon, 1972). Identifying strengths and weaknesses of students both preceding and
during the phases of building an understanding of problems and searching for
solutions to problems was considered important for increasing instructional targeting.

Two important paradigms are considered. First, the schema-driven versus search-
based problem-solving paradigm as described by Gick (1986) is reviewed. Second, the
expert versus novice (and similarly the gifted versus average and the good versus
poor) paradigm is reviewed with particular reference to Chi, Glaser and Farr (1988)
and Newell and Simon (1972). These paradigms are ubiquitously relevant across
problem-solving studies. Therefore they were considered useful for divulging criteria
for differentiating between tasks and problem-solving performances.
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The schema-driven versus search-based paradigm tells us that the cognitive resources
used by a problem solver depend on the presence or absence of so called schemas.
Formally, Marshall (1995) describes a schema as follows:

A schema is a vehicle of memory, allowing organisation of an individual’s similar
experiences in such a way the individual (1) can easily recognise additional
experiences that are also similar, discriminating between these and ones that are
dissimilar; (2) can access a generic framework that contains the essential elements of
all of these similar experiences, including verbal and nonverbal components; (3) can
draw inferences, make estimates, create goals and develop plans using the framework;
and (4) can utilise skills, procedures, or rules as needed when faced with a problem for
which this particular framework is relevant (p. 39).

Useful schemas are not always available to problem solvers. In these situations, an
alternative problem-solving approach must be invoked. This is where search-based
problem solving becomes relevant (Gick, 1986). Search-based problem solving is
characterised by the application of search-based heuristic strategies that are not
necessarily specific to a particular class of problems. They are usually more general,
less direct and in some cases offer no guarantee of success. While algorithmic schemas
for solving various puzzle tasks do exist (Luchins, 1942), search-based strategies are
also sufficient for reaching the goal.

Studies of expert versus novice problem solvers have identified several differentiating
aspects of performance. These differences can be used by assessment designers to
identify important performance features that tasks should elicit (Glaser, 1991). Data
describing actions and latencies have been used previously to explore problem-solving
processes (Lohman & Ippel, 1993, p. 56). In a computer-based setting, these data can
include clicks, drags, drops, mouse rollovers, mouse hold-downs, and many more.
Temporal information about these interactions can also be recorded with ease. If these
data provide evidence about salient performance features on the domain, then their
collection should be considered a goal for assessment design. The following
paragraphs provide the theoretical basis for making use of the different types of
readily available process data.

Expert problem solvers are argued to be more forward-working and goal-directed
(Newell & Simon, 1972), have strong metacognitive and self monitoring skills (Chi,
Glaser & Farr, 1988), analyse problems qualitatively in detail and check the products of
their problem solving (Gerace, 2001). Their efforts often begin with an investment in
planning and analysis. Planning and analysis has been argued to help experts
transcend surface features of problems not strongly related to goal attainment
(Sternberg & Ben-Zeev, 2001). Instead, experts look for deep structural representations
of problems prior to engaging in search (Chi, Feltovich, & Glaser, 1981). It follows from
the importance of problem representations that experts will tend to get off to a
relatively goal-directed start. The capacity to record the relative goal-directedness of
the initial interactions of a problem solver is arguably worthwhile and could be taken
as evidence about the quality of initial problem representations.

Novices may tend to focus on surface features of problems, which in this context might
involve manipulating an object without having the problem goal in mind.
Consequently, novice problem solvers will tend to be less efficient and their solutions
will feature more redundant and erroneous interactions. They will also have a lower
likelihood of successfully solving problems. These expert-novice differences reveal
performance indicators which differentiate between more and less expert problem-
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solving approaches. Therefore these are the indicators which tasks should be designed
to elicit.

The study
This study is divided into two parts. The first part describes a method of recording and
interpreting data from the interactions of students attempting interactive computer-
based problem-solving tasks. The methodology extends existing approaches by
introducing an evidence transcription tool that allows experts to visualise student
solution paths as they occurred as a function of time. Data interpretation is recognised
as one of the cornerstones of valid assessment (Pelligrino et al., 2001). The second part
of this article provides an overview of the analysis and reporting framework used to
generate and communicate assessment inferences. In this study, Bayesian Inference
Networks, or Bayes Nets, were employed for classifying student performances. This
article concludes with an example of a student report produced in this context and an
explanation of its links to targeted instruction.

