

Construction Economics and Building

Vol. 17, No. 3 September 2017

© 2017 by the author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License (https:// creativecommons.org/licenses/ by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

Citation: Ahmadi, N. and Shahandashti, M. 2017. Comparative empirical analysis of temporal relationships between construction investment and economic growth in the United States. *Construction Economics and Building*, 17:3, 85-108. http://dx.doi. org/10.5130/AJCEB.v17i3.5482

ISSN 2204-9029 | Published by UTS ePRESS | ajceb.epress. lib.uts.edu.au

VIEWPOINT

Comparative empirical analysis of temporal relationships between construction investment and economic growth in the United States

Navid Ahmadi^{1*}, Mohsen Shahandashti¹

¹ Department of Civil Engineering, The University of Texas at Arlington, 416 Yates Street, 425 Nedderman Hall, Arlington, TX, 76010.

*Corresponding author: Navid Ahmadi, Department of Civil Engineering, The University of Texas at Arlington, 416 Yates Street, 425 Nedderman Hall, Arlington, TX, 76010. Email: navid.ahmadiesfahani@uta.edu

DOI: http://dx.doi.org/10.5130/AJCEB.v17i3.5482

Article History: Received 08/04/2017; Revised 25/05/2017; Accepted 26/06/2017; Published 21/09/2017

Abstract

The majority of policymakers believe that investments in construction infrastructure would boost the economy of the United States (U.S.). They also assume that construction investment in infrastructure has similar impact on the economies of different U.S. states. In contrast, there have been studies showing the negative impact of construction activities on the economy. However, there has not been any research attempt to empirically test the temporal relationships between construction investment and economic growth in the U.S. states, to determine the longitudinal impact of construction investment on the economy of each state. The objective of this study is to investigate whether Construction Value Added (CVA) is the leading (or lagging) indicator of real Gross Domestic Product (real GDP) for every individual state of the U.S. using empirical time series tests. The results of Granger causality tests showed that CVA is a leading indicator of state real GDP in 18 states and the District of Columbia; real GDP is a leading indicator of CVA in 10 states and the District of Columbia. There is a bidirectional relationship between CVA and real GDP in 5 states and the District of Columbia. In 8 states and the District of Columbia, not only do CVA and real GDP have leading/lagging relationships, but they are also cointegrated. These results highlight the important role of the construction industry in these states. The results also show that leading (or lagging) lengths vary for different states. The results of the comparative empirical analysis reject the hypothesis that CVA is a leading indicator of real GDP in the states with the highest

DECLARATION OF CONFLICTING INTEREST The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. **FUNDING** The author(s) received no financial support for the research, authorship, and/or publication of this article.

shares of construction in the real GDP. The findings of this research contribute to the state of knowledge by quantifying the temporal relationships between construction investment and economic growth in the U.S. states. It is expected that the results help policymakers better understand the impact of construction investment on the economic growth in various U.S. states.

Keywords

Construction value added, economic growth, U.S. States, granger causality test, unit root test, GDP

Introduction

The value added by construction industry or Construction Value Added (CVA) is the contribution of the construction industry in the larger economy usually shown by Gross Domestic Product (GDP). CVA as a percentage of GDP in the United States (U.S.) declined from a high of 6.2% in 1997 to a low of 3.7% in 2011 and then rose to the still-low 3.9% in 2015. CVA as a percentage of GDP varies dramatically among the states. In 2015, it has ranged from a high of 7.6% for North Dakota to a low of 3.1% for New York. Share of CVA in GDP varies even more dramatically within a state over time. For example, in Nevada, it has decreased form a high of 7.4% in 2005 to a low of 5.8% in 2015, or in Montana this share ranges from a high of 7.4% in 2005 to a low of 5.8% in 2015. Surprisingly, Montana with a share of 5.8% is ranked the 3rd among the U.S. states, which shows the huge decrease of construction investment over the past decade. These variations raise the question whether these fluctuations lead (or lag) the overall economy of the states.

Many policymakers believe that investments in the infrastructure construction would boost the economy of the U.S. (Landers, 2014; Aschauer, 1989; Munnell, 1990). They also assume that construction investments have similar impacts on the state economies in the U.S. This assumption is the foundation of several policies, especially those that are promoting infrastructure investments in the U.S. However, this critical assumption has not been tested empirically and the temporal relationships between construction investments and economic growth have not been assessed at the state level in the U.S. The Construction Value added (CVA) and real Gross Domestic Product (GDP) quarterly time series data collected by the U.S. Bureau of Economic Analysis provide an opportunity to investigate this temporal relationship. The objective of this study is to investigate the leadlag relationships between CVA and real GDP for every state of the U.S. using empirical time series tests. In the next section, a review of the literature is conducted. A statistical approach for evaluating the temporal links between CVA and real GDP in the U.S. states is provided under the research method section. The results of the statistical analyses are discussed in Empirical Results section. Finally, conclusions are presented in the last section.

Research background

Over the past few decades, several studies have assessed the relationship between construction and economic growth around the world. These studies could be classified into two major categories (Giang and Pheng, 2010). The first category indicates that construction investments have positive impact on economic growth (e.g., Landers, 2014; Markstein, 2016). The second

category points out that construction investments might have negative impact on economic growth (e.g., Kocherlakota and Yi, 1996; Drewer, 1980).

Turin (1969) analyzed the role of the construction industry in economic growth in 87 countries with different levels of GDP. The results of that study showed a relatively high correlation between construction industry investments and overall economic conditions. They also realized that the share of value added by the construction industry falls somewhere between 5-8% for developed countries while it is between 3-5% for developing countries. Further studies during the following decades also pointed out the positive impact of construction investments on economic growth in developed countries, such as the U.S. (Aschauer, 1989; Munnell, 1990), Canada (Wylie, 1996), and Sweden (Berndt and Hansson, 1992). Wells (1986), Turin (1973), and Strassman (1970) showed that over the period of economic growth, the construction industry is required to grow at a higher rate than the whole economy. Ofori (1988) found that the construction industry plays a major role in the economy of Singapore. Kirmani (1988) introduced the construction industry as a powerful engine for economic growth. World Bank (1994) showed that infrastructure needs to grow fast enough to generate enough facilities for economic growth. The positive impact of construction investment on economic growth is not exclusive to North America and Europe. Infrastructure investment also led to economic growth in Asia and the Pacific region by improving the capacity and efficiency of the economy (United Nations, 1990). Easterly and Rebelo (1993) demonstrated a considerably positive correlation between transport and communication investments, and economic growth rate, using the historical time series data of 28 developed countries. Anaman, Kwabena and Osei-Amponsah (2007) discussed the importance of construction activities by demonstrating their role in utilizing local human and material resources that promote local employment.

