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INTRODUCTION

Subfossil Cladocera (Crustacea, Branchiopoda) rep-
resent one of the most valuable biological proxies pre-
served in lake sediments that can be studied for
reconstruction purposes (Kohrola and Rautio, 2011). They
are widespread in both the pelagic and littoral zones of
lakes of different geographical distribution, altitude and
typology, where they often represent the dominant com-
ponent of zooplankton in terms of biomass. The chitinous
parts of their body are well preserved in lake sediments,
and the taphonomic taxonomy is well established, thanks
to the numerous studies that followed the first pioneer
works by Frey (1960).

Cladocera play a key ecological role in freshwater
ecosystems, as they occupy an intermediate position in
the food web between primary producers (phytoplankton)
and primary consumers (invertebrates and fish). As a con-
sequence, subfossil Cladocera remains have the capability
to track long term changes in both bottom-up drivers
(such as nutrients, physical and chemical stressors) and
top down regulators, such as invertebrate and fish preda-
tion (e.g., Jeppesen et al., 2001; Szeroczynska, 2006;
Perga et al., 2015).

The changes in taxonomical composition of subfossil
Cladocera, which mainly includes Bosminidae and Chy-
doridae, and secondly Daphniidae, have been increasingly
investigated during the last decades and successfully used
to track past environmental changes related to nutrient en-
richment (Lotter ef al., 1998; Bigler et al. 2007; Manca et
al., 2007; Nevalainen and Luoto, in press), acidification
and calcium decline (Krause and Dellin, 1986; Paterson,
1994; Jeziorski et al., 2008), chemical contamination (Ko-
rosi and Smol, 2012a; Labaj et al., 2016), hydrological
changes (Korhola ef al., 2005; Nevalainen et al., 2011),
submerged macrophytes (Davidson ef al., 2011a), and cli-
mate change (Lotter ez al., 1997; Kamenik et al., 2007; Ko-
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rponai et al., 2011; Nevalainen ef al., 2013; Zawiska et al.,
2015). The strong response of Cladocera remains to envi-
ronmental variability led to inference methods for quanti-
tative reconstruction of past lake water variables, especially
phosphorus (Brodersen et al., 1998), lake depth (Davidson
et al., 2011b; Nevalainen et al., 2011), and water tempera-
ture (Duigan and Birks 2000; Lotter et al., 2000).

In addition, subfossil cladoceran remains preserved in
lakes sediments have the very valuable capability to allow
reconstructing past changes in the lake food-web induced
by the predation pressure by planktivorous fish (e.g., Ko-
rosi et al., 2013). Information on past fish populations and
predation pressure on lacustrine zooplankton is in many
case scattered, partial, or controversial, as it often relies
on imprecise historical data, or on catch records from
sport or commercial fisheries, the latter being biased by
temporal changes in the catches of certain species due to
their fluctuating commercial value. Within this context,
changes in species composition and abundances of Clado-
cera remains can support the indirect reconstruction of
food web changes in both temperate and high
altitude/high latitude lakes (which are mainly naturally
fishless, but experienced historical legal or illegal fish in-
troductions), thus fostering conservation and restoration
actions (e.g., Tiberti et al., 2014).

Recent investigations revealed that not only species
composition and abundance, but also morphology of clado-
ceran remains can be used for ecological reconstructions.
It is well established that invertebrate and fish predation
can affect body size, morphology and pigmentation of
Cladocera (Jeppesen et al., 2002; Hansson, 2004; Guiliz-
zoni et al., 2006;). However, pigmentation has been re-
cently used also to track changes in underwater UV
radiation in relation to solar activity (Nevalainen and
Rautio, 2014) and changes in water DOC concentrations,
the latter in relation to lake productivity (Nevalainen et al,
2016) or changing land use within the lake catchment (e.g.,
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a-forestation, water regulation). Isotopic composition of
cladoceran remains also revealed to be a very time-effective
and promising tool for interpreting changes in lake food
web and functionality (Perga et al., 2010; Perga, 2011).

Nevertheless, a set of factors still hamper the interpre-
tation of sedimentary Cladocera results, and, in turn, the
exploitation of the great potential of this biological proxy
for the reconstruction of past lake evolution. Firstly, tax-
onomy of subfossil Cladocera is well established for tem-
perate and boreal regions of Europe and North America
(Szeroczynska and Sarmaja-Korionen, 2007; Korosi and
Smol, 2012b), whereas only a few works has been pub-
lished for tropical regions (Cuna et al., 2014; Sinev and
Zawisza, 2013; Szeroczynska et al., 2015). Much work
remains to be done also to evaluate how well taphonomic
Cladocera represent the living communities (Kattel ez al.,
2007; Alric and Perga, 2011; Kirillova ef al., 2016), and
how preservation of remain type and species in the sedi-
ment can be affected by water characteristics, such as oxy-
genation, pH and chemical composition. Sedimentation
dynamics can also affect spatial distribution of remains
in the lake sediments (Alric and Perga, 2011). Finally, the
interpretation of sediment records is complicated by the
reciprocal interactions between multiple drivers, such as
climate and nutrients, which can produce additive, com-
petitive or synergic effects (Battarbee ef al., 2012). Al-
though the multi-proxy paleoecological approach and the
comparison of sediment records with limnological data
(e.g. Manca et al., 2007; Bennion et al., 2015) can help
disentangling the effects of multiple drivers, more studies
are still necessary to make the interpretation of the Clado-
cera sediment records more straightforward.