The temporal characteristics of solution-path behaviour have been studied in a number
of settings to reveal various inferences about cognition (Lohman & Ippel, 1993; R. J.
Mislevy, 1993). Where inferences about student proficiencies are difficult to
disentangle, the addition of response time information can provide some evidentiary
weight (Gvozdenko & Chambers, 2007). Usually expert search is more automatic as a
result of the deeper representations. This suggests that response time, perhaps in
conjunction with other information such as whether the goal was attained, could be
used as an indicator of expertise.

In addition to data describing the total response time for a task, several researchers
have gone one level of detail further. Distinct latencies corresponding to important
points within the problem (like an impasse) or distinct processes (like planning or
reviewing) have received attention (Fum & Del Missier, 2001). Paek (2002) for instance
found that better performing students would invest more time on the initial step of
multi-step mathematics items. Establishing inferences about the adequacy of decoding
time prior to task interaction was seen as a possible target inference with its own
instructional implications. This is consistent with assertions by Glaser (1991), who
stated that while experts tended to solve problems faster than novices, they tended to
dedicate a disproportionate amount of time decoding the problem and forming a
representation. Temporal information as a source of evidence about problem-solving
processes is well-placed with computer-based data capture and expert-novice theories
which provide a framework for interpretation. Therefore in this study, in addition to
recording task response time, tasks were designed so that the latency preceding the
first task interaction was also recorded.

1. Recording and interpreting data
The tasks were constructed so that objects could be clicked, dragged and dropped
using the mouse cursor. Examples of tasks from this study are provided in Figure 1
and Figure 2. There was no requirement to use the keyboard. Instructions and
constraints were described above the graphical task objects such that all of the
information necessary to complete a task was embedded within the presented
material. This is consistent with the idea of domain-general problem-solving, where
prior knowledge specific to a given domain is not a prerequisite for being able to solve
the problem.
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Figure 1: Olive oil task

Figure 2: Hot chocolate task
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In summarising the implications of theory and previous empirical work for task
construction, at least five types of performance evidence were identified as relevant.
These included the correctness of solution, the presence of errors, the presence of
repetition and redundancy, the total time taken, and finally, other temporal latencies.
Observable variables summarising each of these indicators were specified and these
are revisited in Table 3. The extent to which computer-based interactive tasks
facilitated collection of data describing each of these indicators was evaluated through
task piloting. This is described in the following sections.

Cognitive task analysis

From computer-captured performance data it is possible to analyse in great detail the
processes and products of problem solvers’ interactions with tasks (Bennett et al.,
2007). It is also possible to collect this data (known sometimes as click-stream data)
concurrently with verbal reports provided by problem solvers during task interaction
(Chung, de Vries, Cheak, Stevens & Bewley, 2002). This type of evaluation is
commonly referred to as Cognitive Task Analysis (CTA) and is typically carried out
early in the assessment design process (Mislevy, Steinberg, Breyer, Almond & Johnson,
1999). The function of CTA is to validate the dependency of elicited behaviours upon
various structural features of tasks and the knowledge and skills of people
undertaking the tasks (Williamson et al., 2004). Importantly in this context, a CTA will
reveal important relationships between potentially complex sequences of computer-
captured data and corresponding observable variables. In other words, a CTA can
elucidate how assessment data will be identified and evaluated as observable evidence
from which student proficiencies can then be inferred (Williamson, Bejar & Mislevy,
2006).

Task piloting

The CTA was designed to facilitate the formalisation of evaluative rules for converting
computer-captured process data into values for observable variables. These
observables would later be accumulated into a measurement model for generating
inferences about student proficiencies. The CTA would also reveal the extent to which
the range of elicited patterns of behaviour was consistent with the range of
documented differences between expert and novice problem solvers as defined
previously. Further, where tasks were not useful for differentiating between different
problem-solving approaches and capabilities, task refinements or omissions could be
made prior to subsequent assessments.

A total of nine tasks were developed and piloted in this study. The tasks were
designed using Macromedia Flash 8 and were rendered within HTML web pages.
Interactions with the tasks were recorded using Actionscript 2.0 syntax and variables.
Timestamps were recorded for each interaction datum so that latency data could be
analysed at a later stage. At the conclusion of the tasks, the variables were posted to
and processed by a PHP script which submitted the student interaction record
(sometimes referred to as a work product as shown in Figure 3) to a MySQL database for
post-hoc analysis. Future directions for this work are likely to involve real-time data
analysis to facilitate adaptivity in the selection of tasks.