Construction pushes demand for construction materials and equipment beyond the construction activity itself. Financial services (for financing projects and purchases of projects), transportation services for delivering materials to construction sites, and sales and leasing services are additional effects of construction on the economy that are not included in the contribution of the construction industry to GDP. Taking all these effects into account, a conservative estimate of additional effect of the construction industry on the economy would be around 2-3% (Markstein, 2016). Hosein and Lewis (2005) acknowledged this additional effect by indicating that "one of its most important economic features is that it creates the facilities that are necessary for the production and distribution of all other goods and services."

The construction industry's share in GDP has been recognized as an important factor for economic growth. For example, Edmonds (1979) suggested that for a steady economic growth in developing countries, the contribution of the construction industry to GDP needs to be 5%. Lopes, Ruddock and Ribeiro (2002) also showed that the economy would enter a steady growth while the share of value added by the construction industry to the GDP is 4-5 %.

In contrast to the studies indicating the positive impact of construction on economic growth, some studies have shown the negative impact of the construction industry on the economy. Drewer (1980) analyzed the data of the United Nations Economic Commission for Europe (ECE) region between 1970 and 1976 and concluded that more construction does not necessarily enhance the economic conditions. The author reported that the uncontrolled expansion of construction could have a negative impact on the economy. Kocherlakota and Yi (1996) suggested that infrastructure investments do not necessarily improve economic growth rate. Excessive supply of construction outputs even caused recessions in Southeast Asia in 1997, in Singapore in 1985, and in Trinidad and Tobago around the same time (Ganesan, 2000; Lewis, 1984). Thus, excessive growth of construction activity might negatively affect the

macroeconomic stability by misallocation and waste of resources (Giang and Pheng, 2010). In fact, these scholars reported that production capacity should be accounted for, to avoid overestimating the positive impact of construction investment on economic growth.

The Granger causality test has been used in economics to analyze the temporal relationships between the variables. The Granger causality test is a statistical hypothesis test which determines whether the time series of a variable is useful to predict the time series of another variable (Granger 1969). Shahandashti and Ashuri (2012) implemented the Granger causality test to identify the leading indicators of Construction Cost Index (CCI). The Granger causality test is widely used to analyze the temporal relationship between the construction industry investments and macroeconomic growth. Anaman (2003) investigated the relationship between the GDP contributions of the construction industry and overall GDP in Brunei using Granger causality tests. Barot (2002) used Granger causality tests to study whether growth rate in investment impacted growth rates in total factor productivity for agriculture and financial institutions, real estate, and other businesses. Ofori (1988) studied the impact of construction in Singapore's economy and concluded that the construction sector played a major role in Singapore's economic development. Green (1997), based on Granger causality tests, showed that residential construction investment Granger-caused GDP; however non-residential construction investment does not Granger-cause GDP. Tse and Ganesan (1997) indicated that growth in the economy measured by GDP led to an increase in activity of the construction sector of Hong Kong from 1985 to 1995. Kirmani (1988) introduced the construction industry as a powerful engine for economic growth. Anaman, Kwabena and Osei-Amponsah (2007) analyzed the causal links between the growth of the construction industry and the growth of the macro-economy in Ghana using the Granger causality test.

The direction of the causality between the construction sector and GDP has also been analyzed. Tse and Ganesan (1997) showed that the causality ran from GDP to construction in the case of Hong Kong. Lean (2001) indicated a bi-directional causal relationship between construction and GDP in Singapore. Zheng and Liu (2004) also found a bi-directional causal relationship between construction and GDP in China and concluded that construction had short-term impacts on economic growth, while the economy had long-term impacts on the construction industry. Lewis (2009) showed that this relationship in Trinidad and Tobago changed over time depending on different circumstances.

Research method

The Bureau of Economic Analysis of the U.S. Department of Commerce has published both CVA and GDP for all the U.S. states since 2005 (BEA, 2016). CVA and GDP time series data for every individual state in the U.S. are collected and used in this study. A time series is a sequence of data, usually presented across equal time intervals. Since both CVA and GDP are time series data, statistical bivariate time series tests are used to assess temporal relationships between CVA and GDP at the state level. Statistical time series tests, are usually preceded by unit root tests, to examine the stationarity of the data. The Augmented Dickey-Fuller (ADF) test is used as a unit root test to examine the stationarity of the data. The Granger causality test is implemented to empirically analyze the temporal relationship between the CVA and GDP for all the U.S. states. The Cointegration test (Johansen 1988) is used to evaluate the long-run relationship between time series variables. If value added by construction at the state level is cointegrated with GDP at the same state, then there exists a long-run relationship between the time series of these two variables over time.

UNIT ROOT TEST

Unit root tests are normally used to identify the order of integration of the variables before the Granger causality test is implemented. The minimum number of times that a time series needs to be differenced to become stationary is the order of integration of the time series. The augmented Dickey-Fuller (ADF) test, proposed by Dickey and Fuller (1979) and extended by Said and Dickey (1984) was implemented to examine the stationarity of the variables:

$$\Delta Y_t = \alpha + \beta t + \gamma Y_{t-1} + \sum_{i=1}^{p-1} \delta_i \Delta y_{t-i} + u_t \tag{1}$$

Where t is the time index, Yt is the value of time series at time t, Δ Yt denotes the lagged first differences (i.e., Yt – Yt-1). α is an intercept constant (a drift term), β is a coefficient on a time trend and γ is a coefficient to test whether we need to difference the data to make it stationary. P is the lag length of the test and determined when applying the test. The Akaike Information Criterion (AIC) is used to identify the lag lengths. It is an independent identically distributed residual term. The null hypothesis of the test is that the time series under study is not stationary ($\gamma = 0, \beta \neq 0$), and the alternative hypothesis is that the time series is stationary ($\gamma < 0, \beta \neq 0$).