The first Subfossil Cladocera Workshop was initiated
by Prof. Atte Korhola in 1999 (Helsinki) with the aim of
getting together specialists, young researchers and stu-
dents working on various aspects of Cladocera remains in
lake sediments in order to share knowledge, to foster dis-
cussion on new ecological findings and ideas, and to prac-
tice species identification at the microscope under the
guidance of expert taxonomists.

The XIV Subfossil Cladocera Workshop was organized
within this same spirit and held at Levico Terme (Italy)
from 5" to 8" April 2016. The 30 participants (Fig. 1) from
9 countries (Czech Republic, Finland, France, Germany,
Hungary, Italy, Poland, Russia, UK) were almost equally
distributed between senior, young scientists and students,
what promoted the transfer of knowledge and experience
among generations. One special objective of this workshop
was to stimulate the discussion on possible future develop-
ments of Cladocera-based paleoecological reconstructions
based on relatively new approaches, such as the “resurrec-
tion ecology” techniques, the study of isotopic signatures
in body and ephippia remains, and the statistical treatment
of multiproxy sediment data.

THEMATIC PAPERS

The thematic papers grouped in this volume represent
the outcome of presentations and discussions held at the
XIV Subfossil Cladocera Workshop. The contributions
focus on taxonomy, diversity, distribution of Cladocera
remains in lake sediments in Europe and America, as well
as on the subfossil Cladocera capability to track past
changes in both bottom-up and top-down drivers of lake
ecological dynamics.

Several papers aimed at reconstructing the environ-
mental evolution of temperate European lakes at secular
(Milan et al., 2016) or millennial (Niska, 2016; Sze-
roczynska, 2016; Zawisza et al., 2016) scales. The con-
tribution by Milan et al., (2016) showed how the
multiproxy approach, and in particular the combination
of biological proxies and geochemical analyses, could im-
prove the understanding of the relation between clado-
ceran communities and hydrological variability. The
paleolimnological studies at millennial scale investigated
the relations between Cladocera and environmental driv-
ers in stages where human impact was still absent or neg-
ligible, thus allowing the discrimination of climate related
effects. Korponai et al. (2016) used subfossil Cladocera
to distinguish lentic and lotic stages in oxbow lakes along
the River Tisza (Hungary), thus demonstrating the poten-
tial of cladoceran remains to reconstruct changes in the
hydrological regimen of transitional water ecosystems.

The thematic section of this volume tackled also the
taxonomic issue. Wojewoddka et al. (2016) presented a
first description of Cladocera diversity in superficial sed-
iments of 29 lakes of different altitude and size in Central
America, thus contributing to the improvement of the
cladoceran taxonomy within this still scarcely investi-
gated region. On the other side, Zawiska et al. (2016) de-
scribed a time and cost effective method to prepare
subfossil Cladocera for SEM analysis, which allows the
observation of taxonomically important details of the
structure and ornamentation of carapace and spines.

Finally, several contributions studied the importance
of morphological variability of Cladocera remains in track-
ing long term environmental and ecological changes. Lep-
panen and Weckstrom (2016) explored the potential use of
changes in size and preservation level of Daphnia caudal
spines to track fishing and forestry activities, as well as
changes in water pH. Milan et al. (2016) analyzed changes
in Bosminidae and Daphniidae body size and appendages
length to reconstruct major changes in the lake food-web,
outlining nutrient enrichment and appearance of predator
Cladocera species as the major drivers of size changes.
Szeroczynska (2016) related the presence of extreme Eu-
bosmina morphs, observed in a German lake, to stages of
particularly pronounced water turbulence and turbidity. Fi-
nally, Bérubé Tellier et al. (2016) demonstrated as varia-
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tions in resting eggs (ephippia) pigmentation can be used to ume consolidate the indicator value of subfossil Cladocera
track changes in predation pressure by fish and changes in in both classical and more novel paleolimnological ap-
water DOC concentration in relation to catchment land use. proaches, outlining at the same time several research top-

In conclusion, the thematic papers included in this vol- ics, which need to be further developed in the near future.

Sirmione, April 7t 2016

Fig. 1. The participants of the XIV Subfossil Cladocera Workshop during the excursion at Lake Garda.
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