Data collection

Three sources of process evidence were collected; computer click-stream data
(describing key strokes and mouse actions), verbal commentary and occasional
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behavioural observations (such as an expression of relief or frustration). It was
intended that these three sources of evidence be combined for maximum
interpretability as per Chung et al. (2002). The interpretation of the computer-based
evidence was supplemented by supporting verbal and behavioural evidence. The use
of multiple sources of evidence has the advantage that sources of error and
incompleteness for one data form are not necessarily common across the other data
forms. It is also conceivable that certain data forms offer more vivid clues about
student cognition at different stages of the problem-solving process. One example
from this study involved a student verbally declaring “I don’t really get this”
approximately 45 seconds into their solution attempt. When the student made this
statement, they were yet to manipulate any objects within the task. Arguably
statements such as these provide relatively unambiguous insight into a student’s
understanding of the problem, at least more so than their click-stream data. This is
especially true since a lack of interaction at the commencement of problem solving
could reflect that a problem solver does not understand how to interact with the task
(such as in this example) or it could equally represent an expert investing time in
planning and analysis. Relying on verbal or action protocols in isolation is arguably
not as reliable as having them concurrently available.

A total of 43 students participated in the CTA study. These students were enrolled in
weekend tuition programs in one New South Wales branch and two Victorian
branches of NSDC. The target grade level for the CTA was grade 5 and grade 6
(typically aged 10 and 11). This age level has been identified as a target age that is
sensitive to problem-solving instruction. Students were of varied abilities, given the
role of NSDC in both remediating and in providing coaching for scholarship
examinations. Students, with permission from their parents, volunteered to partake in
the CTA. Approximately equal numbers of girls and boys took part.

A digital voice recorder was used to record the interview process. These discussions
constituted what is commonly referred to as verbal protocol (Ericsson & Simon, 1993).
Verbal protocol, sometimes coined the “…thinking aloud procedure…” (Webb, 1979,
p.84) refers to the elicitation of processes, both productive and reflective, by a problem
solver by way of verbal extraction. Verbal protocol has underpinned problem-solving
research in a variety of settings (Chi et al., 1988; Schoenfeld, 1985; van der Linden,
Sonnentag, Frese & van Dyck, 2001, Leighton and Gierl, 2007). In short, it is reasonable
to consider verbal reports as valid (though incomplete) data about cognitive
processing so long as the interviews are constructed to avoid certain pitfalls (Ericsson
& Simon, 1993).

In the present study, tasks were introduced to students with the instruction that they
should ‘think aloud’ during the problem-solving process; they were asked to explain
their thoughts about the problem and its goal, how they were going to solve it, and
what they were considering doing and actually doing whilst solving it. The target
population was relatively young, and it was thought that this might have contributed
to not all students being able to sustain the ‘think aloud’ protocol during the entire
task without some prompting. A number of generic verbal prompts were used in an
attempt to overcome this issue, paraphrasing those described in Lawson and
Chinnappan (1994, p. 67). These included “keep telling me what you are doing” and
“can you tell me what you are thinking about” among others. Such prompts were used
if the student proceeded to manipulate task objects without explanation or if they fell
silent for a period of time exceeding circa 30 seconds. For students unable to engage in
the verbal protocol analysis without continuous generic prompting, more specific
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prompts were used to probe the level of understanding and intent of the student
whenever such information was missing. This was useful for gauging the student’s
familiarity with the task and their understanding of the task objective and the rules for
object manipulation.

The focal source of process evidence, collected in sync with the verbal protocol and
behavioural observations, was the computer-captured data. This came in the form of a
delimited string of data describing distinct student-task interactions each with a
corresponding timestamp. This was recorded as the interaction sequence (‘sq’) within
the work product. Other summary data were also prefixed to this sequence such as the
item identifier (‘it’), the submitted answer (‘res’) and the total response time (‘rt’). In
the example in Figure 3, the work product indicates the following: the student
attempted task ‘0099’ (which is the Olive Oil task from Figure 1); the student submitted
a response of 4 litres, which happens to be the correct solution; the student spent
140.564 seconds engaged in their solution attempt; and as an example of one particular
interaction, after 81 seconds the student filled the three litre jug (‘81_f3’) a second time.
It is also apparent that the work product is not a user-friendly data representation
from which to make interpretations about problem-solving processes. Therefore it was
reformatted as described in the following paragraphs.

it_0099:res_4:rt_140.564:sq_!44_f3!65_t3!81_f3!86_t3!107_e5!113_t3!115_f3!130_t3!