GRANGER CAUSALITY TEST

The Granger causality test (Granger, 1969) is a statistical hypothesis test to determine whether the time series of a variable is useful to predict the time series of another variable. In other words, this test determines whether the time series of a variable leads the time series of another variable. The null hypothesis of this test is that the past P values of X are not helpful to predict Y (X does not Granger cause Y). P is the lag length of the Granger causality test, and the results of the test depend on the chosen lag lengths. Therefore, different lag lengths (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 lag lengths) are used in this study. These lag lengths represent a 2.5-year horizon since the data are quarterly. The following bivariate autoregressive models are used to test whether the value added by construction Granger causes GDP at the state level and vice versa (GDP Granger causes CVA):

$$\Delta GDP_{(t)} = \sum_{i=1}^{p} \alpha_i \Delta GDP_{(t-i)} + \sum_{i=1}^{p} \beta_i \Delta CVA_{(t-i)} + u_{(t)}$$
(2)

$$\Delta CVA_{(t)} = \sum_{i=1}^{p} \alpha_i \Delta CVA_{(t-i)} + \sum_{i=1}^{p} \beta_i \Delta GDPA_{(t-i)} + u_{(t)}$$
(3)

Where $\text{CVA}_{(t)}$ represents the time series of the Construction Value Added in the state, $\text{GDP}_{(t)}$ is the time series of Gross Domestic Product in the same state, P is the maximum number of lagged observations included in the model, and u_t represents the time series of the residuals. CVA does not Granger cause GDP if $\beta i = 0$ (i=1,...,P) in Equation 2. GDP does not Granger cause CVA if $\beta i = 0$ (i=1,...,P) in Equation 3.

COINTEGRATION TEST

Two-time series variables are cointegrated if the time series variables are integrated in the same order and a linear combination of these two-time series has a lower order of integration. If a combination of two variables is cointegrated, they do not drift apart as time passes and they are related in the long run.

In this paper, a cointegration test proposed by Johansen (1988) and extended by Johansen and Juselius (1990) was implemented to examine whether CVA is cointegrated with GDP in each state of the U.S. The lag length (p) for this test was selected based on Akaike Information Criterion (Akaike, 1974). r represents the number of cointegrating relationships between GDP and CVA. The trace statistics show that whether the null hypothesis of r = 0 could be rejected. If the null hypothesis is rejected, there is a cointegrating relationship (or are relationships) between GDP and CVA at the state level.

Data

Non-seasonally adjusted quarterly data of real GDP and CVA published by the Bureau of Economic Analysis (BEA, 2016) was used in this study. Real Gross Domestic product (real GDP) is a monetary measure of final goods and services. This measure has been widely used for economic analyses. The Bureau of Economic Analysis (BEA) has published "quarterly real GDP by state" since 2005. The contribution of each industry to the overall GDP by state is called value added by the industry. In concept, value added of an industry is equivalent to the industry's gross output minus its intermediate inputs (Strassner and Wasshausen, 2014). Construction Value Added (CVA) represents the contribution of the construction industry to the GDP by state. It includes the value added by several construction activities, such as construction of highways and streets, manufacturing structures, health care structures, educational and vocational structures, and residential structures. As an illustration, Table 6 and Table 7, in appendix A, represent GDPs and CVAs for all U.S. states and the District of Columbia from the 3rd quarter of 2012 up to the 4th quarter of 2014.

Empirical results

The results of ADF unit root tests for the state GDPs and CVAs are represented in Table 1. Data of GDPs for the states are not stationary first. The GDPs of 47 states and the District of Columbia become stationary by applying the differencing operator once (Δ GDP). These results also show that the CVAs of 38 states and the District of Columbia become stationary after applying the differencing operator Δ CVA.

State	ADF t-statistics for Δ GDP	ADF t-statistics for Δ CVA
AK	-3.73**	-4.55 ***
AL	-4.61***	-3.33 *
AR	-4.59***	-5.37 ***
AZ	-2.55	-2.43
СА	-4.16**	-7.39 ***
CO	-4.49***	-3.54 **
СТ	-3.86**	-3.73**
DC	-4.57***	-4.67***

Table 1 Results of ADF unit root tests of real GDP and CVA time series for different states

Table 1 (Continued)

State	ADF t-statistics for Δ GDP	ADF t-statistics for Δ CVA
DE	-5.25***	-5.16***
FL	-2.32	-2.14
GA	-3.95**	-2.29
HI	-3.59**	-1.98
IA	-4.62***	-5.08***
ID	-3.59**	-4.26***
IL	-4.16**	-2.87
IN	-3.49*	-3.71**
KS	-4.06**	-4.52***
KY	-3.82**	-4.86***
LA	-4.21**	-4.73***
MA	-4.05**	-2.64
MD	-4.79***	-4.19**
ME	-5.18***	-4.42***
MI	-3.26*	-4.23***
MN	-4.77***	-3.99**
MO	-5.2***	-3.74**
MS	-3.92**	-3.99**
MT	-3.96**	-3.64**
NC	-4.13**	-2.72
ND	-3.16	-3.71**
NE	-5.66***	-4.95***
NH	-6.34***	-4.58***
NJ	-3.47*	-4.64***
NM	-5.57***	-2.78
NV	-2.75	-2.16
NY	-5.15***	-4.07**
ОН	-3.96**	-3.74**
OK	-5.24***	-4.84***
OR	-3.94**	-2.63
PA	-5.84***	-4.43***

Table 1 (Continued)

State	ADF t-statistics for Δ GDP	ADF t-statistics for Δ CVA
RI	-4.47***	-3.6**
SC	-3.82**	-2.56
SD	-3.69**	-5.36***
TN	-3.93**	-3.87**
ТХ	-4.1**	-3.61**
UT	-4.13**	-2.1
VA	-5.48***	-4.21**
VT	-4.99***	-5.53***
WA	-3.72**	-2.16
WI	-5.15**	-5.39***
WV	-5.18***	-4.92***
WY	-4.48***	-4.7***

Notes: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance levels, respectively. Akaike Information Criterion is used for lag selection.

To avoid the problem of spurious regression, the Granger causality test can only be applied on stationary time series data. Both CVAs and GDPs of 36 states and District of Columbia become stationary after applying the difference operator once. Therefore, the Granger causality test was applied on CVAs and GDPs of 36 states and the District of Columbia in which CVAs and GDPs become stationary after applying the differencing operator once. The Granger causality test investigates whether the first differenced time series of CVA of a specific state Granger causes the first differenced time series of GDP in the same state.

The results of Granger causality tests summarized in Table 2 indicate that CVA is a leading indicator of GDP in 18 states (Alaska, California, Colorado, Connecticut, Delaware, Idaho, Indiana, Louisiana, Minnesota, Missouri, Montana, New Hampshire, New Jersey, New York, Oklahoma, Wisconsin, West Virginia, Wyoming) and the District of Columbia.

Figure 1 demonstrates the geographic distribution of the states where CVA leads GDP. These states do not belong to a specific geographical area.

Granger causality test is also applied to understand whether GDP is a leading indicator of CVA at the state level. Rejection of null hypothesis (GDP does not Granger cause CVA at the state level) for time series data of a state means that the Granger causality runs from GDP to CVA at that state. Table 3 shows the states in which GDP Granger causes CVA. The results indicate that in 10 states (Colorado, Delaware, Iowa, Kansas, Louisiana, Michigan, Montana, Minnesota, Nebraska, and Rhode Island) and the District of Columbia causality runs from GDP to CVA, which means CVA is a lagging indicator of GDP in these states.

State					F Stat	tistics				
	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5	Lag 6	Lag 7	Lag 8	Lag 9	Lag 10
AK	2.39	1.98	2.33*	1.59	1.36	1.28	0.89	0.71	0.77	0.62
СА	8.53***	4.55**	2.35*	1.66	2.16*	2.33*	1.95	2	1.64	1.14
СО	3.48*	2.8*	2.14	1.86	1.32	2.43*	1.58	2.3*	1.53	1.25
СТ	1.24	1.74	1.36	1.23	3.18**	2.7**	2.33*	3.53**	3.91***	6.4***
DC	0.47	0.83	1.03	3.08**	3.2**	1.54	1.16	1.19	0.77	0.61
DE	1.72	1.93	3.1**	2.16	1.79	1.58	1.14	1.13	1.17	1.22
ID	0.59	1.28	4.72***	3.38**	4.21***	4.16***	3.45**	3.2**	2.36*	2.06
IN	3.94*	1.99	0.87	0.67	0.59	0.53	0.49	0.54	0.51	0.46
LA	2.41	2.89*	2.27*	1.84	1.41	0.98	1.16	1.97	1.45	1.05
MN	3.55*	2.36	2.64*	2	1.2	1.09	1.8	2.85**	2.04	1.82
МО	1.04	0.68	0.58	1.39	1.89	1.52	1.93	2.02*	1.5	0.81
MT	3.29*	2.13	0.91	0.94	0.86	0.59	1.03	1.87	1.81	2.19*
NH	0.94	2.25	3.25**	3.46**	3.29**	3.71***	2.44*	1.65	2.27*	1.87
NJ	0.06	0.99	0.91	2.58*	2.61**	2.78**	2.29*	1.69	2.16*	1.67
NY	4.31**	2.04	1.51	0.93	1.21	0.87	1.07	1.3	0.91	0.98
OK	2.81	1.24	0.65	2.06	2.65**	2.3*	1.91	2	1.7	1.57
WI	1.03	0.92	1.43	1.05	0.84	1.18	2.34*	2.56**	2.83**	2.27*
WV	0.32	0.45	2.28*	1.86	1.47	1.49	1.44	1.32	0.89	0.75
WY	0.0001	0.001	1.69	4.85***	4.13***	3**	2.74**	2.41*	2.29*	1.82

Table 2Results of Granger causality tests for the states where the null hypothesiswas rejected (null hypothesis: CVA does not Granger cause real GDP at the state level)

Notes: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance levels, respectively.

Johansen Cointegration test is also applied on time series data of the states in which either CVA Granger causes GDP or GDP Granger causes CVA. As discussed earlier, time series data of these states are integrated of order 1. If CVA and GDP time series data of a state are both integrated of order 1 and a linear combination of GDP and CVA is integrated of order 0, these two-time series data are cointegrated. Rejection of null hypothesis (r =0) in cointegration test at each state means that there exists a long-run relationship between GDP and CVA at the state level. The results of cointegration test summarized in Table 4 show that there is a statistically significant cointegrating relationship between GDP and CVA in 8 states of the U.S. (Connecticut, Idaho, Michigan, Montana, New Hampshire, New Jersey, Rhode Island, and Wisconsin) and the District of Columbia.

Figure 1 Granger causality map between CVA and GDP

Value added by construction industry leads GDP by state	18 states
Value added by construction industry does not lead GDP by state	18 states
Granger causality test could not be tested	14 states

Discussion of results

The results of this study show that out of 36 states in which the temporal relationship between GDP and CVA could be empirically tested, there exists a leading and/or lagging relationship between the construction industry and GDP in 23 states. CVA is a leading indicator of GDP in 18 states and the District of Columbia; CVA is a lagging indicator of GDP in 10 states and the District of Columbia, and there is a bi-directional relationship between CVA and GDP in 5 states and the District of Columbia. We did not find enough evidence showing any causality relationships between CVA and GDP in the other 13 states; however, it does not necessarily mean that the construction industry is not important in these states. The results of this study are summarized in Table 5.

STATES IN WHICH CVA IS A LEADING INDICATOR OF GDP

The results of this study show that CVA is a leading indicator of GDP in 18 states and the District of Columbia. CVA leads GDP in the short-term in 7 states (AK, CA, DE, IN, LA, NY, WV) and the District of Columbia. CVA leads GDP in the medium- to long-term in 5 states (CT, NJ, OK, WI, WY). CVA leads GDP in both short and medium to long-term in 6 states (CO, ID, MN, MO, MT, NH); therefore, construction activity is the consistent leading indicator of economic growth in these states.

STATES IN WHICH CVA IS A LAGGING INDICATOR OF GDP

The results of the Granger causality test from GDP to CVA show that CVA is a lagging indicator of GDP in 10 states and the District of Columbia that means changes in GDP

Table 3Results of Granger causality tests for the states where null hypothesis wasrejected (null hypothesis: real GDP does not Granger cause CVA at the state level)

State					F Statis	stics				
	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5	Lag 6	Lag 7	Lag 8	Lag 9	Lag 10
CO	4.98**	2.70*	2.98**	2.03	1.88	3.21**	2.51**	1.77	1.58	1.16
DC	3.77*	2.26	0.96	3.79**	2.99**	2.96**	2.37*	2.25*	2.02	1.77
DE	16.9***	7.91***	5.16***	0.33	0.41	0.87	1.35	1.04	0.78	0.71
IA	0.29	4.37**	2.70*	2.53*	2.32*	1.74	1.38	1.46	1.17	1.30
KS	0.007	1.41	0.86	0.59	0.58	0.45	0.90	0.74	2.09*	2.29*
LA	0.29	4.37**	2.70*	2.53*	2.32*	1.74	1.38	1.46	1.17	1.30
MI	2.79	3.69**	2.41*	1.99	1.44	2.43*	2.06*	1.79	1.47	1.32
MO	0.96	0.54	1.53	1.62	2.39*	1.78	1.21	1.09	1.03	1.13
MT	0.09	1.21	1.27	3.47**	3.51**	2.90**	2.37*	1.62	1.40	1.79
NE	0.45	0.30	1.31	2.21	2.08*	1.73	1.65	1.34	1.01	0.69
RI	0.38	0.96	1.87	2.09	3.00**	3.04**	3.09**	2.64**	3.41**	3.26**

Notes: *, **, and *** represent rejection of null hypothesis at the 10%, 5%, and 1% significance levels, respectively.