Figure 3: Work product comprising summary data and click stream data

All three sources of concurrent evidence were transcribed onto a Microsoft Excel
worksheet template to produce what has been named a Temporal Evidence Map (TEM).
The map consists of several parts but essentially links two dimensions - time and
activity. The horizontal axis on each map represents time in one-second intervals. The
evidence sources were transcribed together. Performances by different students were
mapped in adjacent row groups to allow visual comparison and to help distinguish the
differential features of performances. Presentation of concurrent process data has been
demonstrated elsewhere (Chung et al., 2002; Goldman et al., 1999). However, these
existing approaches have listed the different sources of process data within separated
columns within conventional tabular displays.

The key difference between the proposed method and existing methods is the explicit
visual representation of the student-task interaction data on a time axis. This approach
preserves the interval property of time measures rather than compressing the data
transcript into tabular form. With several researchers reporting discernable
relationships between within-task latencies, overall response times and problem-
solving processes (Marshall, 1995; Paek, 2002; Schnipke & Scrams, 1999), the
importance of temporal information in the data interpretation phase should not be
undermined. This study therefore presents a data transcript that upholds the

Item ID

Response

Response time

Click stream data sequence



Zoanetti 593

importance of temporal information more so than previously demonstrated tabulation
methods. Of course, what remains to be seen in follow up studies is whether other
subject matter experts find the visual transcription easier to work with than
tabulations, whether there is higher inter-rater reliability between experts assigning
codes to TEMs, and whether the visual transcript leads to evidence identification that
was not achieved using other methods.

Figure 4: Empty template of a temporal evidence map prior to evidence transcription

Data interpretation

Data interpretation involved the assignment of codes representing observable
behaviours to raw process data. For example, an important behaviour useful for
differentiating between more and less expert-like performances is whether or not
problem solvers repeat ineffective actions (van der Linden et al., 2001). In such cases
the data would manifest as a repeat of a particular click-stream sequence that was
unsuccessful in resolving a previously-encountered impasse. The a priori expected
behaviours were consolidated with code lists published by Lawson and Chinnappan
(1994, p. 72), Montague and Applegate (1993, p. 31) and Flaherty (1975). The resultant
set of codes is presented in Table 1.

TEMs were analysed to formalise the logical rules for assigning codes to performance
features such as those described in the previous paragraph. Construction of these rules
mirrored work by Bennett et al. (2007) for evaluating empirical data in order to develop
provisional scoring rules. The assignment of codes (from Table 1) considered the
following data as displayed on each TEM: immediately and objectively interpretable
verbal statements and explanations; instances where verbal/behavioural evidence
directly explained corresponding click-stream actions; instances where earlier/later
click-stream actions are explained by verbal/behavioural evidence; instances where
earlier/ later click-stream actions are  explained  by  earlier/ later  click-stream  actions

Number of seconds
since task presented

Student
pseudonym (and
context)

Click-stream data

Verbal/behavioural data

Elapsed time
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Table 1: Codes for a-priori expected observable behaviours
Category Code

Underst-
anding
and
represent-
ation

i
ii

iii
iv
v

vi
vii

viii
ix
x

xi
xii

xiii
xiv
xv

xvi
xvii

Reads beginning of question stem
Reads entire question stem
Paraphrases part of question stem
Paraphrases all of question stem
Rereads part or all of the question after some trials
States familiarity with permutations
Reads goal verbatim
Paraphrases goal correctly
Paraphrases goal incorrectly
Paraphrases goal in terms of task objects
Verbalises personal experience
Indicates task objects physically
States understanding, e.g. “I get it”
States lack of understanding, e.g. “I don’t really get this”
Verbalises products with uncertainty
Conjectures possible outcomes
Summarises observed consequence of action

VU1
VU2
VU3
VU4
VU5
VF1
VR1
VR2
VR3
VR4
VP1
VB1
VUY

VUND
VUNC

VUCON
VSUM

Familiaris
-ation by
task object
manip-
ulation

i
ii

iii
iv
v

vi

Initially drags any object (incomplete or non-goal directed)
Initially clicks on any object (incomplete or non-goal directed)
Repeats initial drag
Repeats initial click
Continues non-goal directed actions
Repeats and extends initial drag or click to completion

CD1
CC1
CD2
CC2

CCDR
CCDE

Search
distinct
events

i
ii

iii
iv
v

vi
vii

viii
ix
x

xi
xii

xiii

Generates initial trial
Best trial first
Trials planned as sets
Ineffective trial
Repeats an ineffective trial
Generates new trial (action)
Generates new trial (verbal – e.g. “so now try”, “maybe if”)
Guessing (random trial)
Uncertainty (back and forth movements) within task
Guessing (verbal)
Confirmatory trials near goal region
Repeated trials not near goal region
Risk-taking at an impasse