Table 4Results of Johansen Cointegration tests for the vector of GDP and CVA at thestate level for the states where null hypothesis was rejected

State	Trace statistics	5% critical value	1% critical value
СТ	23.85***	17.95	23.52
DC	31.22***	17.95	23.52
ID	22.34**	17.95	23.52
MI	27.51***	17.95	23.52
MT	33.22***	17.95	23.52
NH	18.03**	17.95	23.52
NJ	26.96***	17.95	23.52
RI	24.32***	17.95	23.52
WI	31.37***	17.95	23.52

Notes: **, and *** represent rejection of null hypothesis at the 5%, and 1% significance levels, respectively; Akai Information Criterion is used for lag selection.

Table 5 Summary of the results

State	CVA as a percentage of GDP in 2015	CVA Granger causes GDP in short term	CVA Granger causes GDP in medium to long term	GDP Granger causes CVA in short term	GDP Granger causes CVA in medium to long term	Cointegrating relationship between CVA and GDP
AK	4.3%	\checkmark				
СА	3.4%	\checkmark				
СО	4.3%	\checkmark	\checkmark	\checkmark	\checkmark	
СТ	3.1%		\checkmark			\checkmark
DC	1.0%	\checkmark		\checkmark	\checkmark	\checkmark
DE	3.2%	\checkmark		\checkmark		
IA	4.3%			\checkmark		
ID	5.0%	\checkmark	\checkmark			\checkmark
IN	3.8%	\checkmark				
KS	3.9%				\checkmark	
LA	5.5%	\checkmark		\checkmark		
MI	3.5%			\checkmark	\checkmark	\checkmark
MN	4.0%	\checkmark	\checkmark			
MO	5.8%	\checkmark	\checkmark		\checkmark	
MT	4.0%	\checkmark	\checkmark		\checkmark	\checkmark
NE	3.6%				\checkmark	
NH	3.4%	\checkmark	\checkmark			\checkmark
NJ	3.7%		\checkmark			\checkmark
NY	3.1%	\checkmark				
OK	4.2%		\checkmark			
RI	3.8%				\checkmark	\checkmark
WI	3.8%		\checkmark			\checkmark
WV	4.7%	\checkmark				
WY	5.8%		\checkmark			

would take place before a change in the construction sector. Economic variations in some states take place right before the construction sector (DE, IA, LA) while in some other states (KS, MO, MT, NE, RI) these variations will show up in the construction industry up to 2.5 years later. GDP Granger causes CVA in both the short and medium to long-term in two states (CO, MI) and the District of Columbia. These results confirm the dependency of the construction sector to the economic conditions in these 10 states and the District of Columbia.

STATES IN WHICH CVA IS A LEAD-LAG INDICATOR OF GDP

There exists a bi-directional causal relationship between CVA and GDP in 5 states (CO, DE, LA, MO, MT) and the District of Columbia that means while changes in the economic conditions of the state will appear later in the construction sector, construction activities are still an engine of economic variations in these states.

STATES IN WHICH CVA AND GDP ARE COINTEGRATED

The data of CVA and GDP are cointegrated in 8 states (CT, ID, MI, MT, NH, NJ, RI, WI) and the District of Columbia. The cointegration relationship means that the time series of the two variables do not drift apart as time passes and there is a long-run relationship between CVA and GDP in these states.

THE ASSOCIATION BETWEEN LEADING/LAGGING RELATIONSHIPS AND SHARE OF CVA IN GDP

The Bureau of Economic Analysis calculates the share of construction activity in the state GDP. North Dakota, Montana, Wyoming, Louisiana, and Utah are the top 5 states with respect to the share of construction activity in the state GDP in 2015 (BEA, 2016). New York, Connecticut, Delaware, Oregon, and Ohio are the bottom 5 states in this ranking (BEA, 2016). Some of the 18 states shown in Table 1 are among the states with high share of construction activity in the GDP. For example, Montana, Wyoming, and Louisiana are ranked among the top 5 states of the ranking table of construction activity as a percentage of state GDP. On the contrary, some other states of Table 1 are among the bottom 5 states of this ranking (New York, Connecticut, and Delaware). Thus, the hypothesis of an existing relationship between the "share of construction in state GDP" and the "impact of construction industry on state GDP" in all U.S. states would be rejected. In other words, a higher share of construction to the state's economy. More interestingly, a lower share of construction to the state GDP does not necessarily mean that construction in economic growth of the state.

Conclusion

This study analyzes the temporal relationships between the construction industry and the economy at the state level in the U.S. The results of the present study show that the value added by the construction industry leads state GDP with different lags in 18 states of the U.S. (Alaska, California, Colorado, Connecticut, Delaware, Idaho, Indiana, Louisiana, Minnesota, Missouri, Montana, New Hampshire, New Jersey, New York, Oklahoma, Wisconsin, West Virginia, Wyoming) and the District of Columbia. Since growth in the construction industry

precedes growth in the larger economy in 18 states and the District of Columbia, the government had better provide a conductive requirement for construction firms at least in these states, to enhance their performance. This finding could be useful in policy planning while prioritizing investment opportunities.

The results of this study also show that CVA is a lagging indicator of GDP in 10 states (Colorado, Delaware, Iowa, Kansas, Louisiana, Michigan, Minnesota, Montana, Nebraska, and Rhode Island) and the District of Columbia that means changes in economic conditions will appear later in the construction sector in these states. Economic variations in some states take place right before changes in the construction industry such as in Delaware while in some other states (e.g. Rhode Island) these variations will show up in the construction industry up to 2.5 years later. Correspondingly, there is a bi-directional causal relationship between CVA and GDP in 5 states (Colorado, Delaware, Louisiana, Minnesota, and Montana) and the District of Columbia that shows the dependency of the construction sector and the economy on each other in these states.

We did not find enough evidence showing any relationships between the Value Added by Construction industry and state GDP in other states. The data of 14 states were not stationary; therefore, the Granger causality test could not be conducted. This limitation of the study should not be interpreted as minor importance of the construction industry in those states.

A comparison between the results of this study and the table of construction as a percentage of GDP shows that the hypothesis of an existing relationship between the "share of construction in state GDP" and the "impact of construction industry on state GDP" in all U.S. states would be rejected. In other words, a higher share of construction to the state GDP does not necessarily mean that construction investments have more impact on the state's economy. More interestingly, a lower share of construction to the state GDP does not necessarily mean the low importance of construction in economic growth of the state. It is recommended to further investigate the relationships between state GDP growth rates and construction share of GDP. Further studies could also be conducted analyzing the impact of investments in different sub-sectors of the construction industry on the economy of the U.S. states.

References

Akaike, H., 1974. A new look at the statistical model identification. *IEEE Transportations on Automatic Control*, 19(6), pp. 716-23. <u>https://doi.org/10.1109/TAC.1974.1100705</u>

Anaman, Kwabena Asomanin and Osei-Amponsah, Charity, 2007. Analysis of the causality links between the growth of the construction industry and the growth of the macro-economy in Ghana, *Construction Management and Economics*, 25(9), pp. 951-61. <u>https://doi.org/10.1080/01446190701411208</u>

Aschauer, D.A., 1989. Is public expenditure productive? *Journal of Monetary Economics*, 23, pp. 177-200. https://doi.org/10.1016/0304-3932(89)90047-0

Berndt, E.R. and Hansson, B., 1992. Measuring the contribution of public infrastructure capital in Sweden. *Scandinavian Journal of Economics*, 94, pp. 151-68. https://doi.org/10.2307/3440255

Barot, B., 2002. Growth and business cycles for the Swedish economy 1963–1999. *Journal of Construction*, 3(2), 217-53. <u>https://doi.org/10.1142/S1609945102000242</u>

Dickey, D. and Fuller, W.A., 1979. Distribution of the estimates for autoregressive time series with a unit root. *Journal of the American Statistical Association*, 74, pp. 427-31. <u>https://doi.org/10.2307/2286348</u> and <u>https://doi.org/10.1080/01621459.1979.10482531</u>

Drewer, S., 1980. Construction and development: A new perspective. *Habitat International*, 5(314), pp. 395-428. <u>https://doi.org/10.1016/0197-3975(80)90028-4</u>

Easterly, W. and Rebelo, S., 1993. *Fiscal policy and economic growth: An empirical investigation*. WP4499. Cambridge, MA: National Bureau of Economic Research. <u>https://doi.org/10.3386/w4499</u>

Edmonds, G.A., 1979. The construction industry in developing countries. *International Labour Review*, 118(3), pp. 355-69.

Ganesan, S., 2000. *Employment, technology and construction development: With case studies in Asia and China.* Aldershot: Ashgate.

Giang, D.T.H and Pheng, L.S., 2010. Role of construction in economic development: Review of key concepts in the past 40 years. *Habitat International*, 35(2011), pp. 118-25. <u>https://doi.org/10.1016/j.</u> <u>habitatint.2010.06.003</u>

Granger, C.W.J., 1969. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. *Econometrica*, 37(3), pp. 424-38. JSTOR 1912791. <u>https://doi.org/10.2307/1912791</u>

Green, R.K., 1997. Follow the leader: How changes in residential and non-residential investment predict changes in GDP. *Real Estate Economics*, 25(2), pp. 253-70. <u>https://doi.org/10.1111/1540-6229.00714</u>

Hosein, R. and Lewis, T.M., 2005. Quantifying the relationship between aggregate GDP and construction value added in a small petroleum rich economy – a case study of Trinidad and Tobago. *Construction Management and Economics*, 23(2), pp. 185-97. <u>https://doi.org/10.1080/0144619042000287741</u>

Johansen, S., 1988. Statistical analysis of cointegration vectors. *Journal of Economic Dynamics and Control*, 12, pp. 231-254. <u>https://doi.org/10.1016/0165-1889(88)90041-3</u>

Johansen, S. and Juselius, K., 1990. Maximum likelihood estimation and inference on cointegration – with application to the demand for money. *Oxford Bulletin of Economics and Statistics*, 52(2), pp. 169-210. https://doi.org/10.1111/j.1468-0084.1990.mp52002003.x

Kirmani, S., 1988. *The construction industry in development: Issues and options*. World Bank discussion paper. Washington, D.C.: The World Bank.

Kocherlakota, N.R. and Yi, K., 1996. Simple time series test of endogenous vs. exogenous growth models: An application to the United States. *Review of Economics and Statistics*, 78(1), pp. 126-134. https://doi.org/10.2307/2109852

Landers, J., 2014. Increased spending on U.S. infrastructure would boost economy, report says. *Civil Engineering-ASCE*, pp. 14-15.

Lean, C.S., 2001. Empirical tests to discern linkages between construction and other economic sectors in Singapore. *Journal of Construction Management and Economics*, 19(4), pp. 355-63. <u>https://doi.org/10.1080/01446190010022686</u>

Lewis, T.M., 1984. A review of the causes of recent problems in construction industry of Trinidad and Tobago. *Construction Management and Economics*, 2, pp. 37-48. <u>https://doi.org/10.1080/01446198400000004</u>

Lewis, T.M., 2009. Quantifying the GDP-construction relationship. In: L. Ruddock, ed. *Economics for the modern built environment*. London: Taylor and Francis. pp. 34-59.

Lopes, J., Ruddock, L. and Ribeiro, F.L., 2002. Investment in construction and economic growth in developing countries. *Building Research and Information*, 30(3), pp. 152-59. <u>https://doi.org/10.1080/09613210110114028</u>

Markstein, B.M., 2016. The Importance of construction to state economies. Association Builders and Contractors Inc. [online] Available at: <u>http://www.abc.org/NewsMedia/ConstructionEconomics/</u> StatebyStateConstructionEconomics, Oct. 2016.

Munnell, A.H., 1990. Why has productivity growth declined? Productivity and public investment. *New England Economic Review*, January/February, 3e22.