CLSI
CLSBF

CLSTPS
CLSIN
CLSR
CLSN
VLSN
CLSG

CLSUN
VLSG
CCNG

CLSNNG
CLSTRI

Search
overall

i
ii

iii
iv
v

vi
vii

viii

Cannot generate trial
Repeated errors
Trial diversification
Eliminate all possibilities
Eliminate possibilities sequentially
Trials spatially disordered
Zero redundant trials – flawless
Search incomplete

CGS0
CGSR
CGSD

CGSEA
CGSES
CGSDIS

CGSF
CGSI

Emotion i
ii

Exclamation or movement indicating realisation
Sound indicating frustration or disappointment

BE1
VE

Meta-
cognitive,
reflective
and
evaluative

i
ii

iii
iv
v

vi
vii

viii

Recalls and explains procedure
Evaluates trial against constraints
Evaluates goal against constraints
Reflects on an action until the next best action is planned
States answer upon completion
Confirmatory trials declared (“just checking again”)
Declaring an impasse
Creates a strategy

VMRP
VMTAC
VMGAC

CMP
VMA

VCNG
VMDI
VMCS
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Figure 5: Temporal evidence map segments showing a successful trial and error solution path

“So this has got already three litres in it and needs another one“

CGSD (1)

CGSD (2)

CGSD (3)

VUCON
VUCON

CLSTRI

CGSES (1)

CGSES (2)

CGSES (3)

CLSN

CLS(I)N

CLS(I)N

VMDI

168_e3

177_e5

“When you empty does it fully empty?“
“...or if you put the three litre in the five litre…“

225_t3
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and verbal/behavioural evidence;  instances where an accumulation of click-stream
actions and verbal/behavioural evidence constituted an overall heuristic strategy;
existence of key differences across problem solvers in terms of click-stream action
density and click-stream action type as a function of time. It is important to note at this
point that the verbal and behavioural evidence would not be used beyond the CTA.
Collecting these data would not be feasible given the intended development of a
standalone assessment which could be administered to students directly via computers
without any assistance. Nonetheless, throughout the piloting phase, these data were
considered valuable for verifying the emergence of certain problem-solving
behaviours and for calibrating rules for interpreting click-stream data.

Electronically maintained examples of the TEM tool are provided in Figures 5 and 6.
An example of a printed TEM is provided for illustration only in Figure 7. Printed
TEMs can be spread across the length of a desk and coded with a pen. This approach
was found to be much easier than coding on the computer and provided a better
overview of the entire solution path for long interaction sequences.

In Figure 5, the inter-relatedness of distinct evidence elements is apparent. Conducting
the third unique trial following an impasse can be classified as an implementation of
trial diversification (CGSD), conducted sequentially (CGSES). This logical argument
accounting for the presence, absence and order of particular evidence elements can be
formalised as a general evidence interpretation rule. It is therefore included in Table 1.
The performance of the student on the Olive Oil task depicted in Figure 5 offers a vivid
example of search-based problem solving in the context of an unfamiliar task. This is
in contrast to schema-driven problem solving, such as the application of a learned
deterministic strategy or algorithm.

Figure 6: Temporal evidence map segment for a student carrying out
confirmatory trials while solving the Hot Chocolate task

Figure 6 illustrates one example of how concurrent evidence supports calibration of
computer-captured process data. Once it is known what the intended strategy of a
problem solver is, as explicitly verbalised, the corresponding click-stream data can be
related to this strategy and evidence identification rules can be formulated or refined.
In other words, once we know that a problem solver has a certain level of
understanding (internal representation of a problem task) or an intention to carry out a
particular strategy (this example), we can inspect the nature and rapidity of their
subsequent actions to formulate our own understanding of how aspects of
performance manifest in data. Such trends should constitute important discussion
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points between subject-matter experts and assessment design teams. It is in this way
that a TEM can contribute to building an interpretive framework for click-stream data.

Figure 7: Image of a printed TEM with scribed codes

Perusal of the TEM segments across the full range of pilot tasks revealed empirical
information about the target variables identified via literature review. These are
elucidated in Table 2 with relevant references from research concerning expert-novice
differences.

Table 2: Profile variables identified through CTA and literature review
Profile

variable CTA empirical manifestation Theoretical support
Decoding
time

Some students tended to
manipulate task objects prior to
having completely read or
understood the problem stem.
Most students read question
stems to the point of
understanding at least how to
manipulate objects and often
related this to the goal.
Other students read the
problem stem at least once and
if the problem was not
completely understood they
tended not to interact with the
task for an extended period.