Ofori, G., 1988. Construction industry and economic growth in Singapore. *Construction Management and Economics*, 6, pp. 57-70. <u>https://doi.org/10.1080/01446198800000007</u>

Said, S.E. and Dickey, D.A., 1984. Testing for unit roots in autoregressive-moving average models of unknown order. *Biometrika*, 71, pp. 599-608. <u>https://doi.org/10.1093/biomet/71.3.599</u>

Strassmann, P., 1970. The construction sector in economic development. *Scottish Journal of Political Economy*, 17(3), pp. 390-410. <u>https://doi.org/10.1111/j.1467-9485.1970.tb00715.x</u>

Strassner, E.H. and Wasshausen, D.B., 2014. New Quarterly Gross Domestic Product by Industry Statistics. Bureau of Labor Statistics. [online] Available at: <u>https://www.bea.gov/scb/pdf/2014/05%20</u> <u>May/0514_gdp-by-industry.pdf</u>, Oct. 2016.

Shahandashti, S.M. and Ashuri, B., 2013. Forecasting engineering news-Record construction cost index using multivariate time series models. *Journal of Construction Engineering and Management*, 139(9), pp. 1237-43. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000689

Tse, R.Y.C. and Ganesan, S., 1997. Causal relationship between construction flows and GDP: Evidence from Hong Kong. *Construction Management and Economics*, 15, pp. 371-76. <u>https://doi.org/10.1080/014461997372926</u>

Turin, D.A., 1973. *Construction and development*. 2nd Ed. London: University College, Environmental Research Group.

Turin, D.A., 1969. *The construction industry: Its economic significance and its role in development*. London: University College, Environmental Research Group.

U.S. Bureau of Economic Analysis, 2016. Quarterly gross domestic product by state. [online] available at: <u>http://www.bea.gov/iTable/index_regional.cfm</u> Oct. 2016.

United Nations, 1990. Economic and social survey of Asia and the Pacific. Bangkok: United Nations.

Wells, J., 1986. *The construction industry in developing countries: Alternative strategies for development.* London/Dover, N.H.: Croom Helm.

World Bank, 1994. World development report 1994, infrastructure for development. Washington, D.C.: World Bank.

Wylie, P.J., 1996. Infrastructure and Canadian economic growth 1946e1991 [Special issue]. *The Canadian Journal of Economics*, 29, pp.S350-55. <u>https://doi.org/10.2307/136015</u>

Zheng, S. and Liu, H., 2004. Interaction among construction investment, other investment, and GDP in China. *Tsinghua Science and Technology*, 9(2), pp. 160-67.

))									
State	Year	2012		Year	2013			Year 2	2014	
	Q 3	Q4	Q1	Q2	Q 3	Q4	Q1	Q2	Q 3	Q4
AL	178935	178500	177599	179258	181642	180827	182371	181601	183093	183779
AK	51178	50472	49882	49659	49273	49708	49593	49969	49018	48855
ΑZ	254067	256887	257076	258049	260439	259411	259754	261243	261114	262615
AR	108828	109146	109045	110220	110921	111822	110486	111781	112897	113346
CA	2061858	2112833	2087206	2109910	2138911	2139406	2171390	2212235	2214369	2229070
CO	268445	271617	272613	276277	281080	285328	286174	288976	289039	291043
СT	226879	227300	226985	229425	229938	229361	229321	231978	229385	230358
DE	56046	57720	57319	58846	59933	59316	59575	60472	59994	60130
DC	103057	103993	105848	105003	105125	105271	107217	108351	107724	108528
FL	748816	755814	755797	762998	770134	774429	777895	784759	795497	800852
GA	420406	424255	424297	429285	434753	436042	436309	440179	445108	447889
Ξ	68739	69414	69299	69691	69937	69720	70434	70936	70863	71147
ID	56433	57284	56666	56999	57949	58208	57942	58124	58687	58990
L	665217	671901	668010	673469	678784	677412	687357	683853	694145	694274

Appendix A Table 6 State GDPs

State	Year	2012		Year	2013			Year	2014	
	Q3	Q4	a1	Q2	0 3	Q4	a1	Q2	Q 3	Q4
N	288441	288919	289906	292309	295344	297708	294620	299013	299701	301936
ΙA	149590	150516	147805	153500	155537	157084	152865	155009	155944	154787
KS	130709	131913	130291	132067	133504	133481	132425	133287	132585	132366
КY	169783	170284	169449	171565	182109	182907	170981	173418	174014	175178
LA	204992	205357	204288	208631	211922	213340	212987	212544	213334	213315
ME	49687	49797	49644	50048	50473	50982	49476	50562	50826	50995
MD	316218	318069	317585	322371	324609	323452	325325	327067	326223	328281
MA	414608	411454	415164	415660	420931	425015	425445	430262	425836	428621
M	406686	409097	408906	413001	415339	415507	413794	418825	420439	423123
MN	287668	288214	286626	289780	295170	296243	298574	298191	298579	300012
MS	96098	94836	94008	94100	94858	95096	94567	95124	95858	96255
MO	255354	256241	255033	257837	259725	260208	258672	261882	262197	263379
MT	39004	39395	39124	39809	40007	39999	40582	41192	41383	41279
NE	96820	96864	96457	98385	98953	100242	98934	100792	101193	101091
NV	118435	119959	121010	122009	123286	124473	123901	126110	127290	127324

Table 6 (Continued)

State	Year	2012		Year	2013			Year	2014	
	Q3	Q4	01	Q2	0 3	Q4	a1	Q2	Q3	Q4
HN	63392	63582	63877	65047	65236	65801	64219	65194	66209	66401
ſN	494736	497397	494252	498586	501421	502217	500034	510270	509635	512791
MN	82987	83252	83173	84416	85926	87398	85679	85946	86007	85774
N	1237814	1243658	1237357	1241710	1254955	1259174	1241349	1265456	1277992	1278094
NC	424872	427152	426500	428222	433200	435626	435476	441278	445578	447624
ND	49311	49824	49106	51239	51987	53393	51951	50067	49564	49815
НО	517256	522267	523628	531006	541594	543434	538949	543411	545609	549470
ОK	163808	166402	165763	167691	171325	171369	174335	170862	170602	169376
OR	189958	191261	188892	180547	193510	193521	196721	198023	201378	201448
PA	603745	606849	609435	612800	619611	623666	624233	624516	627647	610361
RI	49418	49425	49851	50305	50679	51134	50557	51187	51132	51347
SC	170596	171735	170298	174222	174859	175761	174971	176207	178394	178991
SD	39981	40155	39026	39972	40404	40710	39711	40542	41252	41487
ΝL	270842	271368	271278	274585	275954	277284	274344	280149	282456	284123
TX	1378613	1386697	1388336	1407312	1437866	1453523	1478165	1469639	1474523	1479813

Table 6 (Continued)

	Year 2014	a1 a2 a3 a4	46 129370 130806 131913 132836	6 26989 27503 27599	32 424677 430568 434308 436890	76 390467 398049 399756 401011	4 67783 67069 67135 67189	14 270003 272376 276020 276284	6 35678 35326 35264 34957
	Year 2013	12 a3 a4	5295 127398 12844	982 27437 2766	5835 426678 42693	4994 387199 39137	267 67704 6796	3464 271053 27211	848 35231 35990
		24 01 0	4920 125847 126	948 26774 269	5647 422467 425	7658 380431 384	424 66009 673	5374 263336 268	181 34564 348
(Continued)	Year 2012	0 03	125355 124	26708 26	424707 425	377023 377	66810 67.	263867 265	34873 35
able 6	State		UT	٧T	٨A	MA	Ŵ	MI	γγ

		Q4	8268	2332	11649	5291	91028	15043	8636	2321	1622	42497	18820	5082	3374	27942	13679
	ear 2014	0 3	8082	2337	11312	5167	88598	14505	8448	2267	1596	41495	18251	4841	3267	27425	13330
	~	Q2	7819	2507	11234	4746	85895	14154	8205	2194	1613	40236	17763	4703	3319	3 26852	13063
		۵1 ۵1	7816	2554	5 11101	4621	3 84465	6 14306	7860	2148	1444	6 39141	9 17743	4588	3451	1 25778	4 12645
		Q4	1 7924	9 2241	30 1115	8 4769	35 8060;	32 1408	3 757	3 2166	4 1614	22 3796	56 1738	9 4349	7 3184	24 2567	12994
	Year 2013	2 Q3	t0 769	31 223	27 1078	24 447	36 7898	37 1363)6 780	33 217:	157,	74 3682	63 1676	79 428	307	27 2462	34 1260
		1 Q2	88 754	21 233	356 110	64 442	517 774:	134:	41 760	06 213	85 156	264 358	987 163	31 417	10 306	480 239	123
		34 Q	351 75	251 24	184 113	277 43	271 765	831 131	265 73	170 20	561 15	724 352	922 159	103 41	30 30	278 234	368 120
<u>)</u>	Year 2012	Q3	271 75	208 21	11 11	281 42	4531 76	2289 12	258 72	007 20	543 15	3916 34	5494 15	059 40	962 30	3044 23	192 12
	State		7	2	10	4	72	12	7	2	-	33	15	4	2	23	12
2			AL	AK	AZ	AR	CA	CO	CT	D	DC		GА	Ξ		⊒	Ζ

Table 7 State CVAs

Ahmadi & Shahandashti

		Q4	7857	6092	8412	13994	2267	17668	19023	17759	14067	4974	11519	2862	4321	7532	2664
	ar 2014	0 3	7575	5950	8170	13550	2209	17205	18499	17375	13827	4751	11160	2793	4207	7343	2581
	Yea	Q2	7696	6071	8076	12957	2180	16725	17948	17354	13745	4587	11108	2612	4090	7036	2482
		۵1	7955	5922	7714	13476	2181	16133	17429	16357	13561	4670	10939	2711	4176	7035	2466
		Q4	7579	5777	7871	13494	2247	16440	17197	16881	12796	4719	10592	2584	4106	6847	2464
	r 2013	03	7271	5763	7641	13325	2169	16288	16710	16524	12563	4794	10415	2501	3867	6673	2370
	Үеаг	Q2	7146	5918	7485	12760	2153	16032	16262	15988	12180	4802	10473	2430	3782	6444	2354
		a1	6806	5968	7246	12431	2117	15498	16040	15652	11993	4886	10477	2384	3654	6246	2325
	- 2012	Q4	6629	5843	7109	12133	2150	15408	15883	15577	12016	5042	10358	2336	3613	5993	2302
1000	Year	ď3	6497	5619	6941	11813	2118	15365	15670	15079	11625	4986	10206	2303	3649	5867	2252
	State		IА	KS	КҮ	LA	ME	MD	MA	M	MN	MS	MO	MT	ШN	NV	HN

Table 7 (Continued)

te	Year	2012		Year	2013			Year	2014	
	Q3	Q4	Q1	Q2	Q3	Q4	a1	Q2	Q3	Q4
	18932	19492	18955	19743	20276	20799	20609	21645	22019	22770
	3139	3270	3183	3217	3260	3395	3351	3350	3379	3395
	38939	39975	39353	41404	42401	43248	42285	44877	45741	47581
	14974	15175	15307	15629	16037	16584	16721	17268	17725	18149
	4073	4104	4189	4352	4512	4874	5025	4438	4206	4162
	19485	19983	19929	20624	20808	21447	21247	21303	21758	22354
	7769	7902	8024	7846	7888	8025	8285	8180	8521	8664
	6934	7354	7478	7452	7407	7473	7553	7408	7632	7797
	25428	25550	25372	26625	26774	27287	26224	27107	28027	28455
	2082	2100	2075	2154	2187	2212	2142	2215	2301	2370
	7920	8114	8189	8278	8320	8534	8594	9796	9064	9322
	1735	1750	1781	1818	1824	1867	2033	2025	1913	1983
	10256	10526	10644	10802	10832	11156	11390	11749	12246	12604
	73435	73750	76125	77666	76510	82174	83153	82352	86144	88033
	7150	7005	7418	7423	7466	7708	8109	8189	8215	8562

Table 7 [Continued]

2014	۵3 ۵4	1273 130	20282 207	17457 177	3686 368	12047 123	2308 234
Year	Q2	1266	20010	17652	3633	11767	2273
	Q1	1268	19199	17131	3540	11511	2399
	Q4	1284	19269	16377	3830	11463	2352
2013	Q 3	1253	18984	15810	3816	11127	2436
Year	Q2	1214	18920	16324	3713	10639	2407
	a1	1191	18398	15081	3534	10407	2340
2012	Q4	1181	18539	14932	3756	10482	2333
Year	0 3	1159	18294	14613	3680	10313	2131
State		ΥT	V A	MA	Ŵ	M	Ŵ

Ahmadi & Shahandashti

Table 7 (Continued)