Categorisations:
Brief
Intermediate
Extended

Students should minimally spend enough time
reading the problem instructions to be able to
paraphrase the goal and the conditions for valid
search through the problem space. Research in
physics problem solving by Larkin and
colleagues (Larkin, 1980; Larkin, McDermott,
Simon & Simon, 1980) found that experts would
devote a disproportionate amount of time to
reflecting on the nature of the problem prior to
engaging in solution steps. A similar finding is
reported by Paek (2002) in the context of
mathematics problems, where students who
successfully solved problems were found on
average to spend 35% more time on the first step
of the problem. These findings are consistent with
the consensus that good problem solvers use
extensive analysis and planning prior to engaging
in problem solving whereas novices might plunge
into exploration prematurely (Glaser, 1991).
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Initial repre-
sentation

Some students tended to start
searching with valid and goal-
directed actions. Other students
did not start problems well.
Student starting problems
poorly tended not to
understand the problem
constraints or its goal and
tended to engage in irrelevant
interactions with task objects.

Categorisations:
Deep
Surface

Understanding a problem prior to search is a
highly important stage within the problem-
solving process (Polya, 1957). As Wu (2003, p.
112) explained, “…one cannot proceed with
solving a problem until one understands the
required task”. That is, at least, without having to
resort to extremely rudimentary trial and error.
The importance and effort placed on
understanding the problem is yet another
differentiating factor between good and poor
problem solvers (Whimbey & Lochhead, 1991).
Experts attempt to construct deep structural
representations of problems whereas novices tend
to engage with surface features (Chi et al., 1981).

Error
tendency

Some students performed
actions that were not allowed as
explained in the question stem
or implicit in the task structure.
Others tended to avoid invalid
moves. Prolific errors across
tasks were not common.

Categorisations:
Minimal
Some

Error avoidance and error management have
been described as critical skills in self-regulated
problem solving (van der Linden et al., 2001).
Frese (1995) explained that the negative
emotional consequence of committing errors may
compromise the cognitive resources that remain
available for solving the problem.

Attainment Some students, irrespective of
search quality, persisted until
they reached the goal. Others
abandoned problems prior to
reaching the goal. Other
students reached an
erroneously conceived goal.

Categorisations:
High
Low

Being able to solve problems must be seen as a
primary educational outcome, with the efficacy of
the search being a complementary educational
goal. Including an overall indication of the
tendency to attain solutions can be informative
when coupled with other diagnostic information.
This could disambiguate the type of problem
solver. For example, high attainment coupled
with high speed might indicate familiarity or
expertise. Low attainment coupled with high
speed is more likely to indicate a lack of planning
or disengaged behaviour (Stevens & Thadani,
2006).

Activity Some students conducted too
few actions to explore the
problem. Others conducted
many redundant actions. Some
students tended to solve
problems with little
redundancy.

Categorisations:
Reduced
Efficient
Redundant

Stevens and Palacio-Cayetano (2003) identified
four main strategy type classifications in terms of
relevance and scope of search. To recap, experts
tended to focus their search on relevant or goal-
directed information. Novice-like strategies
featured more redundancy, or at the other
extreme, an inadequate number of actions given
the scope of the problem. Consistent with this,
Ahonniska et al. (2000) revealed that in the well-
known Towers of Hanoi task, the lengths of pauses
(in seconds) before certain critical moves were
made was disproportionately higher among good
performers. This would indicate the use of
planning to overcome impasses rather than
engaging in search and processing of a more
general and less purposeful nature. Stevens and
Thadani (2007) illustrate how classifying search
type in this way can inform distinct instructional
interventions.
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Search
duration

Some students abandoned
problems prematurely. Other
students would spend longer on
problems than others either
when they were stuck or when
they were being careful.

Categorisations:
Limited
Intermediate
Extended

Response time measures can provide insight into
the level of automaticity with which an
individual is performing (Gvozdenko &
Chambers, 2007; R. J. Mislevy, 1993). To elaborate,
“correct and fast” could be interpreted as an
insightful solution, or an indication of familiarity
or expertise (Glaser, 1991). This is consistent with
the finding that experts tend to work faster once
they have internally represented a problem, as
reported by Wankat and Oreovicz (1993).
According to Sternberg (1985), time allocation
during problem solving is an important indicator
of information processing and persistence, and
involvement in problems is highly correlated
with success in solution. “Incorrect and fast” may
point to a lack of persistence or a misconception
of the problem.

The result of the TEM implementation was a framework of evidence rules. For each
code to be carried forward to the standalone assessment version described later,
evidence rules were specified (refer to Table 3).

Table 3: Evidence rule framework
Observable variable Evidence rule structure Profile variable

Pre-search latency
(PSL)

IF PSL<X seconds THEN low
IF X≤PSL≤Y THEN intermediate
IF PSL>Y THEN high

Decoding time

Best-first search (BFS) Yes: First action/s is/are the most goal-directed
No: Otherwise

Initial
representation

Valid-first search
(VFS)

Yes: First action complies with task instructions
No: Otherwise

Initial
representation

Goal attained (X) Yes: Correct
No: Incorrect

Attainment

Search scope Adequate: Searches or interacts with at least the
minimum required number of problem states or task
objects for goal-attainment
Inadequate: Otherwise

Activity

Response time (RT) IF RT<X seconds THEN low
IF X≤RT≤Y THEN intermediate
IF RT>Y THEN high

Search duration

Action count (AC) IF AC<X THEN limited
IF X≤AC≤Y THEN efficient
IF AC>Y THEN redundant

Activity

Repeated action count
(RAC)

IF IAC=0 THEN none
IF IAC>0 THEN some

Activity

Invalid action count
(IAC)

IF IAC=0 THEN none
IF IAC=1 THEN one
IF IAC>1 THEN some

Error tendency

Following the CTA, several tasks were determined to be unsuitable for measuring
search-based problem-solving characteristics. In some cases this was due to construct-
irrelevant sources of task difficulty such as unnecessarily difficult calculations. In other
cases, the tasks did not provide enough opportunities to differentiate between more
and less expert performers, usually owing to elicitation of a limited range of actions
regardless of student proficiency.
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Upon completion of the CTA, frameworks were developed for constructing
appropriate tasks and for identifying and evaluating performance features in the data.
The empirical prominence of the problem solving behaviours inventoried in Table 1
also provided evidence of construct validity for the initial pool of tasks. The following
part of this article provides a brief description of how a subsequent large-scale trial
was conducted to demonstrate production of student reports for linking assessment
inferences to student instruction.

2. Analysis and reporting framework

Following the piloting, several tasks were retained and new tasks were designed to
produce a set of 12 problems. These were administered on a larger scale to 914
students from grades 3 to 8 responding to between 8 and 12 tasks. To illustrate how
the task piloting supported the eventual analysis of assessment data, the process has
been depicted in Figure 8.

Figure 8: Depiction of evidentiary reasoning from
process data to observables to inferences

The task piloting methodology developed rules for assigning values to observable
variables from process data. The next step was to accumulate the observable variables
into a statistical model. The statistical model was required for mapping the patterns of
observations from a student’s performance to the student problem-solving profile
which would best predict those observations. To model the student data in this study,
Bayes Nets were applied. This involved specification of causal links from the profile
variables to the observable variables as outlined in Table 3. For example, the Decoding
time profile variable was modelled to predict pre-search latency observations. A
technical discussion of the application of Bayes Nets is beyond the scope of this article.
For a detailed account of Bayes Nets applied within technology-based educational
settings, readers are referred to Korb and Nicholson (2004) and to Almond and
colleagues (2007).

it_0099:res_4:rt_140.564:sq_!44_f3!65_t3!81_f3!86_t3!107_e5!113_t3!115_f3!130_t3!

Raw
process
data

Enumerated
observable
variables X=1:RT=140.564:PSL=44:VFS=1:BFS=1:AC=8:RAC=0:IAC=0 (refer Table 3)

Rules from expert-novice
theory and CTA

Most
probable
inferred
profile

Statistical model

Decoding time=OK : Initial representation=High : Error tendency = Low :
Activity = Efficient : Attainment = High : Duration = OK
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Communication of assessment results to relevant stakeholders is an important aspect
of any assessment and reporting model (Griffin, 2007). In the problem-solving domain,
it is recognised that multiple proficiencies and attributes contribute to whether and
how students solve problems. After a number of observations of student performance
are made, the values for the corresponding observable variables can be processed by
the Bayes Net. This yields a probability distribution across the categories within each
student profile variable (refer to the profile variables and categories in Table 2 for this
study). For reporting purposes, this information forms a profile of the relative
strengths, weaknesses and tendencies of an individual problem solver. This profile
reporting approach provides ramified reports for supporting teaching and learning
(Almond et al., 2007). Figure 9 shows a prototype report illustrating how the profile
variables and their categories can be renamed and communicated to students, parents
and educators in a user friendly format. The following paragraphs provide a brief
explanation of how this report might be linked to a range of interventions which
would be difficult to target without analysing process data from complex tasks.

Figure 9: Student report describing individual problem-solving characteristics

This report for the fictitious student Jenny Wong has obvious implications for
instruction. Overall it provides a picture of the patterns of problem-solving behaviour
that Jenny exhibited: She appeared to rush into interacting with problems; she did not
start problems in a particularly goal-directed manner; she conducted some erroneous
or invalid actions; her solution attempts were characterised by high redundancy; she
did tend to stick at the problems until she reached the goal; and finally, she also
tended to spend a reasonable amount of time engaged in searching for solutions.
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Clearly there are insights here which are difficult to glean using other standalone
assessment approaches.

There are a number of instructional implications arising from Jenny’s report. From the
first profile variable (“Taking time to read and analyse”) it can be seen that she tends
to spend relatively little time reading and analysing tasks prior to interacting with
them. This might not be a concern if the subsequent profile variables indicated goal-
directed performance, but this is not the case (refer to “Understanding how to start the
problems” and “Avoiding mistakes”). Therefore the conclusion can be made that
Jenny starts solving problems without investing enough time in building an
understanding of the goal or the allowed object manipulations. The options for
instruction at this point are numerous, and this study does not claim to define the most
effective, but a few possibilities are listed: an educator could explain the importance of
understanding problems before solving them; an educator could motivate Jenny by
explaining that a good start will be awarded credit; an educator could explain that
experts tend to spend more time at the start analysing and planning so that they can
work more effectively later and get more problems right; Jenny could be given a set of
problems and asked to explain or document in her own words the problem goal and
rules for object manipulation prior to commencing search; Jenny could be given a set
of problems and encouraged to explain how she intends to solve them and how her
plan is related to the goal.

Turning now to the remaining target variables, the fact that Jenny appears to solve
most problems in good time is encouraging, but the indication from the “Searching for
solutions” variable is that Jenny’s solutions feature some redundancy. This is
consistent with her poor starts but could be targeted as a skill in its own right. The
following are some suggested interventions: provide Jenny with practice tasks
featuring the instruction that she should try to solve them in as few moves possible;
ask Jenny to articulate why her next intended move is valid and how it gets her closer
to the problem goal while she is solving problems; provide Jenny with exercises that
foster the use of specific, search-based strategies such as space splitting, pairwise
comparison, systematic trial and error, recursive sub-goals, etc. These suggestions are
made in broad terms, and work is currently being undertaken to refine them and to
add new intervention strategies suited to other student profiles.

Discussion

In this article a number of advantages of the TEM tool are mooted. These are based on
assumptions that have found some support in recent decades. The first assumption is
that subject matter experts find visual tools easier to work with than other forms of
information (Wang, 2003). The second is that temporal information plays an important
evidentiary role in several domains involving problem solving (Paek, 2002). Studies
are still needed to compare the useability of the maps with existing tabulations of CTA
data, if not to confirm improved interpretations due to the temporal representation,
then perhaps to confirm improved useability. To evaluate the reliability of the TEM
tool, a follow up study examining inter-rater reliability during code assignment would
also be useful.

In developing technology-based assessment systems there are many design decisions
which need to be made. The system described in this paper is in its infancy, and while
an operational version exists, ongoing refinement is inevitable. This paper focuses on
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illustrating the potential benefits of adopting technology-rich assessments featuring
complex tasks which record process data. In particular, focussing on process data is
shown to enable inferences to be made about procedural aspects of performance.
These inferences are attractive for their diagnostic potential and the possibility that
they may provide useful, additional information from which educators might devise
instructional programs. Many details concerning the probabilistic modelling of the
assessment data are beyond the scope of this paper. Also, further work is presently
being undertaken to formalise links from a range of profiles to appropriate
interventions.

Conclusion

This paper describes an approach for analysing process data so that inferences about
procedural aspects of student problem solving can be made. It is argued that Temporal
Evidence Maps could enhance the ease of making valid interpretations of complex
student-task interaction data, by re-emphasising the temporal dimension in a domain
where patterns of latencies carry evidentiary weight. This could benefit assessment
design teams in their efforts to formalise data evaluation rules and verify that the data
relate to the intended set of student proficiencies. With considerable attention being
paid to evidence observation and interpretation in modern assessment design
(Pellegrino, 2002), tools such as Temporal Evidence Maps should boast some utility. This
paper also illustrates the end product of the assessment phase in the form of a
diagnostic profile report. The target inferences focussed on procedural characteristics
of problem solving, providing educators with seldom reported information about
student performance and cognition. Importantly, reports of this nature provide
educators with another source of information for determining an individual student’s
instructional needs.
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